簡易檢索 / 詳目顯示

研究生: 鄭宇勝
Yu-sheng Cheng
論文名稱: 新型噻吩共軛高分子之合成及性質鑑定於光電材料的應用
Synthesis and Characterization of Novel Thiophene-based Conjugated Copolymers for Organic Optoelectronic Materials
指導教授: 游進陽
Chin-yang Yu
口試委員: 邱顯堂
none
堀江正樹
Masaki Horie
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 108
中文關鍵詞: 芴-噻吩交替共聚合分子鈴木耦合聚合反應光致發光的量子效率
外文關鍵詞: alternating fluorene-thiophene copolymers, Suzuki coupling polymerization, photoluminescence quantum efficiency
相關次數: 點閱:232下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在論文中,我們合成新型聚合物並討論全氟碳鏈和長碳鏈在聚合物上的差異. 芴-噻吩交替共聚合分子的取代基在光電性質中的影響將根據高分子(11), (12), (13)和(14)來探討. 這些高分子我們利用鈴木耦合聚合反應得到.結果顯現出龐大取代基的立體效應主導電子效應,所以造成吸收光譜藍移. 相反的,小的取代基例如:長碳鏈可以有效減少能階和增強光致發光的量子效率. 同樣的,由高分子循環伏安儀分析測定得知高分子含有龐大取代基將會減少HOMO大小和增加能階. 由示差掃描熱量分析檢測得知龐大取代基的立體障礙會增加玻璃轉變溫度.


    The thesis was synthesized the novel copolymers and discuss the difference between the perfluoroalkyl chains and alkyl chains on copolymers. The substituent effect on the optoelectronic properties of alternating fluorene-thiophene copolymers has been investigated on the basis of polymers (11), (12), (13) and (14). These polymers were synthesized via Suzuki coupling polymerization. The results suggest that the steric effects of the bulkier substituents dominate the electronic effects so that absorption spectra are blue-shifted. In contrast, small substituent such as the alkyl chains substituents can effectively reduce the band gap and enhance the photoluminescence quantum efficiency. Similarly, CV measurement of the polymers observed that polymers with the bulky substituent would decrease the HOMO level and increase the band gap. DSC trace also confirmed that the large steric hindrance of bulky substituents would cause the increase of the glass transition temperatures.

    Chapter 1. Introduction and Aims 1 1.1 Introduction 2 1.2 Introduction to Organic Semiconductor 3 1.2.1 Conducting polymers 3 1.2.2 Band theory of Solids 4 1.2.3 Excitations in conjugated polymers 6 1.2.4 Luminescence 9 1.3 Introduction to applications of organic semiconductors in Light emitting devices and photovoltaics 15 1.4 Aims of the project 20 1.5 References 21 Chapter 2. Results and Discussion 24 2.1 Introduction to polyfluorenes 25 2.2 Introduction to polythiophenes 27 2.2.1 Poly(3,4-disubstituted thiophenes) and poly(3-monosubstituted thiophenes) 27 2.2.2 Perfluoroalkyl chains and alkyl chains substituted on polythiophene 28 2.3 Synthesis and characterization 31 2.3.1 Synthetic routes to fluorene derivative 31 2.3.2 Synthetic routes to thiophene derivatives 32 2.3.3 Characterization of monomers 34 2.3.4 Polymerization: Suzuki coupling reaction 40 2.3.5 Synthetic routes to copolymers 43 2.3.6 Molecular weight and structure characterization 45 2.4 Properties of polymers 54 2.4.1 Optical properties 54 2.4.2 Electrochemical characterization 59 2.4.3 Thermal behavior 62 2.5 Summary 64 2.6 References 65 Chapter 3. Conclusions 68 3.1 Conclusions 69 Chapter 4. Experimental 70 4.2 Synthesis 72 4.2.1 Synthesis of the monomers 72 4.2.2 Synthesis of the alternating copolymers 80

    [1] Handbook of Conducting Polymers, 3rd ed.; Skotheim, T. A., Reynolds, J. R., Eds.; CRC Press: Boca Raton, FL, 2007.
    [2] Handbook of Thiophene-Based Materials; Perepichka, I. F., Perepichka, D. F., Eds.; John Wiley & Sons: Hoboken, NJ, 2009.
    [3] S. C Rasmussen, K Ogawa, S. D Rothstein. In Handbook of Organic Electronics and Photonics; H. S. Nalwa, Ed.; American Scientific Publishers: Stevenson Ranch, CA, 2008; Chapter 1.
    [4] A. C. Grimsdale, K. L Chan, R. E. Martin, P. G. Jokisz, A. B. Holmes, Chem. Rev. 2009, 109, 897.
    [5] I. F. Perepichka, D. F. Perepichka, H. Meng. In Handbook of Thiophene-Based Materials; I. F. Perepichka, D. F. Perepichka; John Wiley & Sons: Hoboken, NJ, 2009; Chapter 19.
    [6] M. R. Andersson, O. Thomas, W. Mammo, M. Svensson, M. Theander, Inganas, O. J. Mater. Chem. 1999, 9, 1933.
    [7] K. A. Murray, S. C. Moratti, D. R. Baigent, N. C. Greenham, K. Pichler, A. B. Holmes, R. H. Friend, Synth. Met. 1995, 69, 395.
    [8] A. O. Patil, A. J. Heeger, F. Wudl, Chem. Rev, 1988, 88, 183.
    [9] C. J. Shi, Y. Yao, Y. Yang, Q. B. Pei, J. Am. Chem. Soc., 2006, 128, 8980.
    [10] H. Suh, Y. Jin, S. H. Park., D. Kim., J. Kim, C. Kim, J. Y. Kim, K. Lee, Macromolecules., 2005, 38, 6285.
    [11] A. Zen, M. Saphiannikova, D. Neher, U. Asawapirom, U. Scherf, Chem. Mater., 2005, 17, 781.

    [12] G. Hadziioannou, P. F. V. Hutten, Semiconducting Polymer - Chemistry, Physics and Engineering, 1999, Wiley-VCH: Weinheim.
    [13] G. Horowitz, Advanced Materials, 1998, 10, 365.
    [14] C. L. Pai, C. L. Liu, W. C. Chen, S. A. Jenekhe, Polymer, 2006, 47, 699.
    [15] A. J. Heeger, Revies of Morden Physics, 2007, 73, 681.
    [16] H. Shirakawa, E. J. Louis, A. G. MacDiarmid, C. K. Chiang, A. J. Heeger, Chem. Commun., 1977, 578.
    [17] T. Schimmel, M. Schwoerer, H. Naarmann, Synth. Met., 1990, 37, 1.
    [18] H. Shirakawa, Angew, Chem. Int. Ed., 2001, 40, 2574.
    [19] Niels Bohr, On the Constitution of Atoms and Molecule in Philosophical Magazine 26, 1913,857.
    [20] H. Nishikiori, N. Tanaka, K. Takagi ,T. Fujii, Res. Chem. Intermed., 2003, 29, 485.
    [21] http://www.biotek.com/resources/articles/fluorescence-resonance-energy- transfer.html.
    [22] F. Garten et al., Adv. Mater., 1997, 9, 127 ; A. R. Brown et al., Appl. Phys. Lett., 1992, 61, 2793.
    [23] R. H. Friend et al., Nature, 1999, 397, 121.
    [24] Y. Cao et al., Nature, 1999, 397, 414.
    [25] Z. Shuai, D. Beljonne, R. J. Silbey, J. L. Bredas, Physical Review Letters, 2000, 84, 131.
    [26] A. Bernanose, A. Comte, P. Vouaux, J. Chim. Phys., 1953, 50, 64.
    [27] M. T. Bernius, M. Inbasekaran, J. O'Brien, W. Wu, Adv. Mater., 2000, 12, 1737.
    [28] W. Helfrich, W. G. Schneider, Phys. Rev. Lett., 1965, 14, 229.
    [29] E. Gurnee, R. Fernandez, US Patent 3172862, 1965.
    [30] M. Pope, H. Kallman, P. Magnante, J. Chem. Phys., 1963, 38, 2042.
    [31] C. W. Tang, S. A. VanSlyke, Appl. Phys. Lett., 1987, 51, 913.
    [32] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, R. N. Marks, K. Mackay, R. H. Friend, P. L. Burns, A. B. Holmes, Nature, 1990, 347, 539.
    [33] T. Kulkarni, C. J., A. Babel, S. A. Jenekhe, Chem. Mater., 2004, 16, 4556.
    [1] M. Fukuda, K. Sawada, K. Yoshino, J. Polym. Sci. Part A: Polym. Chem. 1993, 31, 2465.
    [2] M. T. Bernius, M. Inbasekaran, J. O’Brien, W. Wu, Adv. Mater. 2000, 12, 1737.
    [3] J. J. M. Halls, A. C. Arias, J. D. MacKenzie, W. Wu, M. Inbasekaran, E. P. Woo, R. H. Friend, Adv. Mater. 2000, 12, 498.
    [4] R. Pacios, D. D. C. Bradley, Synth. Met. 2002, 127, 261.
    [5] A. P. Kulkarni, C. J. Tonzola, A. Babel, S. A. Jenekhe, Chem. Mater. 2004, 16, 4556.
    [6] J. Cornil, I. Gueli, A. Dkhissi, J. C. Sancho-Garcia, E. Hennebicq, J. P. Calbert,; V. Lemaur, D. Beljonne, J. L. Bredas, J. Chem. Phys. 2003, 118, 6615.
    [7] M. C. Hung, J. L. Liao, S. A. Chen, S. H. Chen, A. C. Su, J. Am. Chem. Soc. 2005, 127, 14576.
    [8] W. C. Wu, C. L. Liu, W. C. Chen, Polymer 2006, 47, 527.
    [9] M. Leclerc, J. Polym. Sci. Part A: Polym. Chem. 2001, 39, 2867.
    [10] J. Roncal, chem. Rev. 1992, 92, 711.
    [11] R. D. McCullough, S. P. Williams, J. Am. Chem. Soc. 1993, 115, 11608.
    [12] J. P. Ruiz, K. Nayak, J. R. Reynold, Macromolecules 1989, 22, 1231
    [13] T. M. Swager, M. J. Marsella, L. K. Bicknell, Q. Zhou, Polym. Prepr. 1994, 35, 206.
    [14] S. Hotta, M. Soga, N. Sonoda, Synth. Met. 1988, 26, 267.
    [15] M. Sato, S. Tanaka, K. Kaeriyama, Chem. Commun. 1986, 12, 873.
    [16] K. Y. Jen, G. G. Miller, R. L. Elsenbaumer, Chem. Commun. 1986, 12, 1346.

    [17] S. Hotta, R. hooputh, A. J. Heeger, F. Wudl, Macromoles 1987, 20, 212.
    [18] J. Roncali, R. Garreau, A. Yassar, P. Marque, F. Garnier, M. Lemaire, J. Phys. Chem. 1987, 91, 6706.
    [19] W. Buchner, R. Garreau, M. Lemaire, J. Roncali, J. Electroanal. Chem. 1990, 277, 355.
    [20] K. Tamao, K. Sumitani, M. Kumada, J. Am. Chem. Soc. 1972, 94, 4374.
    [21] N. Miyaura, A. Suzuki, Chemical Reviews 1995, 95, 2457.
    [22] N. Miyaura, A. Suzuki, J. Chem. Soc., Chemical Communications 1979, 12, 866.
    [23] A. Suzuki, J. Org. Chem. 1999, 576, 147.
    [24] E. Lim, B. J. Jung, H. K. Shim, Macromolecules 2003, 36, 4288.
    [25] Y. Liang, D. Feng, Y. Wu, S. T. Tsai, G. Li, C. Ray, L. Yu, J. Am. Chem. Soc., 2009, 131, 7792.
    [26] M. Berggren, C. Gustajsson, O. Ingunas, M. R. Andersson, O. Wennerstrom, T. Hjertherg, Adv. Mater. 1994, 6, 488.
    [27] I. K. Spiliopoulos, J. A. Mikroyannidis, J. Polym. Sci., Part A: Polym. Chem. 2002, 40, 1449.
    [28] M. Horie, L. A. Majewski, M. J. Fearn, C. Y. Yu, Y. Luo, A. Song, B. R. Saunders, M. L. Turner, J. Mater. Chem. 2010, 20, 4347.
    [29] N. I. Nijegorodov, W. S. Downey, J. Phys. Chem. 1994, 98, 5639.
    [30] L. Ling, K. E. Counts, S. Kurosawa, A. S. Teja, D. M. Collard, J. Adv. Master. 2004, 16, 180.
    [31] W. H. Melhuish, J. Phys. Chem. 1961, 65, 229.
    [32] F. Massuyeau, E. Faulques, S. Lefrant, M. Majdoub, M. Ghedira, K. Alimi, J. Wery, J. Lumin. 2011, 131, 1541.
    [33] L. Ling, D. M. Collard, Macromoles 2005, 38, 372.
    [34] M. Belletete, S. Beaupre, J. Bouchard, P. Blondin, M. Leclerc, G. Durocher, J. Phys. Chem. B 2000, 104, 9118.
    [35] Z. G. Zhang, J. Wang, Mater. Chem. 2012, 22, 4178.
    [36] L. Venkataraman, Y. S. Park, A. C. Whalley, C. Nuckolls, M. S. Hybertsen, M. L. Steigerwald, Nano. Lett. 2007, 7, 502.
    [37] J. Liu, R. Zhang, G. Sauve, T. Kowalewski, R. D. McCullough, J. Am. Chem. Soc. 2008, 130, 13167.
    [38] P. Bikash, Y. Wei Che, Y. Jye Shane, S. Wei Fang, Macromolecules 2007, 40, 8189.

    無法下載圖示 全文公開日期 2018/07/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE