簡易檢索 / 詳目顯示

研究生: TSEGAYE BELEGE ATISME
TSEGAYE BELEGE ATISME
論文名稱: Synthesis and Characterization of Conjugated Polymers/CeO2 Nanocomposites
Synthesis and Characterization of Conjugated Polymers/CeO2 Nanocomposites
指導教授: 陳詩芸
Shih-Yun Chen
口試委員: 陳詩芸
Shih-Yun Chen
郭東昊
Dong-Hau Kuo
游進陽
Chin-Yang Yu
宋振銘
Jenn-Ming Song
薛人愷
Ren-Kae Shiue
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 133
中文關鍵詞: CeriaPolymerDispersionCharge-transferFluorescence quenchingRed shiftingDefectsEx-situ method
外文關鍵詞: Ceria, Polymer, Dispersion, Charge-transfer, Fluorescence quenching, Red shifting, Defects, Ex-situ method
相關次數: 點閱:270下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要

    本研究以異位合成(ex-situ)的方式,首先將氧化鈰奈米顆粒與具備不同電特性之共軛高分子進行混成,經由分析結構變化與量測所得複合材料之光學特性,探討氧化鈰奈米顆粒-高分子複合物的介面電荷轉移作用。選擇氧化鈰的優點在於可經由Ce的價數變化,了解電荷轉移的方式以及轉移程度。所使用的高分子有兩類,第一為2,7-連接的9,9'-螺二芴和萘雙酰亞胺,是經由鈀催化的Suzuki-Miyaura交叉偶聯反應製備,為具備電子接受特性的共軛共聚物,在本研究中作為受體。另一種為常見之P3HT,具有供電子特性,在本研究中作為施體。接著,進一步比較P3HT與具備不同表面特性之氧化鈰奈米顆粒作用的結果。表面缺陷量高之氧化鈰奈米顆粒由共沉澱法合成,表面缺陷量低的則是經二羧酸進行表面改質。
    根據穿透式電子顯微鏡觀察結果指出,所選用的兩種共軛高分子均能將氧化鈰奈米顆粒均勻的分散,複合物中的氧化鈰奈米顆粒含量可達40 wt%。進一步提高氧化鈰奈米顆粒的含量則會形成團聚。X光吸收光譜與拉曼光譜結果證實電荷轉移作用的發生,且電荷轉移程度與介面面積成正比。此外,電荷轉移的方向與高分子的類型有關。接著以穩態光譜分析光誘導的電荷轉移和復合過程,發現複合物有顯著的螢光猝滅,顯示複合材料具有更高的光活性。其中以施體類型的高分子-氧化鈰奈米顆粒複合物效果較佳。在由受體類型的高分子-氧化鈰奈米顆粒複合材料中,還觀察到光譜的紅移現象。最後,在所有高分子-氧化鈰奈米顆粒複合材料中均觀察到室溫鐵磁性,其起源可歸因於氧化鈰奈米顆粒表面的缺陷以及共軛高分子的層狀結構。


    Abstract

    In this study, ex-situ synthesis was used to mix cerium oxide nanoparticles with conjugated polymers with different electrical properties in the first part. Through analyzing the structural changes and measuring the optical characteristics of the composites, charge transfer at interface can be studied. The advantage of choosing cerium oxide is that the way and degree of charge transfer can be revealed easily through the valence change of Ce. Two types of polymers were chose. The first was a conjugated copolymer 2,7-linked 9,9′- spirobifluorene and naphthalene bisimide which was prepared by palladium catalyzed Suzuki-Miyaura cross coupling reaction. This polymer was used as electron acceptor polymer. The other is P3HT, which has electron-donating properties and was used as a donor in this study. In the second part, P3HT was mixed with cerium oxide nanoparticles with different surface characteristics. Cerium oxide nano particles with high surface defects were synthesized by co-precipitation method, while those with low surface defects were modified by dicarboxylic acid.
    According to the transmission electron microscopy observation, the two conjugated polymers used can uniformly disperse the cerium oxide nanoparticles, and the content of the cerium oxide nanoparticles in the composite can reach 40 wt%. Further increasing the content of cerium oxide nanoparticles will lead to agglomeration. X-ray absorption and Raman spectroscopy results confirm that charge transfer occurs and that the degree of charge transfer is directly proportional to the interface area. In addition, the direction of charge transfer depends on the type of polymer. Then, the steady-state spectrum was used to analyze the light-induced charge transfer and recombination processes. It was found that the composite had significant fluorescence quenching, indicating that the composite had higher photoactivity than individual component. Among them, donor-type polymer-cerium oxide nanoparticle composites have better effects. In the acceptor-type polymer-cerium oxide nanoparticle composite, red shift was observed in photoluminescence spectrum. At last, room temperature ferromagnetism was observed in all polymer-cerium oxide nanoparticle composites, and its origin was attributed to defects on the surface of the cerium oxide nanoparticle and the layered structure of the conjugated polymer.

    Table of Contents 摘要 II Abstract III Acknowledgments V List of Tables IX List of Figures X Chapter I Introduction 1 1.1. Classification of composites 1 1.1.1. Classification of composites: based on matrix material 2 1.1.2. Classification of composite materials: based on reinforcing material structure 3 1.2. Nanocomposites 4 1.3. Polymer nanocomposites 5 1.4. Research Motivation 7 Chapter II Literature Review 9 2.1. Polymer metal oxide nanocomposites 9 2.1.1. Synthesis of polymer metal oxide nanocomposites 9 2.1.2. Dispersion of metal oxide in polymer matrix 12 2.1.3. Properties of nanocomposite 14 2.1.4. Application of polymer/CeO2 nanocomposites 16 2.2. Conjugated polymers 18 2.2.1. Charge Transport in Conjugated Polymers 24 2.2.2. Electronic Properties of Conjugated Polymers 25 2.2.3. Doping of conjugated polymers 29 2.2.4. Optical Properties of Conjugated Polymers 31 2.2.5. Poly(thiophene) 33 2.2.6. 2,7-linked, 9, 9′-spirobifluorene containing naphthalene bisimide 35 2.3. Cerium Oxide (CeO2) 35 2.3.1. Crystal structure of Cerium oxide nanoparticles 36 2.3.2. Synthesis method of CeO2 37 2.3.3. Magnetic properties of CeO2 46 Chapter III Experimental Procedures 48 3.1. Sample Preparation 48 3.1.1. Materials 48 3.1.2. Synthesis of CeO2 50 3.1.3. Synthesis of polymer/CeO2 nanocomposites 53 3.2. Materials characterization techniques 56 3.2.1. X-ray diffraction (XRD) 56 3.2.2. Transmission electron microscope (TEM) 58 3.2.3. X-ray absorption spectroscopy (XAS) 59 3.2.4. Raman Spectroscopy 63 3.2.5. UV-Visible absorption Spectroscopy 67 3.2.6. Photoluminescence Spectroscopy 68 3.2.7. Vibrating sample magnetometer (VSM) 69 Chapter IV Acceptor polymer/ CeO2 nanocomposites 70 4.1. Characterization of CeO2 nanoparticles 72 4.1.1. XRD 72 4.1.2. Transmission electron microscope (TEM) 73 4.1.3. Raman spectra 76 4.2. Microstructure analysis of polymer/ CeO2 nanocomposites 77 4.2.1. XRD 77 4.2.2. TEM of polymer/CeO2 nanocomposites 78 4.2.3. X-ray absorption spectra (XAS) 80 4.3. Optical properties of composite 85 4.3.1. UV-vis spectra 85 4.3.2. Photoluminescence 87 4.4. Magnetic property of composites 88 4.5. Summary 90 Chapter V P3HT/CeO2 nanocomposites 91 5.1. Characterization of P3HT/CeO2 composite synthesized 92 5.1.1. XRD 92 5.2. TEM 93 5.3. Raman spectra 94 5.4. XAS 97 5.4.1. C- K edge 97 5.4.2. Ce-L edge 99 5.5. UV-vis spectra 104 5.6. PL spectra 105 5.7. Magnetic property 108 5.8. Summary 111 Chapter VI Conclusion and Future work 113 6.1. Conclusion 113 6.2. Future work 114 References 115

    References
    [1] N. Karak, Fundamentals of Nanomaterials and Polymer Nanocomposites, Nanomaterials and Polymer Nanocomposites, 2019 1-45.
    [2] R.K. Nayak, K.K. Mahato, B.C. Ray, Processing of Polymer‐Based Nanocomposites, Reinforced Polymer Composites: Processing, Characterization and Post Life Cycle Assessment (2019) 55-75.
    [3] L.C.B. L.S. Schadler, W.G. Sawyer, Polymer Nanocomposites: A Small Part of the Story, JOM (2007).
    [4] E. Barna, B. Bommer, J. Kürsteiner, A. Vital, O.v. Trzebiatowski, W. Koch, B. Schmid, T. Graule, Innovative, scratch proof nanocomposites for clear coatings, Composites Part A: Applied Science and Manufacturing 36(4) (2005) 473-480.
    [5] M.H.G. Wichmann, J. Sumfleth, F.H. Gojny, M. Quaresimin, B. Fiedler, K. Schulte, Glass-fibre-reinforced composites with enhanced mechanical and electrical properties – Benefits and limitations of a nanoparticle modified matrix, Engineering Fracture Mechanics 73(16) (2006) 2346-2359.
    [6] M.K. Mohanapriya, K. Deshmukh, M.B. Ahamed, K. Chidambaram, S.K. Khadheer Pasha, Influence of Cerium Oxide (CeO2) Nanoparticles on the Structural, Morphological, Mechanical and Dielectric Properties of PVA/PPy Blend Nanocomposites, Materials Today: Proceedings 3(6) (2016) 1864-1873.
    [7] J.L. Wilson, P. Poddar, N.A. Frey, H. Srikanth, K. Mohomed, J.P. Harmon, S. Kotha, J. Wachsmuth, Synthesis and magnetic properties of polymer nanocomposites with embedded iron nanoparticles, J. Appl. Phys. 95(3) (2004) 1439-1443.
    [8] A. Dey, Thermal and electric properties of CeO2 nanoparticles dispersed in polyethylene oxide:NH4ClO4 complex, Solid State Ionics 178(39-40) (2008) 1963-1968.
    [9] J. Hu, Y. Zhou, M. He, X. Yang, Novel multifunctional microspheres of polysiloxane@CeO2-PMMA: Optical properties and their application in optical diffusers, Optical Materials 36(2) (2013) 271-277.
    [10] V. Kruefu, A. Wisitsoraat, A. Tuantranont, S. Phanichphant, Gas sensing properties of conducting polymer/Au-loaded ZnO nanoparticle composite materials at room temperature, Nanoscale Res Lett 9(1) (2014) 467.
    [11] A. Kaushik, R. Kumar, S.K. Arya, M. Nair, B.D. Malhotra, S. Bhansali, Organic-inorganic hybrid nanocomposite-based gas sensors for environmental monitoring, Chem Rev 115(11) (2015) 4571-606.
    [12] S. Park, C. Park, H. Yoon, Chemo-Electrical Gas Sensors Based on Conducting Polymer Hybrids, Polymers 9(12) (2017) 155.
    [13] D.J. Kim, M.J. Jo, S.Y. Nam, A review of polymer–nanocomposite electrolyte membranes for fuel cell application, Journal of Industrial and Engineering Chemistry 21 (2015) 36-52.
    [14] Z. Mossayebi, T. Saririchi, S. Rowshanzamir, M.J. Parnian, Investigation and optimization of physicochemical properties of sulfated zirconia/sulfonated poly (ether ether ketone) nanocomposite membranes for medium temperature proton exchange membrane fuel cells, Int. J. Hydrogen Energy 41(28) (2016) 12293-12306.
    [15] E. Bernardo, L. Fiocco, G. Parcianello, E. Storti, P. Colombo, Advanced Ceramics from Preceramic Polymers Modified at the Nano-Scale: A Review, Materials (Basel) 7(3) (2014) 1927-1956.
    [16] S. Vaddiraju, K.K. Gleason, Selective sensing of volatile organic compounds using novel conducting polymer-metal nanoparticle hybrids, Nanotechnology 21(12) (2010) 125503.
    [17] M. Maniruzzaman, S.-D. Jang, J. Kim, Titanium dioxide–cellulose hybrid nanocomposite and its glucose biosensor application, Materials Science and Engineering: B 177(11) (2012) 844-848.
    [18] Z. Yang, J. Shen, L.A. Archer, An in situ method of creating metal oxide–carbon composites and their application as anode materials for lithium-ion batteries, J. Mater. Chem. 21(30) (2011) 11092.
    [19] C. Tang, K. Hackenberg, Q. Fu, P.M. Ajayan, H. Ardebili, High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers, Nano Lett. 12(3) (2012) 1152-1156.
    [20] W.J.E. Beek, M.M. Wienk, R.A.J. Janssen, Hybrid Solar Cells from Regioregular Polythiophene and ZnO Nanoparticles, Adv. Funct. Mater. 16(8) (2006) 1112-1116.
    [21] H.K. Inamdar, R.B. Basavaraj, H. Nagabhushana, M. Devendrappa, S. Ambalgi, B. Sannakki, R.D. Mathad, DC Conductivity Study of Polyaniline/NiO Nanocomposites prepared through Green Synthesis, Materials Today: Proceedings 3(10) (2016) 3850-3854.
    [22] L. Fu, Q. Qu, R. Holze, V.V. Kondratiev, Y. Wu, Composites of metal oxides and intrinsically conducting polymers as supercapacitor electrode materials: the best of both worlds?, Journal of Materials Chemistry A 7(25) (2019) 14937-14970.
    [23] Q. Wu, M. Chen, K. Chen, S. Wang, C. Wang, G. Diao, Fe3O4-based core/shell nanocomposites for high-performance electrochemical supercapacitors, J. Mater. Sci. 51(3) (2015) 1572-1580.
    [24] Y. Li, J. Zhang, X. Ni, L. Wang, C. Yang, Facile fabrication of raspberry-like polystyrene/ceria composite particles and their catalytic application, Colloids and Surfaces A: Physicochemical and Engineering Aspects 538 (2018) 818-824.
    [25] X. Zhao, L. Lv, B. Pan, W. Zhang, S. Zhang, Q. Zhang, Polymer-supported nanocomposites for environmental application: A review, Chem. Eng. J. (Lausanne) 170(2-3) (2011) 381-394.
    [26] U. Eduok, E. Jossou, A. Tiamiyu, J. Omale, J. Szpunar, Ceria/Acrylic Polymer Microgel Composite: Synthesis, Characterization, and Anticorrosion Application for API 5L X70 Substrate in Chloride-Enriched Medium, Ind. Eng. Chem. Res. 56(19) (2017) 5586-5597.
    [27] L.G. Ecco, M. Fedel, A. Ahniyaz, F. Deflorian, Influence of polyaniline and cerium oxide nanoparticles on the corrosion protection properties of alkyd coating, Prog. Org. Coat. 77(12) (2014) 2031-2038.
    [28] C.-Y. Yu, Y.-J. Hsu, Synthesis, characterization, optical and electrochemical properties of spirobifluorene based polymers containing electron deficient moieties, Polymer 84 (2016) 65-71.
    [29] Y.-J. Lee, R.J. Davis, M.T. Lloyd, P.P. Provencio, R.P. Prasankumar, J.W.P. Hsu, Open-Circuit Voltage Improvement in Hybrid ZnO–Polymer Photovoltaic Devices With Oxide Engineering, IEEE J. Sel. Top. Quantum Electron. 16(6) (2010) 1587-1594.
    [30] T. Montini, M. Melchionna, M. Monai, P. Fornasiero, Fundamentals and catalytic applications of CeO2-based materials, Chem. Rev. 116(10) (2016) 5987-6041.
    [31] Q. Guo, R. Ghadiri, T. Weigel, A. Aumann, E. Gurevich, C. Esen, O. Medenbach, W. Cheng, B. Chichkov, A. Ostendorf, Comparison of in Situ and ex Situ Methods for Synthesis of Two-Photon Polymerization Polymer Nanocomposites, Polymers 6(7) (2014) 2037-2050.
    [32] K. Pourzare, Y. Mansourpanah, S. Farhadi, Advanced nanocomposite membranes for fuel cell applications: a comprehensive review, Biofuel Research Journal 3(4) (2016) 496-513.
    [33] M. Oliveira, A. Machado, Preparation of polymer-based nanocomposites by different routes, (2013).
    [34] D.R. Paul, L.M. Robeson, Polymer nanotechnology: Nanocomposites, Polymer 49(15) (2008) 3187-3204.
    [35] M. State, P.J. Brands, F.N. van de Vosse, Improving the thermal dimensional stability of flexible polymer composite backing materials for ultrasound transducers, Ultrasonics 50(4-5) (2010) 458-66.
    [36] M. M. Jamel, P. Khoshnoud, S. Gunashekar, N. Abu-Zahra, Enhancement of Dimensional Stability of Rigid PVC Foams Using E-Glass Fibers, Journal of Minerals and Materials Characterization and Engineering 03(02) (2015) 65-75.
    [37] I.-Y. Jeon, J.-B. Baek, Nanocomposites Derived from Polymers and Inorganic Nanoparticles, Materials 3(6) (2010) 3654-3674.
    [38] K. Wang, L. Chen, J. Wu, M.L. Toh, C. He, A.F. Yee, Epoxy nanocomposites with highly exfoliated clay: mechanical properties and fracture mechanisms, Macromolecules 38(3) (2005) 788-800.
    [39] A. Pattanayak, S.C. Jana, Properties of bulk-polymerized thermoplastic polyurethane nanocomposites, Polymer 46(10) (2005) 3394-3406.
    [40] P.J. Herrera-Franco, A. Valadez-González, Mechanical properties of continuous natural fibre-reinforced polymer composites, Composites Part A: Applied Science and Manufacturing 35(3) (2004) 339-345.
    [41] I. Tsekmes, R. Kochetov, P. Morshuis, J. Smit, Thermal conductivity of polymeric composites: A review, 2013 IEEE International Conference on Solid Dielectrics (ICSD), IEEE, (2013) 678-681.
    [42] S.L. Shindé, J. Goela, High thermal conductivity materials, Springer2006.
    [43] J. Su, Y. Xiao, M. Ren, Enhanced thermal conductivity in epoxy nanocomposites with hybrid boron nitride nanotubes and nanosheets, physica status solidi (a) 210(12) (2013) 2699-2705.
    [44] R.T. Kachoosangi, M.M. Musameh, I. Abu-Yousef, J.M. Yousef, S.M. Kanan, L. Xiao, S.G. Davies, A. Russell, R.G. Compton, Carbon nanotube− ionic liquid composite sensors and biosensors, Anal. Chem. 81(1) (2008) 435-442.
    [45] Z. Li, G. Luo, F. Wei, Y. Huang, Microstructure of carbon nanotubes/PET conductive composites fibers and their properties, Composites Science and Technology 66(7-8) (2006) 1022-1029.
    [46] L. Du, X. Yan, G. He, X. Wu, Z. Hu, Y. Wang, SPEEK proton exchange membranes modified with silica sulfuric acid nanoparticles, Int. J. Hydrogen Energy 37(16) (2012) 11853-11861.
    [47] M. Wu, L. Shaw, A novel concept of carbon-filled polymer blends for applications in PEM fuel cell bipolar plates, Int. J. Hydrogen Energy 30(4) (2005) 373-380.
    [48] S. Yang, K. Lozano, A. Lomeli, H.D. Foltz, R. Jones, Electromagnetic interference shielding effectiveness of carbon nanofiber/LCP composites, Composites Part A: Applied Science and Manufacturing 36(5) (2005) 691-697.
    [49] Y.P. Mamunya, H. Zois, L. Apekis, E.V. Lebedev, Influence of pressure on the electrical conductivity of metal powders used as fillers in polymer composites, Powder Technol. 140(1-2) (2004) 49-55.
    [50] D.M. Bigg, Mechanical, thermal, and electrical properties of metal fiber‐filled polymer composites, Polym. Eng. Sci. 19(16) (1979) 1188-1192.
    [51] H. Horibe, T. Kamimura, K. Yoshida, Electrical conductivity of polymer composites filled with carbon black, Japanese journal of applied physics 44(4R) (2005) 2025.
    [52] Y. Li, Y.A. Samad, K. Polychronopoulou, S.M. Alhassan, K. Liao, Highly electrically conductive nanocomposites based on polymer-infused graphene sponges, Sci Rep 4 (2014) 4652.
    [53] C.M. Chang, Y.L. Liu, Electrical conductivity enhancement of polymer/multiwalled carbon nanotube (MWCNT) composites by thermally-induced defunctionalization of MWCNTs, ACS Appl. Mater. Interfaces 3(7) (2011) 2204-8.
    [54] W. Guo, C. Liu, X. Sun, Z. Yang, H.G. Kia, H. Peng, Aligned carbon nanotube/polymer composite fibers with improved mechanical strength and electrical conductivity, J. Mater. Chem. 22(3) (2012) 903-908.
    [55] O. Parlak, M.M. Demir, Toward transparent nanocomposites based on polystyrene matrix and PMMA-grafted CeO2 nanoparticles, ACS Appl. Mater. Interfaces 3(11) (2011) 4306-14.
    [56] K.-Q. Liu, C.-X. Kuang, M.-Q. Zhong, Y.-Q. Shi, F. Chen, Synthesis, characterization and UV-shielding property of polystyrene-embedded CeO2 nanoparticles, Optical Materials 35(12) (2013) 2710-2715.
    [57] M. Reyes-Acosta, A. Torres-Huerta, M. Domínguez-Crespo, A. Flores-Vela, H. Dorantes-Rosales, J. Andraca-Adame, Thermal, Mechanical and UV-Shielding Properties of Poly(Methyl Methacrylate)/Cerium Dioxide Hybrid Systems Obtained by Melt Compounding, Polymers 7(9) (2015) 1638-1659.
    [58] T. Itoh, T. Uchida, N. Izu, I. Matsubara, W. Shin, Effect of Core-Shell Ceria/Poly(vinylpyrrolidone) (PVP) Nanoparticles Incorporated in Polymer Films and Their Optical Properties, Materials (Basel) 6(6) (2013) 2119-2129.
    [59] M. Aguirre, M. Paulis, J.R. Leiza, UV screening clear coats based on encapsulated CeO2 hybrid latexes, Journal of Materials Chemistry A 1(9) (2013) 3155.
    [60] L. Zhang, S. Chen, S. Yuan, D. Wang, P.-H. Hu, Z.-M. Dang, Low dielectric loss and weak frequency dependence of dielectric permittivity of the CeO2/polystyrene nanocomposite films, Appl. Phys. Lett. 105(5) (2014) 052905.
    [61] R. Menon, C. Yoon, D. Moses, A. Heeger, T. Skotheim, R. Elsenbaumer, J. Reynolds, Handbook of conducting polymers, Handbook of Conducting Polymers (1998) 27-84.
    [62] S.K. Tripathy, J. Kumar, H.S. Nalwa, Handbook of Polyelectrolytes and Their Applications: Applications of polyelectrolytes and theoretical models, American Scientific Publishers2002.
    [63] A. Adlim, Review: PREPARATIONS AND APPLICATION OF METAL NANOPARTICLES, Indonesian Journal of Chemistry 6 (2006) 1-10.
    [64] T.A. Skotheim, J. Reynolds, Handbook of conducting polymers, 2 volume set, CRC press2007.
    [65] R. Kumar, S. Singh, B. Yadav, Conducting polymers: synthesis, properties and applications, International Advanced Research Journal in Science, Engineering and Technology 2(11) (2015) 110-124.
    [66] S. Ludwigs, P3HT Revisited-From Molecular Scale to Solar Cell Devices, Springer2014.
    [67] E. Conwell, Electrical conductivity of conjugated polymers, PROCEEDINGS-INTERNATIONAL SCHOOL OF PHYSICS ENRICO FERMI, IOS Press; Ohmsha; (1999), (2002) 67-106.
    [68] C. Cojan, G.P. Agrawal, C. Flytzanis, Optical properties of one-dimensional semiconductors and conjugated polymers, Physical Review B 15(2) (1977) 909-925.
    [69] W.P. Su, J.R. Schrieffer, A.J. Heeger, Solitons in Polyacetylene, Phys. Rev. Lett. 42(25) (1979) 1698-1701.
    [70] J.L. Brédas, A.J. Heeger, F. Wudl, Towards organic polymers with very small intrinsic band gaps. I. Electronic structure of polyisothianaphthene and derivatives, The Journal of Chemical Physics 85(8) (1986) 4673-4678.
    [71] J.A. Barker, R.J. Warburton, E.P. O’Reilly, Electron and hole wave functions in self-assembled quantum rings, Physical Review B 69(3) (2004).
    [72] C. Winder, N.S. Sariciftci, Low bandgap polymers for photon harvesting in bulk heterojunction solar cells, J. Mater. Chem. 14(7) (2004) 1077.
    [73] C. Winder, N.S. Sariciftci, Low bandgap polymers for photon harvesting in bulk heterojunction solar cells, J. Mater. Chem. 14(7) (2004) 1077-1086.
    [74] R.H. Friend, D.C. Bott, D.D.C. Bradley, C.K. Chai, W.J. Feast, P.J.S. Foot, J.R.M. Giles, M.E. Horton, C.M. Pereira, P.D. Townsend, Electronic Properties of Conjugated Polymers, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences 314(1528) (1985) 37-49.
    [75] A. Singh, R. Prakash, Conduction mechanism in electronic polymers: Effect of morphology, 2008 2nd National Workshop on Advanced Optoelectronic Materials and Devices, AOMD 2008 (2008).
    [76] M. Bharti, A. Singh, S. Samanta, D.K. Aswal, Conductive polymers for thermoelectric power generation, Progress in Materials Science 93 (2018) 270-310.
    [77] D. Bloor, Electrical conductivity, (1989).
    [78] R. Elsenbaumer, K.Y. Jen, R. Oboodi, Processible and environmentally stable conducting polymers, Synth. Met. 15(2-3) (1986) 169-174.
    [79] A.J. Heeger, E.B. Namdas, N.S. Sariciftci, Semiconducting and metallic polymers, Oxford Univ. Press2010.
    [80] A. Pron, P. Rannou, Processible conjugated polymers: from organic semiconductors to organic metals and superconductors, Prog. Polym. Sci. 27(1) (2002) 135-190.
    [81] H.S. Nalwa, Handbook of organic conductive molecules and polymers, Wiley1997.
    [82] T.A. Skotheim, J. Reynolds, R. Elsenbamer, Handbook of Conducting Polymers Marcel Dekker, New york (1998).
    [83] J.M. de Souza, E.C. Pereira, Luminescence of poly (3-thiopheneacetic acid) in alcohols and aqueous solutions of poly (vinyl alcohol), Synth. Met. 118(1-3) (2001) 167-170.
    [84] A.M. López, A. Mateo-Alonso, M. Prato, Fullerenes for Materials Science, Fullerenes (2011) 389-413.
    [85] A. Acharya, S. Sahu, S. Balamurgan, G. Roy, Effect of Doping on Nano Cadmium-Selenide (CdSe) -Assessment Through UV-VIS Spectroscopy, (2019).
    [86] G. Schopf, G. Kossmehl, Polythiophenes-electrically conductive polymers, 1997.
    [87] M. Zhou, M. Aryal, K. Mielczarek, A. Zakhidov, W. Hu, Hole mobility enhancement by chain alignment in nanoimprinted poly(3-hexylthiophene) nanogratings for organic electronics, Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 28(6) (2010) C6M63-C6M67.
    [88] A.M. Ballantyne, L. Chen, J. Dane, T. Hammant, F.M. Braun, M. Heeney, W. Duffy, I. McCulloch, D.D.C. Bradley, J. Nelson, The Effect of Poly(3-hexylthiophene) Molecular Weight on Charge Transport and the Performance of Polymer:Fullerene Solar Cells, Adv. Funct. Mater. 18(16) (2008) 2373-2380.
    [89] E. Bundgaard, F. Krebs, Low band gap polymers for organic photovoltaics, Sol. Energy Mater. Sol. Cells 91(11) (2007) 954-985.
    [90] S. Shafian, Y. Jang, K. Kim, Solution processed organic photodetector utilizing an interdiffused polymer/fullerene bilayer, Opt Express 23(15) (2015) A936-46.
    [91] J.S.M. da Silva, S.M. de Souza, G. Trovati, E.A. Sanches, Chloride salt of conducting polyaniline synthesized in the presence of CeO2: Structural analysis of the core-shell nanocomposite, J. Mol. Struct. 1127 (2017) 337-344.
    [92] F.N. Dengsong Zhang, Hongrui Li, Liyi Shi, Jianhui Fang, Uniform ceria nanospheres: Solvothermal synthesis, formation mechanism, size-control and catalytic activity, 207(1-3) (2011) 35-41.
    [93] S.A. Ansari, M.M. Khan, M.O. Ansari, S. Kalathil, J. Lee, M.H. Cho, Band gap engineering of CeO2 nanostructure using an electrochemically active biofilm for visible light applications, RSC Adv. 4(32) (2014) 16782-16791.
    [94] D. Majumder, I. Chakraborty, K. Mandal, S. Roy, Facet-Dependent Photodegradation of Methylene Blue Using Pristine CeO2 Nanostructures, ACS Omega 4(2) (2019) 4243-4251.
    [95] Z. Lian, W. Shan, Y. Zhang, M. Wang, H. He, Morphology-Dependent Catalytic Performance of NbOx/CeO2 Catalysts for Selective Catalytic Reduction of NOx with NH3, Ind. Eng. Chem. Res. 57(38) (2018) 12736-12741.
    [96] C. Mao, Y. Zhong, Z. Xuan, C. Gai, Z. Guo, F. Du, Controllable Synthesis and Electrochemical Behavior of Micro/Nano Octahedron Ceria, Integrated Ferroelectrics 163(1) (2015) 89-97.
    [97] G. Shen, Q. Wang, Z. Wang, Y. Chen, Hydrothermal synthesis of CeO2 nano-octahedrons, Mater. Lett. 65(8) (2011) 1211-1214.
    [98] X.-h. Lu, X. Huang, S.-l. Xie, D.-z. Zheng, Z.-q. Liu, C.-l. Liang, Y.-X. Tong, Facile electrochemical synthesis of single crystalline CeO2 octahedrons and their optical properties, Langmuir 26(10) (2010) 7569-7573.
    [99] T.-D. Nguyen, C.-T. Dinh, D. Mrabet, M.-N. Tran-Thi, T.-O. Do, Controlled synthesis of ceria nanoparticles for the design of nanohybrids, J. Colloid Interface Sci. 394 (2013) 100-107.
    [100] A.R. Unnithan, A.R.K. Sasikala, Y. Sathishkumar, Y.S. Lee, C.H. Park, C.S. Kim, Nanoceria doped electrospun antibacterial composite mats for potential biomedical applications, Ceram. Int. 40(8) (2014) 12003-12012.
    [101] R. Mangalaraja, S. Ananthakumar, A. Schachtsiek, M. López, C.P. Camurri, R.E. Avila, Synthesis and mechanical properties of low temperature sintered, Sm3+ doped nanoceria electrolyte membranes for IT-SOFC applications, Materials Science and Engineering: A 527(16-17) (2010) 3645-3650.
    [102] G. Jayakumar, A.A. Irudayaraj, A.D. Raj, M. Anusuya, Investigation on the preparation and properties of nanostructured cerium oxide, Nanosystems: Physics, Chemistry, Mathematics (2016) 728-731.
    [103] A. Balamurugan, M. Sudha, S. Surendhiran, R. Anandarasu, S. Ravikumar, Y.A. Syed Khadar, Hydrothermal synthesis of samarium (Sm) doped cerium oxide (CeO2) nanoparticles: Characterization and antibacterial activity, Materials Today: Proceedings (2019).
    [104] S. Phokha, S. Pinitsoontorn, P. Chirawatkul, Y. Poo-arporn, S. Maensiri, Synthesis, characterization, and magnetic properties of monodisperse CeO2 nanospheres prepared by PVP-assisted hydrothermal method, Nanoscale research letters 7(1) (2012) 425.
    [105] I.F. Cruz, C. Freire, J.P. Araújo, C. Pereira, A.M. Pereira, Multifunctional Ferrite Nanoparticles: From Current Trends Toward the Future, Magnetic Nanostructured Materials, 2018, 59-116.
    [106] A.V. Rane, K. Kanny, V. Abitha, S. Thomas, Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites, Synthesis of Inorganic Nanomaterials, 2018, 121-139.
    [107] G.B. Nair, V.B. Pawade, S.J. Dhoble, White Light-Emitting Novel Nanophosphors for LED Applications, Nanomaterials for Green Energy, 2018, 411-431.
    [108] M. Taguchi, S. Takami, T. Naka, T. Adschiri, Growth mechanism and surface chemical characteristics of dicarboxylic acid-modified CeO2 nanocrystals produced in supercritical water: tailor-made water-soluble CeO2 nanocrystals, Cryst. Growth Des. 9(12) (2009) 5297-5303.
    [109] M. Venkatesan, C.B. Fitzgerald, J.M.D. Coey, Unexpected magnetism in a dielectric oxide, Nature 430(7000) (2004) 630-630.
    [110] S.-Y. Chen, C.-H. Tsai, M.-Z. Huang, D.-C. Yan, T.-W. Huang, A. Gloter, C.-L. Chen, H.-J. Lin, C.-T. Chen, C.-L. Dong, Concentration dependence of oxygen vacancy on the magnetism of CeO2 nanoparticles, The Journal of Physical Chemistry C 116(15) (2012) 8707-8713.
    [111] S.-Y. Chen, R.-J. Chen, W. Lee, C.-L. Dong, A. Gloter, Spectromicroscopic evidence of interstitial and substitutional dopants in association with oxygen vacancies in Sm-doped ceria nanoparticles, Phys. Chem. Chem. Phys. 16(7) (2014) 3274-3281.
    [112] K.S. Ranjith, P. Saravanan, S.-H. Chen, C.-L. Dong, C.L. Chen, S.-Y. Chen, K. Asokan, R.T. Rajendra Kumar, Enhanced room-temperature ferromagnetism on Co-doped CeO2 nanoparticles: mechanism and electronic and optical properties, The Journal of Physical Chemistry C 118(46) (2014) 27039-27047.
    [113] S.-Y. Chen, K.-W. Fong, T.-T. Peng, C.-L. Dong, A. Gloter, D.-C. Yan, C.-L. Chen, H.-J. Lin, C.-T. Chen, Enhancement of ferromagnetism in CeO2 nanoparticles by nonmagnetic Cr3+ doping, The Journal of Physical Chemistry C 116(50) (2012) 26570-26576.
    [114] G. Niu, E. Hildebrandt, M.A. Schubert, F. Boscherini, M.H. Zoellner, L. Alff, D. Walczyk, P. Zaumseil, I. Costina, H. Wilkens, Oxygen vacancy induced room temperature ferromagnetism in Pr-doped CeO2 thin films on silicon, ACS Appl. Mater. Interfaces 6(20) (2014) 17496-17505.
    [115] W. Lee, S.-Y. Chen, E. Tseng, A. Gloter, C.-L. Chen, Study of defect structure in ferromagnetic nanocrystalline CeO2: effect of ionic radius, The Journal of Physical Chemistry C 120(27) (2016) 14874-14882.
    [116] W.-C. Wang, S.-Y. Chen, P.-A. Glans, J. Guo, R.-J. Chen, K.-W. Fong, C.-L. Chen, A. Gloter, C.-L. Chang, T.-S. Chan, Towards understanding the electronic structure of Fe-doped CeO2 nanoparticles with X-ray spectroscopy, Phys. Chem. Chem. Phys. 15(35) (2013) 14701-14707.
    [117] D.S. Josey, J.S. Castrucci, J.D. Dang, B.H. Lessard, T.P. Bender, Evaluating thiophene electron-donor layers for the rapid assessment of boron subphthalocyanines as electron acceptors in organic photovoltaics: solution or vacuum deposition?, ChemPhysChem 16(6) (2015) 1245-50.
    [118] M.A. Ansari, S. Mohiuddin, F. Kandemirli, M.I. Malik, Synthesis and characterization of poly(3-hexylthiophene): improvement of regioregularity and energy band gap, RSC Advances 8(15) (2018) 8319-8328.
    [119] B.D. Cullity, Answers to problems: Elements of X-ray diffraction, Addison-Wesley Publishing Company1978.
    [120] G. Bunker, Introduction to XAFS: a practical guide to X-ray absorption fine structure spectroscopy, Cambridge University Press2010.
    [121] D. Koningsberger, B. Mojet, G. Van Dorssen, D. Ramaker, XAFS spectroscopy; fundamental principles and data analysis, Top. Catal. 10(3-4) (2000) 143-155.
    [122] D.E. Sayers, E.A. Stern, F.W. Lytle, New technique for investigating noncrystalline structures: Fourier analysis of the extended x-ray—absorption fine structure, Phys. Rev. Lett. 27(18) (1971) 1204.
    [123] J. Sulé-Suso, N. Forsyth, V. Untereiner, G. Sockalingum, Vibrational spectroscopy in stem cell characterisation: is there a niche?, Trends Biotechnol. 32(5) (2014) 254-262.
    [124] S. Lohumi, m.s. Kim, J. Qin, B.-K. Cho, Raman imaging from microscopy to macroscopy: Quality and safety control of biological materials, TrAC Trends in Analytical Chemistry 93 (2017).
    [125] J.T. Dahle, Y. Arai, Environmental geochemistry of cerium: applications and toxicology of cerium oxide nanoparticles, Int J Environ Res Public Health 12(2) (2015) 1253-78.
    [126] J.V. Joan Papavasiliou, George Avgouropoulos, Impact ofacidtreatment of CuO-CeO2 catalysts on thepreferentialoxidation of CO reaction, Catal. Commun. 115(68-72) (2018).
    [127] S. Urquhart, H. Ade, Trends in the carbonyl core (C 1s, O 1s)→ π* C= O transition in the near-edge X-ray absorption fine structure spectra of organic molecules, The Journal of Physical Chemistry B 106(34) (2002) 8531-8538.
    [128] A. Lippitz, J.F. Friedrich, W. Unger, A. Schertel, C. Wöll, Surface analysis of partially crystalline and amorphous poly (ethylene terephthalate) samples by X-ray absorption spectroscopy (NEXAFS), Polymer 37(14) (1996) 3151-3155.
    [129] Y. Zubavichus, A. Shaporenko, M. Grunze, M. Zharnikov, Is X-ray absorption spectroscopy sensitive to the amino acid composition of functional proteins?, The Journal of Physical Chemistry B 112(15) (2008) 4478-4480.
    [130] J. Kikuma, B. Tonner, XANES spectra of a variety of widely used organic polymers at the C K-edge, J. Electron Spectrosc. Relat. Phenom. 82(1-2) (1996) 53-60.
    [131] P. Nachimuthu, W.-C. Shih, R.-S. Liu, L.-Y. Jang, J.-M. Chen, The Study of Nanocrystalline Cerium Oxide by X-Ray Absorption Spectroscopy, J. Solid State Chem. 149(2) (2000) 408-413.
    [132] W. Lee, S.-Y. Chen, Y.-S. Chen, C.-L. Dong, H.-J. Lin, C.-T. Chen, A. Gloter, Defect structure guided room temperature ferromagnetism of Y-doped CeO2 nanoparticles, The Journal of Physical Chemistry C 118(45) (2014) 26359-26367.
    [133] Y. Qi, J. Ye, S. Zhang, Q. Tian, N. Xu, P. Tian, G. Ning, Controllable synthesis of transition metal ion-doped CeO2 micro/nanostructures for improving photocatalytic performance, J. Alloys Compd. 782 (2019) 780-788.
    [134] Y. Liu, Z. Lockman, A. Aziz, J. MacManus-Driscoll, Size dependent ferromagnetism in cerium oxide (CeO2) nanostructures independent of oxygen vacancies, J. Phys.: Condens. Matter 20(16) (2008) 165201.
    [135] M. Li, S. Ge, W. Qiao, L. Zhang, Y. Zuo, S. Yan, Relationship between the surface chemical states and magnetic properties of CeO2 nanoparticles, Appl. Phys. Lett. 94(15) (2009) 152511.
    [136] J. Coey, M. Venkatesan, C. Fitzgerald, Donor impurity band exchange in dilute ferromagnetic oxides, Nat. Mater. 4(2) (2005) 173.
    [137] J.M.D. Coey, P. Stamenov, R. Gunning, M. Venkatesan, K. Paul, Ferromagnetism in defect-ridden oxides and related materials, New Journal of Physics 12(5) (2010) 053025.
    [138] M. Coey, K. Ackland, M. Venkatesan, S. Sen, Collective magnetic response of CeO2 nanoparticles, Nat. Phys. 12(7) (2016) 694.
    [139] B. Yang, Z. Xiao, Y. Yuan, T.V. Jayaraman, J.E. Shield, R. Skomski, J. Huang, Room-temperature organic ferromagnetism in the crystalline poly(3-hexylthiophene): Phenyl-C61-butyric acid methyl ester blend film, Polymer 54(2) (2013) 490-494.
    [140] M. Wang, X. Wang, P3HT/TiO2 bulk-heterojunction solar cell sensitized by a perylene derivative, Sol. Energy Mater. Sol. Cells 91(19) (2007) 1782-1787.
    [141] N.S. Arul, Y.H. Lee, D.U. Lee, T.W. Kim, Enhancement of the Power Conversion Efficiency in the Inverted Organic Solar Cells Fabricated Utilizing a CeO2 Interlayer Between the Poly(3-hexylthiophene) (P3HT):[6,6]-Phenyl C6 Butyric Acid Methyl Ester and the Cathode, J. Nanosci. Nanotechnol. 15(1) (2015) 232-235.
    [142] D. Dudenko, A. Kiersnowski, J. Shu, W. Pisula, D. Sebastiani, H.W. Spiess, M.R. Hansen, A strategy for revealing the packing in semicrystalline pi-conjugated polymers: crystal structure of bulk poly-3-hexyl-thiophene (P3HT), Angew Chem Int Ed Engl 51(44) (2012) 11068-11072.
    [143] H. Sirringhaus, P. Brown, R. Friend, M.M. Nielsen, K. Bechgaard, B. Langeveld-Voss, A. Spiering, R.A. Janssen, E. Meijer, P. Herwig, Two-dimensional charge transport in self-organized, high-mobility conjugated polymers, Nature 401(6754) (1999) 685.
    [144] E. Istif, J. Hernández-Ferrer, E.P. Urriolabeitia, A. Stergiou, N. Tagmatarchis, G. Fratta, M.J. Large, A.B. Dalton, A.M. Benito, W.K. Maser, Conjugated Polymer Nanoparticle-Graphene Oxide Charge-Transfer Complexes, Adv. Funct. Mater. 28(23) (2018) 1707548.
    [145] M. Baibarac, M. Lapkowski, A. Pron, S. Lefrant, I. Baltog, SERS spectra of poly (3‐hexylthiophene) in oxidized and unoxidized states, J. Raman Spectrosc. 29(9) (1998) 825-832.
    [146] Z. Bao, D.M. DeLongchamp, D.J. Gundlach, E.K. Lin, D.A. Fischer, Organic semiconductor structure and chemistry from near-edge X-ray absorption fine structure (NEXAFS) spectroscopy, 5940 (2005) 59400A.
    [147] Z. Wang, L. Wu, J. Zhou, Z. Jiang, B. Shen, Chemoselectivity-induced multiple interfaces in MWCNT/Fe3O4@ZnO heterotrimers for whole X-band microwave absorption, Nanoscale 6(21) (2014) 12298-12302.
    [148] D.J. Smythe, J. Brenan, N. Bennett, T. Regier, G. Henderson, Quantitative determination of cerium oxidation states in alkali-aluminosilicate glasses using M4, 5-edge XANES, J. Non-Cryst. Solids 378 (2013) 258-264.
    [149] A. Sharma, M. Varshney, J. Park, T.K. Ha, K.H. Chae, H.J. Shin, Bifunctional Ce1− x Eux O2 (0≤ x≤ 0.3) nanoparticles for photoluminescence and photocatalyst applications: an X-ray absorption spectroscopy study, Phys. Chem. Chem. Phys. 17(44) (2015) 30065-30075.
    [150] R.J. Westbrook, D.I. Sanchez-Molina, D.J. Manuel Marin-Beloqui, D.H. Bronstein, D.S.A. Haque, Effect of interfacial energetics on charge transfer from lead halide perovskite to organic hole conductors, The Journal of Physical Chemistry C 122(2) (2018) 1326-1332.
    [151] H. Geng, C.M. Hill, S. Pan, L. Huang, Electrogenerated chemiluminescence and interfacial charge transfer dynamics of poly(3-hexylthiophene-2,5-diyl) (P3HT)-TiO2 nanoparticle thin film, Phys. Chem. Chem. Phys. 15(10) (2013) 3504-3509.
    [152] P. Chawla, S. Singh, S.N. Sharma, An insight into the mechanism of charge-transfer of hybrid polymer:ternary/quaternary chalcopyrite colloidal nanocrystals, Beilstein J Nanotechnol 5 (2014) 1235-1244.

    無法下載圖示 全文公開日期 2025/01/16 (校內網路)
    全文公開日期 2030/01/16 (校外網路)
    全文公開日期 2030/01/16 (國家圖書館:臺灣博碩士論文系統)
    QR CODE