簡易檢索 / 詳目顯示

研究生: 張迪傑
Di-Jie Chang
論文名稱: 奈米碳管場發射及溫度效應之研究
Study of Temperature Effect on Field Emission Characteristics of Carbon Nanotubes
指導教授: 周賢鎧
Shyankay Jou
口試委員: 陳貴賢
Kuei-Hsien Chen
林麗瓊
Li-Chyong Chen
顏怡文
Yee-wen Yen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 154
中文關鍵詞: 奈米碳管場發射熱離子發射溫度效應
外文關鍵詞: carbon nanotubes, field emission, thermionic emission, temperature effect
相關次數: 點閱:248下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以電漿輔助化學氣相沈積法,使用甲烷氣體為碳源,於預先濺鍍鐵觸媒的基材上成長奈米碳管,產生表面形貌、長度及密度上具有差異的奈米碳管,並研究在不同溫度下場發射的性質。多數有較佳場發射性質(低起始電場)的樣品,在整個外加電場的範圍內展現了對溫度改變的場發射電流穩定性。而場發射性質較差的樣品在較低電場的區域,則出現了熱激發電子流的溫度效應現象,即奈米碳管的場發射能力直接影響到場發射的溫度效應。
    最後,我們發現擁有優異場發射特性的奈米碳管從溫度20K ~ 575K的範圍內,具有傑出的場發射電流溫度穩定特性。


    In our investigation, we used methane as carbon source and used Plasma enhanced chemical vapor deposition (PECVD) to grow carbon nanotubes on substrate which had been coated with iron as catalyst. We fabricated carbon nanotubes (CNTs) that owned different surface morphology, different length and different density. And we investigate the field emission characteristics of the CNTs at varied temperature of these samples.
    Most samples which had better emission properties (lower turn on field) showed temperature independence in whole applied field range. But samples which had bad emission properties showed the temperature dependence phenomenon similar to thermionics emission. In other words, the temperature effect on field emission was directly influenced by the essential field emission abilities of carbon nanotubes.
    Finally, we found CNTs which was excellent in field emission showed outstanding temperature stability in the temperature range from 20K to 575K.

    TABLE OF CONTENTS ACKNOWLEDGEMENTS ………………………………………………Ⅰ CHINESE ABSTRACT ………………………………………………Ⅱ ENGLISH ABSTRAST ………………………………………………Ⅲ TABLE OF CONTENTS………………………………………………Ⅳ LIST OF FIGURES…………………………………………………Ⅴ LIST OF TABLES …………………………………………………Ⅵ 1 Motivation ………………………………………………… 1 2 Introduction ……………………………………………… 4 2.1 Carbon Nanotubes………………………………………… 5 2.1.1 Structures of Carbon Nanotubes…………………… 5 2.1.2 Properties of carbon nanotubes……………………10 2.1.3 Growth mechanism of carbon nanotubes……………14 2.2 Field emission……………………………………………17 2.3 Thermionic emission ……………………………………20 3 Experiment …………………………………………………23 3.1 Fabrication of PECVD carbon nanotubes…………… 24 3.1.1 Ion beam sputtering deposition (IBSD)………… 24 3.1.2 Microwave plasma enhanced CVD (MPECVD)…………25 3.1.3 Growth of PECVD carbon nanotubes…………………25 3.1.4 Sample’s fabrication condition …………………28 3.2 Characterization of carbon nanotubes………………28 3.2.1 Scanning electron microscopy (SEM)………………28 3.2.2 Field emission apparatus……………………………29 4 Results and Discussion …………………………………30 4.1 Empirical results……………………………………… 30 4.2 Discussion of emission mechanisms………………… 39 5 Conclusion………………………………………………… 60 REFERENCE……………………………………………………… 62 APPENDIX…………………………………………………………67 Sample A…………………………………………………………68 Sample B…………………………………………………………73 Sample C…………………………………………………………79 Sample D…………………………………………………………82 Sample E…………………………………………………………86 Sample F…………………………………………………………91 Sample G…………………………………………………………97 Sample H……………………………………………………… 101 Sample I……………………………………………………… 107 Sample J……………………………………………………… 110 Sample K……………………………………………………… 115 Sample L……………………………………………………… 121 Sample M……………………………………………………… 125 Sample N……………………………………………………… 130 Sample O……………………………………………………… 134 Sample P ………………………………………………………138 Sample Q……………………………………………………… 143 Sample R ………………………………………………………148

    [1] M.-C. Kan, J.-L. Huang, J.-C. Sung, K.-H. Chen, B.-S. Yau, “Thermionic emission of amorphous diamond and field emission of carbon nanotubes”, Carbon 41 (2003) 2839–2845.
    [2] R. Saito, G. Dresselhaus, M. S. Dresselhaus, Physical properties of Carbon Nanotubes, Imperial College Press, London, (1998).
    [3] K.Tanaka, K. Okahara, M. Okada, T. Yamabe, “Electronic properties of bucky-tube model” ,Chem. Phys. Lett. 191 (1992) 469.
    [4] T. Guo, P. Nikolaev, A. G. Rinzler, D. Tomanek, D. T. Colbert, R. E. Smalley, "Production of single-walled carbon nanotubes via laser vaporization technique." J. Phys. Lett. 99 (1995) 10694.
    [5] From presentation by C.Dekker at the Conference on Disorder and Interaction Quamtum Hall and Mesoscopic Systems (1998).
    [6] M. S. Dresselhaus, G. Dresselhaus, P. C. Eklund, Science of Fullerences and carbon nanotubes, Academic Press, San Diego (1996).

    [7] J. W. G. Wildoer, L. C. Venema, A. G. Rinzler, R. E. Smalley, C. Dekker, “Electronic structure of atomically resolved carbon nanotubes”, Nature 391 (1998) 59.
    [8] T. W. Odom, J. L. Huang, P. Kim, C. M. Lieber, “Atomic structure and electronic properties of single walled carbon nanotubes”, Nature 391 (1998) 62.
    [9] M. M. J. Teacy, T. W. Ebbesen, T. M. Gibson, “Citebase - Quantized phonon specrum of single-wall carbon nanotubes”, Nature 381 (1996) 680.
    [10] E. W. Wong, P. E. Sheehan, C. M. Lieber, “Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes”, Science 277 (1997) 1971.
    [11] D. A. Walters, L. M. Ericson, M. J. Casavant, J. Liu, D. T. Colbert, K.A. Smith, "Elastic strain of freely suspended single-wall carbon nanotube ropes," Appl. Phys. Lett. 74 (1999) 3803.
    [12] M. F. Yu, O. Lourie, M. Dyer, K. Moloni, T. Kelly, “Strength and breaking mechanism of multiwalled carbon nanotubes under tensile load”, Science 287 (2000) 637.

    [13] M. F. Yu, B. S. Files, S. Arepall, R. S. Ruoff, “Tensile Loading of Ropes of Single Wall Carbon Nanotubes and their Mechanical Properties”, Appl. Phys. Lett. 84 (2000) 5552.
    [14] http:// 140.114.18.223/-hcshih/diamond/nanotube.html (2000).

    [15] Kukovitsky EF, L'vov SG, Sainov NA, “VLS-growth of carbon nanotubes from the vapor”, Chem. Phys. Lett. 317 (2000) 65.

    [16] S. B. Sinnott, R. Andrews, D. Qian, A. M. Rao, Z. Mao, E. C. Dickey, F. Derbyshire, “Model of carbon nanotube growth through chemical vapor deposition”, Chem. Phys. Lett. 315 (1999) 25.

    [17] C.-J. Lee, D.-W. kim, T.- J. Lee, Y.-C. Choi, Y.-S. Park, Y.-H. Lee, W.- B. Choi, N.-S. Lee, G.-Su. Park, J.-M. Kim, “Synthesis of align carbon nanotubes using thermal chemical vapor deposition”. Chem. Phys. Lett. 312 (1999) 461–468.

    [18] D.-C. Li, L.-Dai, S. Huang, A. W. H. Mau, and Z.-L..Wang, “Structure and growth of aligned carbon nanotube films by pyrolysis”, Chem. Phys. Lett. 316 (2000) 349.

    [19] R. H. Fowler and D. L. Nordheim, “Electron Emission in Intense Electric Fields” Roy. Soc. Proc. A119 (1928) 173.

    [20] I. Brodie and P. R. Schwoebel, “Vacuum microelectronic devices." Proc. IEEE 82 (1994) 1006-1034.
    [21] R. Gomer, “Filed emission and field ionization”, Harvard University Press, Cambridge, MA, (1961).
    [22] M Odinos A. Field, Thermionic, and secondary electron emission spectroscopy, Plenum Press, New York, (1984) pp.13–24.
    [23] M. arshall AC. “A reformulation of thermionic theory for vacuum diodes.” Surf. Sci.517 (2002) 186–206.
    [24] Q.H. Wang, T.D. Corrigan, J.Y. Dai, R.P.H. Chang and A. R. Krauss, “Field emission from nanotube bundle emitters at low fields,” Appl. Phys. Lett.70 (1997) 3308.
    [25] J.M. Bonard, J.P. Salvetat, T. Stockli and W.A. de Heer, “Field emission from single-wall carbon nanotube films”, Appl. Phys. Lett. 73 (1998) 918.
    [26] J.M. Kim, W.B. Choi, N.S. Lee and J.E. Jung, “Field emission from carbon nanotubes for displays”, Diamond and Related Materials 9 (2000) 1184.
    [27] O. Groning, O. M.Kuttel, C. Emmenegger, O. Kuettel, E. Schaller, and L. Schlapbach “Scanning field emission from patterned carbon nanotube films”, J.Vac. Sci. Technol. B 18 (2000) 665.
    [28] B.V. Zeghbroeck, “Principles of Semiconductor Devices”, Colarado University, ece-www.colorado.edu/~bart/.

    [29] C. S. Chang, S. Chattopadhyay, L. C. Chen and K. H. Chen, " Band gap dependence of field emission from one dimensional nanostructures grown on n-type and p-type silicon substrates,”
    Phys. Rev. B 68 (2003) 125322.
    [30] L. C. Chen, C.Y. Wen and K. H. Chen, “Controlling Steps During Early Stages of the Aligned Growth of Carbon Nanotubes Using Microwave Plasma Enhanced Chemical Vapor Deposition”, Advanced Functional Materials, (2002)687-692.
    [31] E. L. Murphy, R. H. Good, “Thermionic Emission, Field Emission, and the Transition Region”, Phys. Rev. 102 (1956) 1464.
    [32] Sheng-Yuan Chena, Juh-Tzeng Lue , “Temperature dependence of interface barrier height change as implicated by field emission studies of aligned-multiwall carbon nanotubes”, Phys. Lett. A 309 (2003)114-120.
    [33] C.L. Chen, C.S. Chen, J.T. Lue, “Single-switch electronic ballast with continuous input current charge pump power factor correction”, Solid State Electron. 44 (2000) 1733.
    [34] S.Y. Chen, J.T. Lue, New J. “Temperature of Surface Band Bending and Field Emission for Boron-doped Diamond and Diamond-like Films”, Phys. 4 (2002) 1.

    QR CODE