簡易檢索 / 詳目顯示

研究生: 高陳佑
Chen-yu Kao
論文名稱: 多層奈米碳管之氧化:以五種酸液及鹼液之液相氧化
Liquid Phase Oxidation of Multi-walled Carbon Nanotubes (MWNTs) in Five Aqueous Solutions
指導教授: 鄭如茵
Ju-Yin Cheng
口試委員: 楊銘乾
Ming-Chien Yang
蘇清淵
Ching-Iuan Su
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 71
中文關鍵詞: 奈米碳管氧化
外文關鍵詞: multi-walled carbon nanotubes (MWNTs), oxidation
相關次數: 點閱:182下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗中,選用HNO3、H2SO4、HCl、H2O2、KOH五種水溶液與多層奈米碳管進行氧化反應,前三種為強酸,第四種為弱酸,第五種為強鹼。其中前二種為帶含氧基的酸根,第三種為不帶含氧基的酸根,最後二種可解離出OH基。使用單種溶液個別進行氧化,而不使用混合溶液,是希望藉由凸顯單一溶液的分子特性,來釐清其對於奈米碳管與非晶質碳所可能引發不同的氧化現象。研究中利用穿透式電子顯微鏡(TEM)來觀察碳管結構。並利用熱重損失分析儀(TGA)結果,計算氧化前後碳管與非晶質碳(amorphous carbon)消長的比率,進一步作圖找出溶液中氧化反應與TGA熱裂解反應的活化能。也利用拉曼(Raman)光譜分析,更詳細找出RBM, D band 與G band中所各自代表結構的衰減比率。


    In this study, we select five aqueous solution react with multi-walled carbon nanotubes (MWNTs) in liquid phase. Including nitric acid, sulfuric acid, hydrochloride acid, hydrogen peroxide, potassium hydroxide. The first three kinds are strong acids, the fourth kind is a weak acid, the last one is a strong base. Thr first two are oxygen acid. Third one is acid without oxygen. The last two are solution with hydroxyl. In order to tell different form each solution when reacting with MWNTs when oxidizing, the reactions were carriing out individually .We used TEM to observe the construction of MWNTs. And then we used TGA to analyse the amount of amorphous carbon and MWNTs are increased or reduced. Last, we used Raman spectroscopy to know more detail about the reaction of oxidation.

    誌謝IV 中文摘要I AbstractII 目錄III 圖目錄I 第一章 緒論I 第二章 文獻回顧I 第三章 實驗設備與步驟II 第四章 實驗結果與討論II 表目錄I 第四章 實驗結果與討論I 第一章 緒論1 1.1前言1 1.2研究動機3 1.3研究架構及流程4 第二章 文獻回顧5 2.1奈米碳管的發展歷史5 2.2奈米碳管的構造8 2.3奈米碳管的特性10 2.3.1 奈米碳管的機械性質10 2.3.2 奈米碳管的電性11 2.3.3 奈米碳管的結構熱穩定性與導熱性11 2.4奈米碳管的合成方法12 2.4.1 電弧法(arc discharge)12 2.4.2 雷射蒸發法(laser ablation)13 2.4.3 化學氣相沉積法(chemical vapor decomposition)14 2.4.4 化學氣相沉積法的奈米碳管成長機制15 2.5奈米碳管的應用17 2.5.1 強化複合材料17 2.5.2 儲存氫氣材料17 2.5.3 顯微探針18 2.5.4 場發射電極18 2.5.5 場效電晶體(Filed-effect transistor)19 2.6奈米碳管的純化20 第三章 實驗設備與步驟26 3.1實驗藥品26 3.2實驗儀器27 3.3實驗步驟28 3.3.1 HNO3溶液氧化28 3.3.2 H2S04溶液氧化29 3.3.3 HCl溶液氧化30 3.3.4 KOH溶液氧化31 3.3.5 H2O2溶液氧化32 3.3.6 1.5M溶液氧化32 3.4分析儀器及原理33 3.4.1 穿透式電子顯微鏡(Transmission electron microscopy, TEM)33 3.4.2 熱重損失分析儀(Thermogravimetric analysis, TGA)34 3.4.3 拉曼共振譜分析(Raman spectroscopy)36 3.5待測樣品的製備與儀器操作條件37 3.5.1 TEM分析樣品製備與操作條件37 3.5.2 TGA 分析樣品製備與操作條件38 3.5.3 Raman樣品製備與操作條件38 第四章 實驗結果與討論39 4.1TGA結果與分析39 4.1.1 1M溶液TGA結果分析39 4.1.2 1.5M溶液TGA結果分析43 4.1.3 1M與1.5M氧化結果綜合比較45 4.1.4 氧化後的消耗比率(consumption ratio)計算47 4.1.5 計算氧化反應的速率常數k’48 4.1.6 計算1 M or 1.5 M氧化反應的活化能Ea53 4.1.7 Logistic curve fitting56 4.2Raman結果與分析62 第五章 結論68 參考文獻69 附錄A 各樣品之TGA曲線圖1 附錄B 各樣品之Raman共振譜圖8

    [1] S. Iijima, Nature 354, 56 (1991).
    [2] M. S. Dresselhaus, G. Dresselhaus, and P. C. Eklund, in Science of Fullerenes & Carbon Nanotubes, Academic Press (San Diego), 1996. 無
    [3] M. M. J. Treacy, T. W. Ebbesen, and J. M. Gibson, Nature 381, 678 (1996).
    [4] P. M. Ajayan, L. S. Schadler, P. V. Braun, C. Picu, and P. J. Keblinski, in Nanocomposite Science and Technology, John Wiley & Sons, Inc. (New York), 2003, pp. 100-121.無
    [5] L. M. Ericson, H. Fan, H. Peng, et al., Science 305, 1447 (2004).
    [6] M. Zheng, K. R. Atkinson, and R. H. Baughman, Science 306, 1358 (2004).
    [7] C.M. Yang, K. Kaneko, M. Yudasaka, and S. Iijima, Physica B 323, 140 (2002).
    [8] R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Phys. Rev. B 46, 1804 (1992).
    [9] R. Saito, M. Fujita, G. Dresselhaus, and M. S. Dresselhaus, Appl. Phys. Lett. 60, 2204 (1992).
    [10] N. Hamada, S. Swads, and A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992).
    [11] N. Chakrapani, B. Wei, A. Carrillo, P. M. Ajayan, and R. S. Kane, Proc. Nat. Acad. Sci. 101, 4009 (2004).
    [12] M. Yudasaka, K. Aijima, K. Suenaga, et al., Chem. Phys. Lett. 380, 42 (2003).
    [13] 成會明,奈米碳管,五南書局(2004)。
    [14] H. W. Kroto, J. R. Heath, S. C. O’Brian, R. F. Curl, R. E. Smalley, Nature 318, 162 (1985).無
    [15] D.S. Bethune, C.H. Kiang, M.S. Deveries, G. Gorman, R. Savoy, J. Vazquez, and R. Beyars, Nature 363, 605 (1993).無
    [16] S. Iijima and T. Ichibashi, Nature 363, 603 (1993).無
    [17] P. J. F. Harris, in Carbon Nanotubes and Related Structures, Cambridge University Press (London), 1999.無
    [18] M. R. Falvo, G. J. Clary, R. M. I. I. Taylor, V. Chi, F. P. Brooks, S. Washburn, and R. Superfing, Nature 389, 582 (1997).
    [19] E. W. Wong, P. E. Sheehan, and C. M. Lieber, Science 277, 1971 (1997).
    [20] J. Appenzeller, R. Martel, P. Avouris, et al., Appl. Phys. Lett. 78, 3313 (2001).
    [21] P. G. Collins, A. Zettl, H. Bando, et al., Science 278, 100 (1997).
    [22] S. J. Tans, M. H. Devoret, H. J. Dai, et al., Nature 386, 474 (1997).無
    [23] S. Berber, Y. K. Kwon, and D. Tomanek, Phys. Rev. Lett. 84, 4613 (2000).
    [24] C. Journet and P. Bernier, Appl. Phys. A 67, 169 (1998).
    [25] Y. Ando, X. Zhao, K. Hirahara, K. Suenaga, S. Bandow, and S. Iijima, Chem. Phys. Lett. 323, 580 (2000).
    [26] Y. Ando, X. Zhao, K. Hirahara, K. Suenaga, S. Bandow, and S. Iijima, Diam. and Relat. Mater. 10, 1185 (2001).
    [27] Z. Shi, Y. Lian, X. Zhou, Z. Gu, Y. Zhang, S. Iijima, L. Zhou, K.T. Yue, and S. Zhang, Carbon 37, 1449 (1999).
    [28] T. Guo, P. Nikolaev, et al., J. Phys. Chem. 99, 10694 (1995).
    [29] A. Y. Cao, H. W. Zhu, X. F. Zhang , et al., Chem. Phys. Lett. 342, 510 (2001).
    [30] H. J. Dai, J. H. Hafner, A. G. Rinzler, et al., Nature 384, 147 (1996).無
    [31] C. H. Kiang, J. S. Choi, T. T. Tran, and A. D. Bacher, J. Phys. Chem. B 103, 7449 (1999).
    [32] M. Yudasaka, M. Zhang, and S. Iijima, Chem. Phys. Lett. 374, 132 (2003).
    [33] E. Bekyarova, K. Kaneko, D. Kasuya, K. Murata, M. Yudasaka, and S. Iijama, Langmuir 18, 4138 (2002).
    [34] P. M. Ajayan, T. W. Ebbesen, T. Ichihashi, S. Iijima, K. Tanigaki, and H. Hiura, Nature 362, 523 (1993).
    [35] K. Murata, K. Kaneko, W. A. Steel, F. Kokai, K. Takahashi, D. Kasuya, K. Hirahara, M. Yudasaka, and S. Iijima, J. Phys. Chem. B 105, 10210 (2001).
    [36] M. Yudasaka, K. Ajima, K. Suenaga, T. Ichihashi, A. Hashimoto, and S. Iijima, Chem. Phys. Lett. 380, 42 (2003).
    [37] S. C. Tsang, P. J. F. Harris, and M. L. H. Green, Nature 362, 520 (1993).
    [38] E. Bekyarova, K. Kaneko, M. Yudasaka, D. Kasuya, S. Iijama, A. Huidobro, and F. Rodriguez-Reinoso, J. Phys. Chem. B 107, 4479 (2003).
    [39] K. Hernadi, A. Siska, L. Thien-Nga, L. Forro, and I. Kiricsi, Solid State Ionics 141-142, 203 (2001).
    [40] A. Kuznetsova, D. B. Mawhinney, V. Naumenko, J. T. Jr. Yates, J. Liu, and R. E. Smalley, Chem. Phys. Lett. 321, 292 (2000).
    [41] S. C. Tsang, Y. K. Chen, P. J. F. Harris, and M. L. H. Green, Nature 372, 159 (1994).
    [42] E. Raymundo-Pinero, D. Cazorla-Amoros, A. Linares-Solano, S. Delpeux, E. Frackowiak, K. Szostak, and F. Beguin, Carbon 40, 1614 (2002).
    [43] C. Dejit, G. Izabela, and P. Fotios, Carbon 40, 985 (2002).
    [44] V. Datsyuk, M. Kalyva, et al., Carbon 46, 841 (2008).
    [45] Minghua Li, Mary Boggs, et al., Carbon 46, 466 (2008).
    [46] L. A. Montoro and J. M. Rosolen, Carbon 44, 3293 (2006).
    [47] Hiura H, Ebbesen TW, Tanigaki K, et al. Chem. Phys. Lett. 202, 509 (1993).
    [48] Ajayan PM, Ebbesen TW, et al.Nature. 362, 522(1993).
    [49] Rao AM, Richter E, Bandow S, et al. Science. 275, 187 (1997).

    QR CODE