簡易檢索 / 詳目顯示

研究生: 黃馨玉
Xin-Yu Huang
論文名稱: 生物炭材料於油水分離以及太陽能海水淡化之應用
Preparation of Biochar-Based Materials for Oil/Water Separation and Solar Evaporation
指導教授: 賴君義
Juin-Yih Lai
口試委員: 王志逢
Chih-Feng Wang
洪維松
Wei-Song Hung
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 121
中文關鍵詞: 菱角炭超親水水中超疏油乳化液分離米糠蠟太陽能蒸發
外文關鍵詞: carbonized water caltrop grains, superhydrophilicity, underwater superoleophobicity, oil/water separation, rice bran wax, solar evaporation
相關次數: 點閱:376下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 含油廢水不斷排放對環境造成威脅,因此迫切需要高效油水分離材料。另外,全球對於水需求大幅增加,目前常用的海水淡化技術存在高能耗、高成本或二次汙染等問題,因此利用太陽能蒸發技術進行水處理引起了極大的關注。本研究使用菱角炭相關材料進行廢水純化與海水淡化之應用。
    1.菱角炭粉於油/水乳化液分離之應用
    我們發現菱角炭粉具有超親水、水中超疏油特性,因此在水潤濕後可應用於油在水中乳化液之分離。油在水中乳化液最大通量為74700±3800 L h^(-1) m^(-2) bar^(-1),濾液油含量<10 ppm。此外,我們發現菱角炭亦展現油中超親水特性,可在油中吸附水滴,進而成功分離水在油中乳化液,水在油中乳化液最大通量241000±6770 L h^(-1) m^(-2) bar^(-1),濾液油純度>99.99%。菱角炭在兩種乳化液皆展現突出的分離效率與良好的重複使用性。菱角炭也展現純化含金屬離子水溶液與含染料廢水溶液的效果。
    2.疏水性菱角炭粉應用於太陽能蒸發
    經米糠蠟改質後之菱角炭具有疏水性與水面漂浮特性,可應用於製備低成本太陽能蒸發器,蒸發海水以獲得飲用水。疏水性菱角炭在1kW m^(-2)太陽光下可獲得蒸發速率1.1kg m^(-2) h^(-1),並在不同濃度鹽水水溶液、長時間照明下,仍有穩定的蒸發速率。海水在蒸餾後,蒸餾水中的鈉、鎂、鈣、鉀離子濃度均低於世界衛生組織的飲用水標準。
    我們將使用後的菱角炭粉,摻混於土壤進行盆栽實驗,經過七個月的種植後植物仍綠意盎然,說明其具有良好的環境相容性。基於本研究的菱角炭相關材料之特性,相信其在廢水純化與海水淡化領域會有相當良好的應用性。


    Herein, we applied carbonized water caltrop grains (CWCGs)-based materials in wastewater purification and solar evaporation. This study includes two subjects and describes as follows, respectively:
    1. The application of CWCGs in emulsion separations.
    We found that CWCGs possessed superhydrophilicity, underwater superoleophobicity and under oil superhydrophilicity. Those materials can be used for separations of both oil-in-water and water-in-oil emulsions with very high fluxes (up to 74700 and 241000 L h^(-1) m^(-2) bar^(-1) for oil-in-water and water-in-oil emulsions, respectively) and outstanding separation performance. Besides, CWCGs also can be used for treating wastewater containing metal ions or dyes.
    2. Preparation of hydrophobic CWCGs (HCWCGs) for solar evaporation and water purification.
    We prepared HCWCGs from CWCGs and rice bran wax. HCWCGs possessed self-floating ability and can be used as photothermal converters. Under one sun irradiation, the evaporation rate of water for the HCWCGs is 1.1kg m^(-2) h^(-1). After the desalination of the seawater, the ion concentrations of Na+, Ca2+, K+, and Mg2+ reduced sharply at a level considerably less than the safe-drinking-water values provided by the WHO.
    Finally, we perform pot experiments with used CWCGs and HCWCGs. After seven months, plants still grown well indicating good biocompatibility of CWCGs and HCWCGs. The high performance of CWCGs-based materials suggests that they have great potential for practical application.

    摘要 I Abstract II 致謝 IV 總目錄 V 圖目錄 VIII 第一章、 緒論 1 背景 1 1.1 油/水混合液分離 1 1.2 海水淡化 1 1.3 研究動機 2 第二章、 文獻回顧 3 2.1 表面接觸角 3 2.1.1 Young’s equation 5 2.1.2 Wenzel equation 6 2.1.3 Cassie - Baxter equation 7 2.1.4 動態接觸角 8 2.1.5 滾動角 9 2.2 自然界的親疏水性 10 2.3 特殊潤濕性材料於油水分離應用 14 2.4 粉粒於油/水混合液分離的應用 18 2.5 光熱轉換材料於太陽能蒸發的應用 23 2.6 生物炭材料 31 2.7 菱殼炭 33 2.8 米糠蠟 35 第三章、 實驗方法與設計 37 3.1 實驗材料 37 3.2 實驗儀器 43 3.3 實驗步驟 51 3.3.1 油/水乳化液的製備 51 3.3.2 菱角炭粉粒層(CWCGs)的製備 52 3.3.3 疏水性菱角炭材料(HCWCGs)的製備 53 3.4 材料鑑定與性質檢測 54 3.4.1 材料鑑定 54 3.4.2 油/水混合液分離實驗性質檢測 55 3.4.3 染料、金屬離子移除實驗檢測 57 3.4.4 太陽光蒸發實驗性質檢測 57 第四章、 菱角炭粉於油/水乳化液分離之應用 59 4.1 掃描式電子顯微鏡觀察菱角炭粉的顯微結構 59 4.2 XPS表面元素組成分析 60 4.3 潤濕特性探討 63 4.3.1 菱角炭粉於空氣中之潤濕現象 63 4.3.2 菱角炭粉於水中之疏油現象 64 4.3.3 菱角炭粉於油中之親水現象 64 4.4 菱角炭粉的量對通量與分離效率之影響 65 4.5 油在水中的乳化液分離 67 4.6 水在油中的乳化液分離 70 4.7 耐用性測試 73 4.8 菱角炭粉對染料與金屬離子的吸附 75 4.9 盆栽實驗 80 第五章、 疏水菱角炭粉應用於太陽能蒸發 81 5.1 掃描式電子顯微鏡觀察菱角炭粉的顯微結構 81 5.2 XPS表面元素分析 82 5.3 潤濕特性探討 83 5.4 純水、鹽水蒸發速率分析 84 5.5 照光前後表面溫度變化探討 86 5.6 光熱轉換效率 87 5.7 連續照明下的蒸發速率 87 5.8 純化測試 89 5.8.1 含金屬離子水溶液純化 89 5.8.2 含染料廢水純化 90 5.9 盆栽實驗 91 第六章、 結論 92 第七章、 未來展望 93 第八章、 參考文獻 94

    1. M.M. Mekonnen, A.Y. Hoekstra, Four billion people facing severe water scarcity. Science Advances, 2016. 2(2).
    2. O.K. Buros, The ABCs of desalting. International Desalination Association Topsfield Massachusetts USA, 2000.
    3. H. Baig, M.A. Antar, Performance evaluation of a once-through multi-stage flash distillation system: Impact of brine heater fouling. Energy Conversion and Management, 2011. 52(2): p. 1414-1425.
    4. H.S. Aybar, Analysis of a mechanical vapor compression desalination system. Deslaination, 2002. 142(2): p. 181-186.
    5. C. Fritzmann, J. Lowenberg, T. Wintgens, et al., State-of-the-art of reverse osmosis desalination. Desalination, 2007. 216(1-3): p. 1-76.
    6. W. Ho, K. Sirkar, Membrane handbook. Springer Science & Business Media, 2012.
    7. N. Nuraje, WS. Khan, Y. Lei, et al., Superhydrophobic electrospun nanofibers. Journal of Materials Chemistry A, 2013. 1(6): p. 1929-1946.
    8. T. Young, An essay on the cohesion of fluids. Philosophical Transactions, 1805(95): p. 65-87.
    9. E.A. Vogler, Structure and reactivity of water at biomaterial surfaces. Advances in Colloid and Interface Science, 1998. 74(1-3): p. 69-117.
    10. Y. Tian, B. Su, L. Jiang, Interfacial material system exhibiting superwettability. Advanced Materials, 2014. 26(40): p. 6872-6897.
    11. J.J. Li, Y.N. Zhou, Z.H. Luo, Polymeric materials with switchable superwettability for controllable oil/water separation: A comprehensive review. Progress in Polymer Science, 2018. 87: p. 1-33.
    12. Y. Deng, C. Peng, M. Dai, et al., Recent development of super-wettable materials and their applications in oil-water separation. Journal of Cleaner Production, 2020: p. 121624.
    13. R.N. Wenzel, Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry, 1936. 28(8): p. 988-994.
    14. A. Cassie, S. Baxter, Wettability of porous surfaces. Transactions of Faraday society, 1944. 40: p. 546-551.
    15. S. Li, J. Huang, Z. Chen, et al., A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications. Journal of Materials Chemistry A, 2017. 5(1): p. 31-55.
    16. W. Barthlott, C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 1997. 202(1): p. 1-8.
    17. K. Koch, B. Bhushan, W. Barthlott, Multifunctional surface structures of plants: An inspiration for biomimetics. Progress in Materials Science, 2009. 54(2): p. 137-178.
    18. M. Liu, S. Wang, Z, Wei, et al., Bioinspired design of a superoleophobic and low adhesive water/solid interface. Advanced Materials, 2009. 21(6): p. 665-669.
    19. S. Nishimoto, B. Bhushan, Bioinspired self-cleaning surfaces with superhydrophobicity, superoleophobicity, and superhydrophilicity. RCS Advances, 2013. 3(3): p. 671-690.
    20. J. Ju, H. Bai, Y. Zheng, et al., A multi-structural and multi-functional integrated fog collection system in cactus. Nature Communications, 2012. 3(1): p. 1-6.
    21. M. Schrope, Oil spill: Deep wounds. Nature News, 2011. 472(7342): p. 152-154.
    22. S.B. Joye, Deepwater Horizon, 5 years on. Science, 2015. 349(6248): p. 592-593.
    23. A.J. Mariano, V.H. Kourafalou, A. Srinivasan, et al., On the modeling of the 2010 Gulf of Mexico oil spill. Dynamics of Atmospheres and Oceans, 2011. 52(1-2): p. 322-340.
    24. C. Schmidt, Exxon Valdez Vs. deepwater horizon: ES&T’s top feature article 2011. Environmental Science & Technology, 2012.
    25. J. Fritt-Rasmussen, S. Wegeberg, K. Gustavson, Review on burn residues from in situ burning of oil spills in relation to Arctic waters. Water, Air, & Soil Pollution, 2015. 226(10): p. 1-12.
    26. I.B. Ivshina, M.S. Kuyukina, A.V. Krivoruchko, et al., Oil spill problems and sustainable response strategies through new technologies. Environmental Science: Processes & Impacts, 2015. 17(7): p. 1201-1219.
    27. L. Jiang,R. Wang,B. Yang, et al., Binary cooperative complementary nanoscale interfacial materials. Pure and Applied Chemistry, 2000. 72(1-2): p. 73-81.
    28. Z. Xue, Y. Cao, N. Liu, et al., Special wettable materials for oil/water separation. Journal of Materials Chemistry A, 2014. 2(8): p. 2445-2460.
    29. D.D. Nguyen, N.H. Tai, S.B. Lee, et al., Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method. Energy & Environmental Science, 2012. 5(7): p. 7908-7912.
    30. S. Li, J. Huang, M. Ge, et al., Robust flower‐like TiO2@ cotton fabrics with special wettability for effective self‐cleaning and versatile oil/water separation. Advanced Materials Interfaces 2015. 2(14): p. 1500220.
    31. J. Yang, Y. Tang, J. Xu, et al., Durable superhydrophobic/superoleophilic epoxy/attapulgite nanocomposite coatings for oil/water separation. Surface Coatings Techonology, 2015. 272: p. 285-290.
    32. F. Wang, S. Lei, M. Xue, et al., Superhydrophobic and superoleophilic miniature device for the collection of oils from water surfaces. The Journal of Physical Chemistry C, 2014. 118(12): p. 6344-6351.
    33. Q. Ma, H. Cheng, A.G. Fane, et al., Recent development of advanced materials with special wettability for selective oil/water separation. Small, 2016. 12(16): p. 2186-2202.
    34. Z. Xue, S. Wang, L. Lin, et al., A novel superhydrophilic and underwater superoleophobic hydrogel‐coated mesh for oil/water separation. Advanced Materials, 2011. 23(37): p. 4270-4273.
    35. J. Yang, Z, Zhang, X. Xu, et al., Superhydrophilic–superoleophobic coatings. Journal of Materals Chemistry, 2012. 22(7): p. 2834-2837.
    36. J. Ge, J, Zhang, F. Wang, et al., Superhydrophilic and underwater superoleophobic nanofibrous membrane with hierarchical structured skin for effective oil-in-water emulsion separation. Journal of Materials Chemistry A, 2017. 5(2): p. 497-502.
    37. S. Fang, Z. Zhang, H. Yang, et al., Mussel-inspired hydrophilic modification of polypropylene membrane for oil-in-water emulsion separation. Surface and Coatings Technology, 2020. 403: p. 126375.
    38. L. Feng, Z Zhang, Z, Mai, et al., A super‐hydrophobic and super‐oleophilic coating mesh film for the separation of oil and water. Angewandte Chemie, 2004. 116(15): p. 2046-2048.
    39. J. Zhang, and S. Seeger, Polyester materials with superwetting silicone nanofilaments for oil/water separation and selective oil absorption. Advanced Functional Materials, 2011. 21(24): p. 4699-4704.
    40. S.J. Gao, Y.Z. Zhu, F. Zhang, et al., Superwetting polymer-decorated SWCNT composite ultrathin films for ultrafast separation of oil-in-water nanoemulsions. Journal of Materials Chemistry A, 2015. 3(6): p. 2895-2902.
    41. G. Jiang, J. Li, Y. Nie, et al., Immobilizing water into crystal lattice of calcium sulfate for its separation from water-in-oil emulsion. Environmental Science & Technology, 2016. 50(14): p. 7650-7657.
    42. J. Yong, F. Chen, Q. Yang, et al., Oil‐water separation: a gift from the desert. Advanced Materials Interfaces, 2016. 3(7): p. 1500650.
    43. L. Chen, Y. Si, Z. Guo, et al., Superhydrophobic sand: a hope for desert water storage and transportation projects. Journal of Materials Chemistry A, 2017. 5(14): p. 6416-6423.
    44. G. Shi, Y. Shen, P. Wu, et al., Effective separation of surfactant-stabilized crude oil-in-water emulsions by using waste brick powder-coated membranes under corrosive conditions. Green Chemistry, 2020. 22(4): p. 1345-1352.
    45. J. Li, C, Xu, C, Guo, et al., Underoil superhydrophilic desert sand layer for efficient gravity-directed water-in-oil emulsions separation with high flux. Journal of Materials Chemistry A, 2018. 6(1): p. 223-230.
    46. Z.D. Li, J. Wu, X. Yue, et al., Study on the application of waste bricks in emulsified oil-water separation. Journal of Cleaner Production, 2020. 251.
    47. X.H. Men, B. Ge, P. Li, et al., Facile fabrication of superhydrophobic sand: Potential advantages for practical application in oil-water separation. Journal of the Taiwan Institute of Chemical Engineers, 2016. 60: p. 651-655.
    48. C. Duan, T. Zhu, J. Guo, et al., Smart enrichment and facile separation of oil from emulsions and mixtures by superhydrophobic/superoleophilic particles. ACS Applied Materials & Interfaces, 2015. 7(19): p. 10475-10481.
    49. S. Mirshahghassemi, J.R. Lead, Oil recovery from water under environmentally relevant conditions using magnetic nanoparticles. Environmental Science & Technology, 2015. 49(19): p. 11729-11736.
    50. N. Yang, Z.X. Luo, S.C. Chen, et al., Superhydrophobic magnetic hollow carbon microspheres with hierarchical micro/nano-structure for ultrafast and highly-efficient multitasking oil-water separation. Carbon, 2021. 174: p. 70-78.
    51. P.M. Reddy, C.H. Chang, J.K. Chen, et al., Robust polymer grafted Fe3O4 nanospheres for benign removal of oil from water. Applied Surface Science, 2016. 368: p. 27-35.
    52. T. Oki, S.J. Kanae, Global hydrological cycles and world water resources. Science, 2006. 313(5790): p. 1068-1072.
    53. A.H. Cavusoglu, X. Chen, P. Gentine, et al., Potential for natural evaporation as a reliable renewable energy resource. Nature Communications, 2017. 8(1): p. 1-9.
    54. M.W. Higgins, S. Rahmaan, R.R. Devarapalli, et al., Carbon fabric based solar steam generation for waste water treatment. Solar Energy, 2018. 159: p. 800-810.
    55. A.D. Khawaji, I.K. Kutubkhanah, J.M. Wie, Advances in seawater desalination technologies. Desalination, 2008. 221(1-3): p. 47-69.
    56. P. Yang, K. Liu, Q. Chen, et al., Solar-driven simultaneous steam production and electricity generation from salinity. Energy & Environmental Science, 2017. 10(9): p. 1923-1927.
    57. H. Sharon, K.S. Reddy, A review of solar energy driven desalination technologies. Renewable & Sustainable Energy Reviews, 2015. 41: p. 1080-1118.
    58. A. Kaushal, Varun , Solar stills: A review. Renewable and Sustainable Energy Reviews, 2010. 14(1): p. 446-453.
    59. Y. Wang, L. Zhang, P. Wang, Self-floating carbon nanotube membrane on macroporous silica substrate for highly efficient solar-driven interfacial water evaporation. ACS Sustainable Chemistry & Engineering, 2016. 4(3): p. 1223-1230.
    60. Y. Ito, Y. Tanabe, J. Han, et al., Multifunctional porous graphene for high‐efficiency steam generation by heat localization. Advanced Materials, 2015. 27(29): p. 4302-4307.
    61. K. Kim, S. Yu, C. An, et al., Mesoporous three-dimensional graphene networks for highly efficient solar desalination under 1 sun illumination. ACS Applied Materials & Interfaces, 2018. 10(18): p. 15602-15608.
    62. K.K. Liu, Q. Jiang, S. Tadepalli, et al., Wood–graphene oxide composite for highly efficient solar steam generation and desalination. ACS Applied Materials & Interfaces, 2017. 9(8): p. 7675-7681.
    63. G. Wang, Y. Fu, A. Guo, et al., Reduced graphene oxide–polyurethane nanocomposite foam as a reusable photoreceiver for efficient solar steam generation. Chemistry of Materials, 2017. 29(13): p. 5629-5635.
    64. X. Wang, Y. He, G. Cheng, et al., Direct vapor generation through localized solar heating via carbon-nanotube nanofluid. 2016. Energy Conversion and Management, 130: p. 176-183.
    65. C. Jia, Y. Li, Z. Yang, et al., Rich mesostructures derived from natural woods for solar steam generation. Joule, 2017. 1(3): p. 588-599.

    無法下載圖示 全文公開日期 2024/08/05 (校內網路)
    全文公開日期 2026/08/05 (校外網路)
    全文公開日期 2026/08/05 (國家圖書館:臺灣博碩士論文系統)
    QR CODE