簡易檢索 / 詳目顯示

研究生: 陳彥融
Yen-Jung Chen
論文名稱: 以天然兩性離子製備超親水/水下超疏油複合材料並將其應用於油水分離
Preparation of superhydrophilic and underwater superoleophobic composites from natural zwitterionic materials for oil/water separation
指導教授: 賴君義
Juin-Yih Lai
王志逢
Chih-Feng Wang
口試委員: 賴君義
Juin-Yih Lai
王志逢
Chih-Feng Wang
胡蒨傑
Chien-Chieh Hu
洪維松
Wei-Song Hung
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 123
中文關鍵詞: 單寧酸賴氨酸超親水複合材料油水分離
外文關鍵詞: tannic acid, lysine, superhydrophilicity, composite, oil/water separation
相關次數: 點閱:407下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 原油外洩和工業廢水的排放都是對我們人類的生活、經濟有著嚴重的影響。在此篇研究中,藉由環境友善方法(不使用有機溶劑)來製備一具有超親水與水下超疏油特性之複合材料並將此複合材料應用於原油的防污、油水分離和乳化液分離等方面。
    我們以不鏽鋼鐵網(stainless steel mesh, SM)和聚丙烯(Polypropylene, PP)薄膜作為基材,首先用單寧酸(tannic acid, TA)和鐵離子(Fe3+)第一步改質得到TA/Fe@SM和TA/Fe@PP,在第二步將TA/Fe@SM分別用賴氨酸(lysine, Lys)和半胱胺酸(cysteine, Cys)改質分別得到TA/Fe/Lys@SM和TA/Fe/Cys@SM。兩者在皆呈現超親水與水中超疏油特性,其中尤其以Lys的改質方法有較好的表現,且對原油表現出相當優異的自清結和抗汙能力,並可應用於油水分離。故在TA/Fe@PP的實驗亦採用Lys做第二步改質得到TA/Fe/Lys@PP。TA/Fe/Lys@PP也展現超親水與水下超疏油特性。在表現自清潔效能之外,TA/Fe/Lys@PP也能夠處理添加界面活性劑的水包油乳化液同時有著卓越的通量和分離效率。在此同時亦能進行原油乳化液的分離。
    在這份研究中,我們製備的超親水複合材料在油水分離實驗以及水下抗污方面中有卓越的表現,且製備過程是環境友善且低成本的,這也同時代表它極具工業應用的潛力和發展性。


    In this study, we reported an eco-friendly method to prepare superwetting composites. Stainless steel meshes (SM) and polypropylene (PP) membranes were used as substrates. Substrates were modified by tannic acid (TA) and iron ion (Fe3+) to prepare TA/Fe@SM and TA/Fe@PP. Subsequently, TA/Fe@SM was modified by lysine (Lys) or Cysteine (Cys) to obtain TA/Fe/Lys@SM or TA/Fe/Cys@SM. Both TA/Fe/Lys@SM and TA/Fe/Cys@SM exhibited superhydrophilicity and underwater superoleophobicity. Prewetted TA/Fe/Lys@SM shows better anti-fouling performance than that of TA/Fe/Cys@SM with excellent self-cleaning properties toward crude oil and can be used for oil/water separation. We also modified TA/Fe@PP by Lys to obtain TA/Fe/Lys@PP, which exhibited superwetting properties and can be used for separating surfactant-stabilized oil-in-water emulsions with outstanding a separation performance. The high performance of our TA/Fe/Lys@SM and TA/Fe/Lys@PP and their green, low-energy, cost-effective preparation suggest their great potential for practical applications.

    摘要 I Abstract II 致謝 III 目錄 IV 圖表 VIII 第一章、緒論 1 1.1 抗污(antifouling)與自清潔(self cleaning) 1 1.2 油水分離 1 1.3 研究動機 2 第二章、文獻回顧 3 2.1 原油汙染對環境的影響 3 2.2 潤濕性 4 2.2.1 特殊潤濕性 4 2.2.2 Young’s equation 4 2.2.3 接觸角 5 2.2.4 粗糙表面接觸角探討 6 2.2.5 遲滯角 8 2.2.6 滾動角 8 2.2.7 表面化學結構對潤濕性的影響 9 2.3 自然啟發特殊潤濕性 13 2.3.1 超疏水特性 13 2.3.2 超親水特性 14 2.4 油水分離 16 2.4.1 超親油且超疏水材料的油水分離 16 2.4.2 超親水且水下超疏油材料的油水分離 22 2.5 單寧酸 28 2.5.1 單寧酸的多酚性質 28 2.5.2 單寧酸二杯法改質 30 2.5.3 單寧酸接枝改質 31 2.6 兩性離子 33 2.7 賴氨酸 36 第三章、實驗方法與設計 38 3.1 實驗材料 38 3.2 實驗儀器與儀器原理 39 3.3 實驗步驟 43 3.3.1 TA/Fe@SM和TA/Fe@PP的製備 43 3.3.2 TA/Fe/Lys@SM和TA/Fe/Lys@PP的製備 44 3.3.3 水包油乳化液製備 47 3.4 改質鑑定與效能檢測 48 3.4.1 TA/Fe/Lys@SM和TA/Fe/Lys@PP的鑑定 48 3.4.2 TA/Fe/Lys@SM的抗汙效能和油水分離檢測 49 3.4.3 TA/Fe/Lys@PP的乳化液分離效能檢測 51 3.4.4 抗生物沾附效能檢測 53 第四章、結果與討論 55 4.1 改質前後不銹鋼鐵網的性能鑑定 55 4.1.1 改質前後不銹鋼鐵網的表面結構鑑定 55 4.1.2 不銹鋼網的接觸角 61 4.1.3 SM的抗汙性能鑑定 65 4.1.4 油水分離 72 4.2 TA/Fe@PP與TA/Fe/Lys@PP的性能檢測 77 4.2.1 PP的表面結構鑑定 77 4.2.2 PP薄膜的接觸角 79 4.2.3 TA/Fe/Lys@PP的乳化液分離 83 4.2.4 抗生物沾附效能 90 第五章、結論 92 參考文獻 93

    1. T.L.Yip, W.K. Talley, and D. Jin, The effectiveness of double hulls in reducing vessel-accident oil spillage. Marine Pollution Bulletin, 2011. 62(11): p. 2427-2432.
    2. Y.Z.Zhu, et al., Recent progress in developing advanced membranes for emulsified oil/water separation. Npg Asia Materials, 2014. 6, e101.
    3. B.Wang, et al., Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature. Chemical Society Reviews, 2015. 44(1): p. 336-361.
    4. B.Dubansky, et al., Multitissue Molecular, Genomic, and Developmental Effects of the Deepwater Horizon Oil Spill on Resident Gulf Killifish (Fundulus grandis). Environmental Science & Technology, 2013. 47(10): p. 5074-5082.
    5. I.Banerjee, R.C. Pangule, and R.S. Kane, Antifouling Coatings: Recent Developments in the Design of Surfaces That Prevent Fouling by Proteins, Bacteria, and Marine Organisms. Advanced Materials, 2011. 23(6): p. 690-718.
    6. S.J.Gao, et al., Layer-by-Layer Construction of Cu2+/Alginate Multilayer Modified Ultrafiltration Membrane with Bioinspired Superwetting Property for High-Efficient Crude-Oil-in-Water Emulsion Separation. Advanced Functional Materials, 2018. 28(49).
    7. S.J.Gao, et al., A Robust Polyionized Hydrogel with an Unprecedented Underwater Anti-Crude-Oil-Adhesion Property. Advanced Materials, 2016. 28(26): p. 5307-5314.
    8. J.P.Zhang, and S. Seeger, Polyester Materials with Superwetting Silicone Nanofilaments for Oil/Water Separation and Selective Oil Absorption. Advanced Functional Materials, 2011. 21(24): p. 4699-4704.
    9. Z.L.Chu, Y.J. Feng, and S. Seeger, Oil/Water Separation with Selective Superantiwetting/Superwetting Surface Materials. Angewandte Chemie-International Edition, 2015. 54(8): p. 2328-2338.
    10. W. Barthlott and C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta, 1997. 202(1): p. 1-8.
    11. J.L.Guo, et al., Engineering Multifunctional Capsules through the Assembly of Metal-Phenolic Networks. Angewandte Chemie-International Edition, 2014. 53(22): p. 5546-5551.
    12. H.Ejima, J.J. Richardson, and F. Caruso, Phenolic film engineering for template-mediated microcapsule preparation. Polymer Journal, 2014. 46(8): p. 452-459.
    13. L.Fan, et al., Green coating by coordination of tannic acid and iron ions for antioxidant nanofiltration membranes. Rsc Advances, 2015. 5(130): p. 107777-107784.
    14. S.Y.Huang, et al., Fabrication of a Superhydrophobic, Fire-Resistant, and Mechanical Robust Sponge upon Polyphenol Chemistry for Efficiently Absorbing Oils/Organic Solvents. Industrial & Engineering Chemistry Research, 2015. 54(6): p. 1842-1848.
    15. Y.Z. Song., et al., Tannin-inspired superhydrophilic and underwater superoleophobic polypropylene membrane for effective oil/water emulsions separation. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2017. 522: p. 585-592.
    16. Q.Li, et al., Tannic acid-polyethyleneimine crosslinked loose nanofiltration membrane for dye/salt mixture separation. Journal of Membrane Science, 2019. 584: p. 324-332.
    17. S.Q.Chen, et al., A self-cleaning zwitterionic nano fibrous membrane for highly ef ficient oil-in-water separation. Science of the Total Environment, 2020. 729.
    18. M.J.Cheng, et al., A Functionally Integrated Device for Effective and Facile Oil Spill Cleanup. Langmuir, 2011. 27(12): p. 7371-7375.
    19. C.F.Wang, et al., Toward Superhydrophobic/Superoleophilic Materials for Separation of Oil/Water Mixtures and Water-in-Oil Emulsions Using Phase Inversion Methods. Coatings, 2018. 8(11): p. 11.
    20. T.Young, An essay on the cohesion of fluids. Philosophical Transactions of the Royal Society, 1805. 95.
    21. S. Das, et al., A Review on Superhydrophobic Polymer Nanocoatings: Recent Development and Applications. Industrial & Engineering Chemistry Research, 2018. 57(8): p. 2727-2745.
    22. R.N.Wenzel, Resistance of solid surfaces to wetting by water. Industrial & Engineering Chemistry Research, 1936: p. 988–994.
    23. A. B. D. Cassieand S. Baxter , Wettability of porous surfaces. Transactions of the Faraday Society, 1944. 40.
    24. S.H.Li, et al., A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications. Journal of Materials Chemistry A, 2017. 5(1): p. 31-55.
    25. E.J.Park, et al., Fabrication of a superhydrophobic and oleophobic PTFE membrane: An application to selective gas permeation. Materials Research Bulletin, 2016. 83: p. 88-95.
    26. I.P. Parkin and R.G. Palgrave, Self-cleaning coatings. Journal of Materials Chemistry, 2005. 15(17): p. 1689-1695.
    27. Y.L.Sun, et al., Surface hydrophilic modification of PVDF membranes based on tannin and zwitterionic substance towards effective oil-in-water emulsion separation. Separation and Purification Technology, 2020. 234: p. 14.
    28. M.Kobayashi, et al., Wettability and Antifouling Behavior on the Surfaces of Superhydrophilic Polymer Brushes. Langmuir, 2012. 28(18): p. 7212-7222.
    29. J.L.Yong, et al., Superoleophobic surfaces. Chemical Society Reviews, 2017. 46(14): p. 4168-4217.
    30. L.Feng, et al., Petal effect: A superhydrophobic state with high adhesive force. Langmuir, 2008. 24(8): p. 4114-4119.
    31. D.Wu, et al., Three-Level Biomimetic Rice-Leaf Surfaces with Controllable Anisotropic Sliding. Advanced Functional Materials, 2011. 21(15): p. 2927-2932.
    32. Y.M.Zheng, X.F. Gao, and L. Jiang, Directional adhesion of superhydrophobic butterfly wings. Soft Matter, 2007. 3(2): p. 178-182.
    33. X.F.Gao, et al., The dry-style antifogging properties of mosquito compound eyes and artificial analogues prepared by soft lithography. Advanced Materials, 2007. 19(17): p. 2213-+.
    34. A.R. Parker and C.R. Lawrence, Water capture by a desert beetle. Nature, 2001. 414(6859): p. 33-34.
    35. W.Barthlott, et al., The Salvinia Paradox: Superhydrophobic Surfaces with Hydrophilic Pins for Air Retention Under Water. Advanced Materials, 2010. 22(21): p. 2325-2328.
    36. X.F. Gao and L. Jiang, Water-repellent legs of water striders. Nature, 2004. 432(7013): p. 36-36.
    37. K.S. Liu and L. Jiang, Bio-inspired design of multiscale structures for function integration. Nano Today, 2011. 6(2): p. 155-175.
    38. M.J.Liu, et al., Bioinspired Design of a Superoleophobic and Low Adhesive Water/Solid Interface. Advanced Materials, 2009. 21(6): p. 665-+.
    39. S.Y.Zhang, et al., Bio-Inspired Anti-Oil-Fouling Chitosan-Coated Mesh for Oil/Water Separation Suitable for Broad pH Range and Hyper-Saline Environments. Acs Applied Materials & Interfaces, 2013. 5(22): p. 11971-11976.
    40. K. Koch and W. Barthlott, Superhydrophobic and superhydrophilic plant surfaces: an inspiration for biomimetic materials. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 2009. 367(1893): p. 1487-1509.
    41. Y.H. Sun and Z.G. Guo, Recent advances of bioinspired functional materials with specific wettability: from nature and beyond nature. Nanoscale Horizons, 2019. 4(1): p. 52-76.
    42. B.Wang, et al., Hollow Carbon Fibers Derived from Natural Cotton as Effective Sorbents for Oil Spill Cleanup. Industrial & Engineering Chemistry Research, 2013. 52(51): p. 18251-18261.
    43. S.Y.Huang and J.F. Shi, Monolithic Macroporous Carbon Materials as High-Performance and Ultralow-Cost Sorbents for Efficiently Solving Organic Pollution. Industrial & Engineering Chemistry Research, 2014. 53(12): p. 4888-4893.
    44. Q.L.Ma, et al., Recent Development of Advanced Materials with Special Wettability for Selective Oil/Water Separation. Small, 2016. 12(16): p. 2186-2202.
    45. Q.Y.Cheng, et al., Cellulose nanocrystal coated cotton fabric with superhydrophobicity for efficient oil/water separation. Carbohydrate Polymers, 2018. 199: p. 390-396.
    46. X.J.Yue, et al., Oil removal from oily water by a low-cost and durable flexible membrane made of layered double hydroxide nanosheet on cellulose support. Journal of Cleaner Production, 2018. 180: p. 307-315.
    47. M.Cao, et al., Hot water-repellent and mechanically durable superhydrophobic mesh for oil water separation. Journal of Colloid and Interface Science, 2018. 512: p. 567-574.
    48. L.Feng, et al., A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water. Angewandte Chemie-International Edition, 2004. 43(15): p. 2012-2014.
    49. Y.Y.Zhu, et al., Super-hydrophobic F-TiO2@PP membranes with nano-scale ?coral?-like synapses for waste oil recovery. Separation and Purification Technology, 2021. 267.
    50. V.Arunagiri, et al., Facile fabrication of eco-friendly polycaprolactone (PCL)/Poly-D, L-Lactic acid (PDLLA) modified melamine sorbent for oil-spill cleaning and water/oil (W/O) emulsion separation. Separation and Purification Technology, 2021. 259.
    51. D.D.Ejeta, et al., Preparation of superhydrophobic and superoleophilic cotton-based material for extremely high flux water-in-oil emulsion separation. Chemical Engineering Journal, 2020. 402.
    52. Y.Z.Zhu, et al., A novel zwitterionic polyelectrolyte grafted PVDF membrane for thoroughly separating oil from water with ultrahigh efficiency. Journal of Materials Chemistry A, 2013. 1(18): p. 5758-5765.
    53. W.B.Zhang, et al., Salt-Induced Fabrication of Superhydrophilic and Underwater Superoleophobic PAA-g-PVDF Membranes for Effective Separation of Oil-in-Water Emulsions. Angewandte Chemie-International Edition, 2014. 53(3): p. 856-860.
    54. X.Y.Zhang, et al., In situ surface modification of thin film composite forward osmosis membranes with sulfonated poly(arylene ether sulfone) for anti-fouling in emulsified oil/water separation. Journal of Membrane Science, 2017. 527: p. 26-34.
    55. S.Zarghami, et al., Superhydrophilic and underwater superoleophobic membranes - review of synthesis methods. Progress in Polymer Science, 2019. 98.
    56. H.Huang, et al., A facile fabrication of chitosan modified PPS-based microfiber membrane for effective antibacterial activity and oil-in-water emulsion separation. Cellulose, 2019. 26(4): p. 2599-2611.
    57. Q.Y.Cheng, et al., Facile fabrication of superhydrophilic membranes consisted of fibrous tunicate cellulose nanocrystals for highly efficient oil/water separation. Journal of Membrane Science, 2017. 525: p. 1-8.
    58. S.Zarghami, et al., Bio-inspired anchoring of amino-functionalized multi-wall carbon nanotubes (N-MWCNTs) onto PES membrane using polydopamine for oily wastewater treatment. Science of the Total Environment, 2020. 711.
    59. W.H.Qing, et al., In situ silica growth for superhydrophilic-underwater superoleophobic Silica/PVA nanofibrous membrane for gravity-driven oil-in-water emulsion separation. Journal of Membrane Science, 2020. 612.
    60. S.Fang, et al., Mussel-inspired hydrophilic modification of polypropylene membrane for oil-in-water emulsion separation. Surface & Coatings Technology, 2020. 403.
    61. L.D.Feng, et al., Preparation of a rice straw-based green separation layer for efficient and persistent oil-in-water emulsion separation. Journal of Hazardous Materials, 2021. 415.
    62. H.Ejima, et al., One-Step Assembly of Coordination Complexes for Versatile Film and Particle Engineering. Science, 2013. 341(6142): p. 154-157.
    63. Z.X.Wang, et al., One-step transformation of highly hydrophobic membranes into superhydrophilic and underwater superoleophobic ones for high-efficiency separation of oil-in-water emulsions. Journal of Materials Chemistry A, 2018. 6(8): p. 3391-3396.
    64. Y.F.Mu, et al., Combined strategy of blending and surface modification as an effective route to prepare antifouling ultrafiltration membranes. Journal of Colloid and Interface Science, 2021. 589: p. 1-12.
    65. Q.Q.Shang, et al., Superhydrophobic cotton fabric coated with tannic acid/polyhedral oligomeric silsesquioxane for highly effective oil/water separation. Progress in Organic Coatings, 2021. 154.
    66. D.F.Stamatialis, et al., Medical applications of membranes: Drug delivery, artificial organs and tissue engineering. Journal of Membrane Science, 2008. 308(1-2): p. 1-34.
    67. P.S.Liu, et al., Anti-biofouling ability and cytocompatibility of the zwitterionic brushes-modified cellulose membrane. Journal of Materials Chemistry B, 2014. 2(41): p. 7222-7231.
    68. M.R.He, et al., Zwitterionic materials for antifouling membrane surface construction. Acta Biomaterialia, 2016. 40: p. 142-152.
    69. M.Krishnamoorthy, et al., Surface-Initiated Polymer Brushes in the Biomedical Field: Applications in Membrane Science, Biosensing, Cell Culture, Regenerative Medicine and Antibacterial Coatings. Chemical Reviews, 2014. 114(21): p. 10976-11026.
    70. L. Mi and S.Y. Jiang, Integrated Antimicrobial and Nonfouling Zwitterionic Polymers. Angewandte Chemie-International Edition, 2014. 53(7): p. 1746-1754.
    71. J.B.Schlenoff, Zwitteration: Coating Surfaces with Zwitterionic Functionality to Reduce Nonspecific Adsorption. Langmuir, 2014. 30(32): p. 9625-9636.
    72. R.Yang, et al., Synergistic Prevention of Biofouling in Seawater Desalination by Zwitterionic Surfaces and Low-Level Chlorination. Advanced Materials, 2014. 26(11): p. 1711-1718.
    73. Q. Shao and S.Y. Jiang, Molecular Understanding and Design of Zwitterionic Materials. Advanced Materials, 2015. 27(1): p. 15-26.
    74. S.F.Chen, et al., Strong resistance of phosphorylcholine self-assembled monolayers to protein adsorption: Insights into nonfouling properties of zwitterionic materials. Journal of the American Chemical Society, 2005. 127(41): p. 14473-14478.
    75. J.Wu, et al., Investigation of the Hydration of Nonfouling Material Poly(sulfobetaine methacrylate) by Low-Field Nuclear Magnetic Resonance. Langmuir, 2012. 28(19): p. 7436-7441.
    76. S.I.Jeon, et al., PROTEIN SURFACE INTERACTIONS IN THE PRESENCE OF POLYETHYLENE OXIDE .1. SIMPLIFIED THEORY. Journal of Colloid and Interface Science, 1991. 142(1): p. 149-158.
    77. S.I.Jeon and J.D. Andrade, PROTEIN SURFACE INTERACTIONS IN THE PRESENCE OF POLYETHYLENE OXIDE .2. EFFECT OF PROTEIN SIZE. Journal of Colloid and Interface Science, 1991. 142(1): p. 159-166.
    78. H. Reginald Garrett, C.M.G., Biochemistry (4th ed.) 2010, University of Virginia p.70-77.
    79. Q.Wang, et al., Design of a novel poly(aryl ether nitrile)-based composite ultrafiltration membrane with improved permeability and antifouling performance using zwitterionic modified nano-silica. Rsc Advances, 2021. 11(25): p. 15231-15244.
    80. S.F. Chen, et al., Surface hydration: Principles and applications toward low-fouling/nonfouling biomaterials. Polymer, 2010. 51(23): p. 5283-5293.
    81. C.F.Wang, H.C. Huang, and L.T. Chen, Protonated Melamine Sponge for Effective Oil/Water Separation. Scientific Reports, 2015. 5.
    82. Z.X.Xue, et al., Special wettable materials for oil/water separation. Journal of Materials Chemistry A, 2014. 2(8): p. 2445-2460.

    無法下載圖示 全文公開日期 2026/08/24 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE