簡易檢索 / 詳目顯示

研究生: 朱泰霓
Tai-ni Chu
論文名稱: 添加微米鈀、鍺於錫-銀-銅無鉛銲料之性質研究
Addition of minor Ge and Pd particles to Sn-3.0Ag-0.5Cu lead-free solder composites
指導教授: 顏怡文
Yee-wen Yen
口試委員: 郭俞麟
Yu-lin Kuo
施劭儒
Shao-ju Shih
黃柏仁
Bohr-ran Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 100
中文關鍵詞: 活化能Sn-Ag-Cu無鉛銲料複合銲料
外文關鍵詞: Sn-Ag-Cu lead-free solder, composite solder, activation energy
相關次數: 點閱:194下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於環保意識興起,綠色材料近年來以飛快的速度發展,且Sn-Pb銲料因成分中的鉛對人體與環境有害,無鉛銲料逐漸取代傳統Sn-Pb銲料,複合銲料目前為此領域的研究主軸,通常以常見之無鉛銲料成分加入強化相。本研究以目前市面上常見的Sn-3.0Ag-0.5Cu無鉛銲料作為主要材料,添加平均粒徑6-12 m金屬Ge粉末以及0.5-1.7 m之Pd粉末,重量百分比0、0.5、1.0,與2.0 wt.%,均勻混合後測試其熱分析性質與潤濕性質,並且與Cu基材進行界面反應,計算銲料與Cu之反應時的活化能。
    在SAC添加Ge與Cu界面反應中,界面處生成Cu6Sn5與Cu3Sn相,銲料端析出Ag3Sn相,介金屬相隨著反應溫度的增加、反應時間的延長而增長;SAC添加Pd的界面反應中,於界面處生成Cu6Sn5與Cu3Sn相,銲料端析出Ag3Sn,添加量1.0與2.0 wt.%時銲料端有PdSn4相析出,介金屬相隨著反應溫度的增加、反應時間的延長而變厚。比較添加Ge與Pd的銲料抑制介金屬相成長的效果,添加Ge的效果較佳。在反應動力學的部分計算出SAC-xGe與銅反應之活化能大小為SAC/Cu<SAC-0.5Ge/Cu<SAC-1.0Ge/Cu<SAC-2.0Ge/Cu;添加Pd的銲料與銅反應之活化能大小為SAC/Cu<SAC-0.5Pd/Cu< SAC-1.0Pd/Cu< SAC-2.0Pd/Cu。
    銲料經由熱分析測得液化溫度,添加Ge與Pd的銲料中皆以添加量為1.0 wt.%時得到最低溫,但整體而言液化溫度無明顯變化。潤濕性質方面,Ge的添加可使得銲料有較好的潤濕表現,潤濕時間較短,潤濕角較小;Pd的添加則使得銲料潤濕時間增加,潤濕角變大,相對而言潤濕表現較差。


    The Pb element has been limited to use because the toxicity would make long-term influence to people health and environment. To replace the Sn-Pb solder alloy, numerous solder alloys have been developed. One of solder is Sn-3.0Ag-0.5Cu, which has been used for recent years. In order to improve the physical properties and the reliability of solder joint, some rare earth elements have been chose to dope into the solder. In this study, Germanium and Palladium elements are mixed with Sn-3.0Ag-0.5Cu solder paste into a uniform solder alloy. The physical properties such as thermal properties and wettability were taken with the solder alloy, and the interfacial reaction between solder alloy and Cu were investigated.
    The interfacial reaction between SAC-xGe and Cu showed that there are Cu6Sn5 and Cu3Sn phases formed at the interface, and the Ag3Sn phase was found in the solder. The activation energy for reaction couples were caculated, and the comparison results is SAC/Cu<SAC-0.5Ge/Cu <SAC-1.0Ge/Cu<SAC-2.0Ge/Cu. Cu6Sn5 and Cu3Sn phases were also formed at the interface between SAC-xPd and Cu. In the solder, Ag3Sn formed in all reaction couples, while PdSn4 phase was found in the solder for the SAC-1.0Pd/Cu and SAC-2.0Pd/Cu reaction couples. The comparison of activation energy for Pd-composite solders is SAC/Cu<SAC-0.5Pd/Cu<SAC-1.0Pd/Cu< SAC-2.0Pd/Cu.
    For the thermal properties, the composite solder with 1.0 wt.% addition have lower liquidus temperature, but the variation between different solder alloys are not really obvious. For the wettability, addition of Ge could decrease the wetting time and wetting angle; addition of Pd could increase the weting time and wetting angle.

    摘要 I Abstract II 誌謝 III 目錄 V 圖目錄 VII 表目錄 XI 第一章、前言 1 第二章、文獻回顧 3 2-1 電子構裝技術簡介 3 2-2 無鉛銲料的發展 4 2-2.1 Sn-Zn系統 7 2-2.2 Sn-Ag系統 8 2-2.3 Sn-Cu系統 9 2-2.4 Sn-Bi系統 10 2-2.5 Sn-In系統 11 2-2.6 Sn-Ag-Cu系統 12 2-3 複合銲料相關研究結果 13 2-3.1 添加金屬微奈米粒子之相關研究文獻 14 2-3.2 添加陶瓷微奈米粒子之相關研究文獻 18 2-3.3 添加其他材料之相關研究文獻 20 2-4 複合銲料性質觀察與分析 21 2-4.1 熱分析 21 2-4.2 濕潤性分析 23 第三章、實驗方法 24 3-1 樣品準備 24 3-2 實驗步驟與分析方法 25 3-2.1 界面反應 25 3-2.2 析出相與厚度分析 25 3-2.3 DTA熱性質分析 26 3-2.4 濕潤性測量 26 第四章、結果與討論 28 4-1 析出相與界面反應結果 28 4-1.1 SAC/Cu界面反應 28 4-1.2 SAC-xGe/Cu界面反應 32 4-1.3 SAC-xPd/Cu界面反應 37 4-2 界面反應之動力學 43 4-3 熱分析性質 69 4-4 濕潤性質 72 4-4.1 潤濕性分析與計算 72 4-4.2 SAC-xGe銲料潤濕性質 74 4-4.3 SAC-xPd銲料潤濕性質 77 第五章、結論 80 第六章、參考文獻 82

    [1] WEEE Regulations, EU-Directive 96/EC (2002).
    [2] RoHS Regulations, EU-Directive 95/EC (2002).
    [3] 林定皓,「電子構裝技術概論」,台灣電路板協會(2010)。
    [4] 田民波/著、顏怡文/教訂,「半導體電子元件構裝技術」,五南圖書出版社(2005)。
    [5] 日本日經出版社/著,劉羽雯/策劃主編,許瑞玲、林欣蔚/翻譯,「RoHS綠色指令:全球環境規範&無鉛焊接技術」,龍璟文化事業股份有限公司(2005)。
    [6] M. N. Islam and Y. C. Chan, International Conference on Asian Green Electronics, IEEE, (2005) 178-184.
    [7] N. C. Lee, Soldering and Surface Mount Technology, 26, (1997) 65-68.
    [8] Binary alloy phase diagrams electronic resource, Materials Park, OH : ASM International, 1996.
    [9] K. Suganuma, S. H. Huh, K. Kim, H. Nakase, and Y. Nakamura, Materials Transactions, JIM, 42, (2001) 286-291.
    [10] S. H. Huh, K. S. Kim, K. Suganuma, Materials Transactions, 42, (2001) 739-744.
    [11] F. Hua, Z. Mei, and J. Glazer, Proceedings-Electronic Components and Technology Conference, IEEE, (1998) 277-283.
    [12] M. O. Alam, Y. C. Chen and K. N. Tu, Journal of Applied Physics, 94, (2003) 7904-7909.
    [13] Iver E. Anderson, Journal of Materials Science, Material Electronics, 18, (2007) 55-76.
    [14] 徐國材、張立德,”奈米複合材料”,五南書局,台北,2004。
    [15] 周森,”複合材料-奈米˙生物科技”,全威書局,台北,2004。
    [16] 吳人潔,”複合材料”,新文京開發,台北,2004。
    [17] Y. M. Shen, F. J. Qi, M. Xie and J. Li, Advanced Material Research, 291-294, (2011) 929-933.
    [18] A. Nadia and A. S. M. A. Haseeb, Soldering & Surface Mount Technology, (2011) 68-74.
    [19] Y. W. Shi, J. P. Liu, Y. F. Yan, Z. D. Xia, Y. P. Lei, F. Guo and X. Y. Li, Journal of Electronic Materials, 37, (2008) 507-514.
    [20] K. Bukat, M. Koscielski, J. Sitek, M. Jakubowska and A. Mlozniak, Soldering & Surface Mount Technology, 23, (2011) 150-160.
    [21] K. Bukat, M. Koscielski, J. Sitek, M. Jakubowska and A. Mlozniak, Electronics Technology (ISSE), 2011 34th International Spring Seminar on, (2011) 537-541.
    [22] A. K. Gain, Y. C. Chan, A. Sharif, N. B. Wong and W. K. C. Yung, Microelectronics Reliability, 49, (2009) 746-753.
    [23] S. K. Das and A. Sharif, Electronic Manufacturing Technology Symposium (IEMT) 33rd IEEE/CPMT International, (2008).
    [24] A. K. Gain, Y. C. Chan and W. K. C. Yung, Materials Science and Engineering B, 162, (2009) 92-98.
    [25] K. J. Ronka, F. J. J. Van Loo and J. K. Kivilati, Metallergical and Materials Transactions A, 29, (1998) 2951-2956.
    [26] M. M. Arafat, A. S. M. A. Haseeb and M. R. Johan, Soldering & Surface Mount Technology, 23, (2011) 140-149.
    [27] A. K. Gain, T. Fouzder, Y. C. Chan, A. Sharif, N. B. Wong and W. K. C. Tung, Journal of Alloys and Compounds, 506, (2010) 216-223.
    [28] S. Y. Chang, L. C. Tsao, M. W. Wu and C. W. Chen, Journal of Materials Science Electron, (2012) 100-107.
    [29] A. K. Gain, Y. C. Chan and W. K. C. Yung, Microelectronics Reliability, 51, (2011) 2306-2313.
    [30] A. K. Gain, Y. C. Chan and W. K. C. Yung, Microelectronics Reliability, 51, (2011) 975-984.
    [31] T. Fouzder, A. K. Gain, Y. C. Chan, A. Sharif and W. K. C. Yung, Microelectronics Reliability, 50, (2010) 2051-2058.
    [32] T. Fouzder, I. Shafiq, Y. C. Chan, A. Sharif and W. K. C. Yung, Journal of Alloys and Compounds, 509, (2011) 1885-1892.
    [33] L. Y. Hsiao, G. J. Chiou, J. G. Duh, and S. Y. Tsai, Electronic Packaging Technology, ICEPT’06, 7th International Conference, (2006).
    [34] S. M. L. Nai, J. Wei and M. Gupta, Electronic and Photonic Packaging, Electrical Systems Design and Photonics, and Nanotechnology, ASME International Mechanical Engineering Congress and Exposition (IMECE2005), (2005) 243-246.
    [35] S. Choi, J. P. Lucas, K. N. Subramian and T. R. Bieler, Journal of Materials ScienceL Matererials in Electronics, 11, (2000) 497-502.
    [36] W. Zhang, Y. Zhong and C. Q. Wang, Journal of Material Science, Technology, 28, (2012) 661-665.
    [37] A. Nadia and A. S. M. A. Haseeb, Journal of Materials Science: Materials in Electronics, 23, (2012) 86-93.
    [38] S. M. L. Nai, J. Wei and M. Gupta, ASME International Mechanical Engineering Congress and Exposition(IMECE), (2005) 243-246.
    [39] Q. Chen and G. Li, International Conference on Electronic Packaging Technology & High Density Packaging (ICEPT-HDP), (2010) 314-318.
    [40] K. M. Kumar, V. Kripesh and A. A. O. Tay, Electronic Components and Technology Conference, (2006) 237-213.
    [41] J. C. Berg, Marcel Dekker. Inc., New York, chapter 1, (1993).
    [42] R. J. Klein Wassink, Electrochemical Publications, Isle of Man, British Isles, England, (1989) 300-370.
    [43] X. Y. Liu, H. T. Ma, J. Zhao and L. Wang, High Density Microsystem Design and Packaging and Component Failure Analysis, (2005) 1-4.
    [44] M. Jakubowska, K. Bukat, M. Koscielski, A. Mlozniak, W. Niedzwiedz and M. Sloma, Electronic System-Integration Technology Conference (ESTC), (2010) 1-6.
    [45] C. E. Ho, L. H. Hsu, S. W. Lin and M. A. Rahman, Journal of Electronic Materials, 41, (2012) 2-10.
    [46] C. Yu, Y. Yang, P. L. Lin, J. M. Chen and H. Lu, Journal of Materials Science, Material Electronics, (2012) 56-60.
    [47] S. Y. Chang, L. C. Tsao, M. W. Wu and C. W. Chen, Journal of Materials Science, Material Electronics, 23, (2012) 100-107.
    [48] T. H. Chuang, M. W. Wu, S. Y. Chang, S. F. Ping and L. C. Tsao, Journal of Materials Science, Material Electronics, 22, (2011) 1021-1027.
    [49] L. Zhang, S. B. Xue, L. L. Gao, Z. Sheng, G. Zeng, Y. Chen and S. L. Yu, Journal of Materials Science, Material Electronics, 21, (2010) 635-642.
    [50] K. Habu, N. Takeda, H. Watanabe, H. Ooki, J. Abe, T. Saito, Y. Taniguchi and K. Takayama, Electronics and the Environment, IEEE, (1999) 21-24.

    QR CODE