簡易檢索 / 詳目顯示

研究生: 王芷鈺
Chih-Yu Wang
論文名稱: 半導體性鐵基金屬框架材料單晶之暗電導與光電導特性研究
Dark Conductivity and Photoconductivity in Semiconducting Iron-based Metal-Organic Framework Single Crystals
指導教授: 陳瑞山
Ruei-San Chen
口試委員: 李奎毅
Kuei-Yi Lee
呂光烈
Kuang-Lieh Lu
梁文傑
Man-kit Leung
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 87
中文關鍵詞: 金屬有機框架材料光電導量測暗電導量測半導體性活化能
外文關鍵詞: metal-organic framework, dark conductivity, photoconductivity, semiconducting behavior, activation energy
相關次數: 點閱:213下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 這論文主要研究一種化學式為[Fe(TPPB)Cl2].3DMF·5H2O(簡稱FeTCD)的鐵基金屬有機框架(MetalOrganic Framework,簡稱 MOF)材料單晶的電荷傳輸特性。FeTCD的微米晶體具有單斜晶系結構。為了製作元件,使用靜電膠帶機械剝離法將FeTCD單晶粉末分離成微米大小的晶體,然後使用雙束型聚焦離子束(Dual-Beam Focused Ion Beam)技術在微米晶體上沉積白金(Pt)電極,製備良好的微米晶體的歐姆接觸。暗電導量測顯示FeTCD微米晶體的電導率最高可達39 S/cm。根據變溫暗電導的量測,觀察到FeTCD晶體表現出半導體性的電荷傳導行為,而且具有非常低的活化能,最低僅為2.6 meV,表示當電荷進行跳躍傳輸時幾乎不需要額外的熱能輔助,證明FeTCD微米晶體具有極佳的電荷傳輸通道和有序的晶格結構,為電荷提供了一個相對無阻礙的環境進行傳輸。熱探針量測顯示此MOF晶體為p型半導體,其結果也與理論計算之結果相符。
    另一部分,從光電導(photoconductivity)量測結果發現此MOF微米晶體具有明顯的光電流反應,隨著雷射強度增加,光電流呈線性的上升趨勢。於不同波長從可見光至紅外光的雷射照射下,FeTCD都表現出不錯的響應度(responsivity),其中以紫光(波長 405 nm)具有最佳的光反應,其反應率可達 155 A/W。藉由時間解析光電導量測發現FeTCD晶體良好的光電導效率乃是源自於長載子活期 (carrier lifetime),其活期可長達5秒。透過環境變化光電流量測,可進一步證明此MOF晶體遵循表面主導的光電導機制。


    This thesis investigates the electronic transport properties in the microcrystals of [Fe(TPPB)Cl2].3DMF·5H2O (referred as FeTCD) metal-organic framework (MOF) microcrystals with monoclinic structure. The fabrication of ohmic contacts for the microcrystals was achieved using the dual-beam focused-ion beam method. The I-V measurements demonstrated that the FeTCD crystals exhibit high conductivity reaching 39 S/cm. The exceptional conductivity can be attributed to the presence of multiple charge transport channels within the highly conductive FeTCD crystals. The characterization through hot probe measurements revealed the p-type semiconducting behavior in the crystals. The temperature-dependent conductivity measurements indicated extremely low activation energies for charge transport at the range of 2.63.3meV. The high conductivity and low activation energy suggest the presence of charge transport channels and highly ordered lattice structure in these MOF microcrystals.
    Furthermore, the MOF crystals exhibit substantial photocurrent response. The photocurrent increases linearly with increase of light intensity. Photocurrent responses were measured at a broad wavelength range spanning from ultraviolet, visible to infrared (3751550 nm). The crystals exhibit the highest photoresponse at 405 nm (violet light). The optimal photoconductive gain reaching 475 was obtained. The ultralong carrier lifetime at the time scale of seconds was observed, which is probably the major cause of the efficient photocurrent generation. Additionally, the ambience-dependent photoresponse indicate that the photoconduction mechanism in this FeTCD crystals is primarily governed by the surface rather than the inner bulk.

    中文摘要 1 Abstract2 致謝 3 目錄 4 圖目錄 6 表目錄 9 第一章 緒論 10 第二章 材料介紹 13 第三章 實驗方法 16 3.1 FeTCD之形貌與結構特性檢測 16 3.1.1 掃描式電子顯微鏡 (scanning electron microscope, SEM) 16 3.1.2 雙束型聚焦式離子束系統(dual-beam focused-ion beam, FIB) 18 3.1.3原子力顯微鏡 (atomic force microscope, AFM) 21 3.1.4 粉末X光繞射儀 (Powder X-ray diffractometer, PXRD) 23 3.1.5 傅立葉轉換紅外光譜儀(Fourier-transform infrared spectroscope, FTIR) 26 3.2 金屬有機框架化合物元件製作 28 3.2.1 元件基板製作 28 3.2.2 FeTCD 微米晶體分離 29 3.2.3 微米晶體電極製作 32 3.3 微米材料之暗電導特性研究 35 3.3.1 電流對電壓曲線量測 (current-voltage measurement) 35 3.3.2 熱探針量測 (hot probe measurement) 36 3.3.3 溫度變化之電性量測(temperature-dependent measurement) 38 3.4 微米材料之光電導特性研究 40 3.4.1 功率相依之光電導量測(power-dependent photocurrent measurement) 40 3.4.2 環境變化之光電導量測 (ambience-dependent photocurrent measurement) 40 第四章 結果與討論 42 4.1 [Fe(TPPB)4Cl2.DMF]晶體之形貌與結構特性分析 42 4.1.1 FeTCD晶體之表面形貌 42 4.1.2 FeTCD晶體結構 45 4.2 [Fe(TPPB)4Cl2.DMF] MOF元件尺寸量測 47 4.2.1 FeTCD晶體長寬之SEM量測 47 4.2.2 FeTCD晶體之AFM厚度量測 48 4.3 FeTCD 暗電導分析 51 4.3.1 FeTCD電導率計算 51 4.3.2 FeTCD熱探針量測 56 4.3.3 FeTCD 溫度變化之暗電導量測 59 4.4 [Fe(TPPB)Cl2].3DMF·5H2O單晶光電導特性 64 4.4.1 FeTCD功率相依光電導 64 4.4.2 FeTCD不同雷射波長之光電導反應 68 4.4.3 FeTCD 光電導效率 69 4.4.4 FeTCD 環境變化光電導量測 75 第五章 結論 78 參考資料 79

    [1] M. Yaghi, H. Li, “Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels”, American Chemical Society, 117, 10401-10402 (1995).
    [2] Q. Yang, Q. Xu, H. L. Jiang, “Metal–Organic Frameworks Meet Metal Nanoparticles: Synergistic Effect For Enhanced Catalysis”, Chem. Soc. Rev., 46, 4774-4808 (2017).
    [3] P. Horcajada, R. Gref, T. Baati, P. K. Allan, G. Maurin, P. Couvreur, G. Férey, R. E. Morris, C. Serre, “Metal–Organic Frameworks In Biomedicine”, Chem. Soc. Rev., 112, 1232-1268 (2012).
    [4] L. J. Small, R. C. Hill, J. L. Krumhansl, M. E. Schindelholz, Z. Chen, K. W. Chapman, X. Zhang, S. Yang, M. Schröder, T. M. Nenoff, “Reversible MOF-Based Sensors For The Electrical Detection Of Iodine Gas”, Applied Materials & Interfaces, 11, 27982-27988 (2019).
    [5] J. Zhou, B. Wang, “Emerging Crystalline Porous Materials As A Multifunctional Platform For Electrochemical Energy Storage”, Chem. Soc. Rev., 46, 6927-6945 (2017).
    [6] S. Kitagawa, R. Matsuda, “Chemistry Of Coordination Space Of Porous Coordination Polymers”, Coord. Chem. Rev., 251, 2490-2509 (2007).
    [7] S. Horike, S. Shimomura, “Soft porous crystals”, Nature Chemistry, 1 ,695-704 (2009).
    [8] J. Zhou, B. Wang, “Emerging crystalline porous materials as a multifunctional platform for electrochemical energy storage”, Chem. Soc. Rev., 46, 6927-6945 (2017).
    [9] S. Kitagawa, R. Matsuda, “Chemistry of coordination space of porous coordination polymers”, Coord. Chem. Rev., 251, 2490-2509 (2007).
    [10] L. S. Xie, G. Skorupskii, M. Dincă, “Electrically Conductive Metal–Organic Frameworks”, Chem. Rev., 120, 8536-8580 (2020).
    [11] V. Rubio-Giménez, S. Tatay, C. Martí-Gastaldo, “Electrical conductivity and magnetic bistability in metal–organic frameworks and coordination polymers: charge transport and spin crossover at the nanoscale”, Chem. Soc. Rev., 49, 5601-5638 (2021).
    [12] C. Kang, M. Iqbal, S. Zhang, “Cu3(HHTP)2 c-MOF/ZnO Ultrafast Ultraviolet Photodetector for Wearable Optoelectronics”, Chem. Eur. Jour.,
    [13] P. E. J. Flewitt and R. K. Wild, “Physical methods for materials characterization” , IOP Publishing, Bristol, (1994).
    [14] A. A. Tseng, K. Chen, C. D. Chen, and K. J. Ma, “Electron Beam Lithography in Nanoscale Fabrication: Recent Development”, IEEE Trans. Electron. Packag. Manuf, 26, 141-149 (2003).
    [15] A. A. Tseng, “Recent developments in micromilling using focused ion beam technology”, J. Micromech. Microeng, 14, R15-R34 (2004).
    [16] A. A. Tseng, “Recent Developments in Nanofabrication using Focused Ion Beams”, Small, 1, 924–939 (2005).
    [17] J. P. Cleveland; B. Anczykowski; A. E. Schmid; V. B.“Elings, Energy dissipation in tapping-mode atomic force microscopy”, Appl. Phys. Lett. 72, 2613–2615 (1998)
    [18] P. Carra, B. T. Thole, M. Altarelli, X. Wang, “X-ray Circular Dichroism And Local Magnetic Fields”, Physical Review Letters, 70, 694 (1993).
    [19] B. D. Cullity, S. R. Stock, “Elements Of X-ray Diffraction”, Prentice Hall (2001).
    [20] A. Beiser, “Concepts Of Modern Physics”, McGraw-Hill Education (India) Pvt Limited (2003).
    [21] Y. M. Chang, H. Kim, J. H. Lee, Y. W. Song, “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers”, Appl. Phys. Lett, 91970, 211102 (2010).
    [22] C. Y. Nam, D. Tham, J. E. Fischer, “Disorder Effects In Focused-Ion-Beam-Deposited Pt Contacts On GaN Nanowires”, Nano Lett, 5, 2029-2033 (2005).
    [23] 朱煜文, “二硫化鎢層狀半導體之電子結構與電傳輸特性”, 國立臺灣科技大學應用科技研究所碩士學位論文 (2019).
    [24] G. Golan, A. Axelevitch, B. Gorenstein, V. Manevych, “Hot-Probe method for evaluation of impurities concentration in semiconductors”, Micro. Jour., 37, 910-915 (2006).
    [25] 林琪家, “疏水性兼半導體性鎳基金屬有機框架材料微米晶體之電性研究”, 國立臺灣科技大學應用科技研究所碩士學位論文 (2021).
    [26] A. J. Clough, J. M. Skelton, C. A. Downes, A. A. de la Rosa, J. W. Yoo, A. Walsh, B. C. Melot, S. C. Marinescu, “Metallic conductivity in a two-dimensional cobalt dithiolene metal–organic framework”, J. Am. Chem. SOC., 139, 10863-10867 (2017).
    [27] R. Dong, P. Han, H. Arora, M. Ballabio, M. Karakus, Z. Zhang, C. Shekhar, P. Adler, P. St. Petkov, A. Erbe, S. C. B. Mannsfeld, C. Felser, T. Heine, M. Bonn, X. Feng, E. Cánovas, “High-mobility band-like charge transport in a semiconducting two-dimensional metal–organic framework”, Nature Materials, 17, 1027-1032 (2018).
    [28] Y. Song, M. Xu, X. Liu, Z. Li, C. Wang, Q. Jia, Z. Zhang, M. Du, “A label-free enrofloxacin electrochemical aptasensor constructed by a semiconducting CoNi-based metal–organic framework (MOF)”, Electrochimica Acta, 368, 137609 (2021).
    [29] P. Bhattacharya, “Semiconductor optoelectronic devices”, Prentice Hall, 8, 346-351 (1997).
    [30] M. Razeghi, A. Rogalski, “Semiconductor ultraviolet detectors”, J. Appl. Phys, 79, 7433-7473 (1996).
    [31] R. S. Chen, H. Y. Chen, C. Y. Lu, K. H. Chen, C. P. Chen, L. C. Chen, Y. J. Yang, “Ultahigh photocurrent gain in m-axial GaN nanowires”, Appl. Phys. Lett., 91, 223106 (2007).
    [32] R. S. Chen, W. C. Wang, C. H. Chan, H. P. Hsu, L. C. Tien, Y. J. Chen, “Photoconductivities in monocrystalline layered V2O5 nanowires grown by physical vapor deposition”, Nanoscale Res. Lett, 8, 443 (2013).
    [33] C. Fabrega, F. Hernandez-Ramirez, J. D. Prades, R. Jimenez-Diaz, T. Andreu, J. R. Morante, “On the photoconduction properties of low 93 resistivity TiO2 nanotubes”, Nanotechnology, 21, 445703 (2010).
    [34] R. S. Chen, T. H. Yang, H. Y. Chen, L. C. Chen, K. H. Chen, Y. J. Yang, C. H. Su, C. R. Lin, “Photoconduction mechanism of oxygen sensitization in InN nanowires”, Nanotechnology, 22, 425702 (2011).
    [35] H. M. Huang, R. S. Chen, H. Y. Chen, T. W. Liu, C. C. Kuo, C. P. Chen, H. C. Hsu, L. C. Chen, K. H. Chen, Y. J. Yang, “Photoconductivity in single AlN nanowires by subband gap excitation”, Appl. Phys. Lett., 96, 062104 (2010).
    [36] 許光勳, “銅基金屬有機框架材料微米晶體之電傳輸性質”, 國立臺灣科技大學應用科技研究所碩士學位論文 (2020).
    [37] J. Liu, Y. Chen, X. Feng, R. Dong, “ Conductive 2D Conjugated Metal–Organic Framework Thin Films: Synthesis and Functions for (Opto-)electronics”,Small Structures,35,2100210 (2022).
    [38] L. Giri , S. R. Rout , R. S. Varma, “Recent advancements in metal–organic frameworks integrating quantum dots (QDs@MOF) and their potential applications”, Nanotechnology Reviews,11,(2022)

    無法下載圖示 全文公開日期 2025/08/07 (校內網路)
    全文公開日期 2025/08/07 (校外網路)
    全文公開日期 2025/08/07 (國家圖書館:臺灣博碩士論文系統)
    QR CODE