簡易檢索 / 詳目顯示

研究生: 吳承浩
Cheng-Hao Wu
論文名稱: 高效能有機金屬架構修飾碲奈米線結構之觸媒應用於鹼性陰離子交換膜燃料電池
High-performance MOF-derived Catalyst via the Decoration of Tellurium Nanowire for Alkaline Anion Exchange Membrane Fuel Cell
指導教授: 王丞浩
Chen-Hao Wang
口試委員: 王丞浩
Chen-Hao Wang
張仍奎
Jeng-Kuei Chang
郭俞麟
Yu-Lin Kuo
王冠文
Kuan-Wen Wang
陳燦耀
Tsan-Yao Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 100
中文關鍵詞: 氧氣還原反應燃料電池非貴金屬觸媒有機金屬架構奈米線碲
外文關鍵詞: Metal Organic Framework, Tellurium Nanowire
相關次數: 點閱:255下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氫能是目前極具發展性的能源,由於其應用廣泛,反應後的生成物較乾淨、低汙染且具再生性,是全球最受矚目的替代能源之一。鹼性陰離子交換膜燃料電池為其中一種應用,以非常高效率的方式將化學能轉化成電能以供使用。但由於其所使用的白金觸媒昂貴,造成無法普及化之問題,希望發展低價格並具高效能的非白金觸媒以降低貴金屬的用量,成為近年來研究之趨勢。
    本研究合成奈米線狀的碲作為模板,接著讓奈米級的鈷金屬有機骨架(ZIF-67)沿著模板成長,在750 oC的熱處理後,觸媒具有最佳的氧氣還原活性且其電子轉移數可達3.99,已非常接近理想之電子轉移數。根據X光光電子能譜(XPS)之氮原子能譜結果顯示,此觸媒除了具有一定比例的Pyridinic-N及Graphitic-N外,Co-N化學鍵是此觸媒中提供活性點的關鍵,再經由X光吸收光譜(XAS)及延伸X光吸收細微結構(EXAFS)分析的結果,可確定鈷的化學鍵結種類及配位數,而利用高解析穿透式電子顯微鏡(HRTEM)影像得知,熱處理後仍維持線狀形貌,類似豌豆狀的觸媒結構中,內部含硫族化合物CoTe的鍵結,可對電化學活性有一定的貢獻,而外部的導電石墨層則可增加導電度。此外,觸媒以線性掃描伏安法(LSV)進行30000圈穩定性測試,觸媒之半波電位僅衰退16.0 mV,藉由特殊形貌維持觸媒的電化學表現。最後將最佳合成條件之觸媒應用於鹼性環境之全電池測試,其表現優異,與白金碳觸媒(Pt/C)相當,在非貴金屬觸媒中具有相當的競爭力。
    此研究之新型材料有效保留其特殊形貌,且具有高效率催化活性,在未來應用在許多電化學反應和系統中,此一觸媒具有實際應用價值。


    Hydrogen energy is a promising solution to develop sustainable and alternative energy throughout the world. The anion exchange membrane fuel cell (AEMFC) is one of the applications which is an electrochemical power source that transforms chemical energy into electricity efficiently. To decrease the usage of precious metal catalysts, the development of non-precious metal catalysts is the trend in recent years.
    In this work, the Tellurium nanowire structure had been the template for the growth of nanoscale ZIF-67, due to its metallic feature can lead to better conductivity in electrochemical processes. After Nucleation, Nano-Z67/NwTe was the best catalyst treated at the optimized temperature, 750 oC. The XPS analysis showed the higher percentage of Co-N bonding, and the XAS fitting results confirmed the existence of Co-N and the formation of CoTe. Nano-Z67/NwTe-750 showed less decreasing of half-wave potential, and competitive performance of power density to Pt/C.

    中文摘要 I ABSTRACT III 誌謝 IV 目錄 VI 圖目錄 X 表目錄 XV 第一章 緒論 1 1.1 化石燃料與氫能源的應用 1 1.2 燃料電池簡介 3 1.2.1 燃料電池的種類 5 1.2.2 鹼性陰離子交換膜燃料電池(AAEMFC)介紹 7 1.2.3 燃料電池內部構造 8 1.2.4 燃料電池極化現象 11 第二章 電化學原理與文獻探討 14 2.1 電化學原理 14 2.1.1 氧化還原反應 14 2.1.2 氧氣還原途徑 14 2.1.3 氧氣還原反應機制 16 2.1.4 氧氣還原反應之電化學催化 17 2.2 文獻回顧 19 2.2.1 應用於燃料電池陰極端之非貴金屬觸媒 19 2.2.2 沸石咪唑骨架結構(ZIF)之非貴金屬觸媒 21 2.2.3 利用碲模板結合有機金屬架構之觸媒 28 2.2.4 研究動機 32 第三章 實驗步驟與方法 34 3.1 實驗規劃 34 3.2 實驗材料及藥品 35 3.3 實驗流程 36 3.4 實驗儀器與設備 37 3.5 實驗步驟 38 3.5.1 陰極觸媒製備 38 3.5.2 觸媒工作電極製備 39 3.6儀器分析原理 40 3.6.1 X光繞射分析儀(X-ray diffraction Spectrometer, XRD) 40 3.6.2 場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope,FSEM) 42 3.6.3 X光吸收光譜(X-ray Absorption Spectroscopy, XAS) 43 3.6.4 X射線光電子能譜(X-ray Photoelectron Spectroscopy, XPS) 49 3.6.5 穿透式電子顯微鏡(Transmission Electron Microscope) 51 3.6.6 電化學分析儀 53 3.6.7 燃料電池性能測試機台 56 第四章 結果與討論 57 4.1 奈米線狀碲模板之合成 57 4.1.1 奈米線狀碲之X光繞射圖譜及穿透式顯微鏡影像 58 4.2 成長於奈米線狀碲模板之奈米級ZIF-67粒子 60 4.3 NANO-Z67/NWTE-X之觸媒材料 61 4.3.1 Nano-Z67/NwTe-X之氧氣還原反應活性比較 62 4.3.2 Nano-Z67/NwTe-X之X光繞射分析 64 4.3.3 Nano-Z67/NwTe-750之形貌分析 66 4.3.4 Nano-Z67/NwTe-X之X光光電子能譜分析 68 4.3.5 Nano-Z67/NwTe-X之X光吸收光譜分析 70 4.4 有無模板成長之觸媒材料比較 76 4.4.1 Nano-Z67-750及Nano-Z67/NwTe-750之氧氣還原反應活性比較 76 4.4.2 Nano-Z67-750及Nano-Z67/NwTe-750之X光繞射分析結果 79 4.4.3 Nano-Z67-750及Nano-Z67/NwTe-750之形貌比較 81 4.4.4 Nano-Z67-750及Nano-Z67/NwTe-750之X光電子能譜分析 82 4.4.5 Nano-Z67-750及Nano-Z67/NwTe-750之X光吸收光譜 85 4.5 Nano-Z67/NwTe-750觸媒之穩定性測試 89 4.6 Nano-Z67/NwTe-750觸媒之單電池測試 91 第五章 結論 94 參考文獻 95

    [1] ENERGYTREND.com.tw.
    [2] 衣寶廉編著, 黃朝榮、林修正修訂, 燃料電池-原理與應用. 五南圖書出版股份有限公司, (2005).
    [3] T.U.D.o.E.D.F.C.T.O. (FCTO).
    [4] L. Carrette, K.A. Friedrich, U. Stimming, Fuel Cells – Fundamentals and Applications. Fuel Cells, 1 (2001) 5-39.
    [5] K. Kinoshita, Electrochemical Oxygen Technology. New York: Jhon Wiley & Sons, (1992) 37.
    [6] L. Geniès, R. Faure, R. Durand, Electrochemical reduction of oxygen on platinum nanoparticles in alkaline media. Electrochimica Acta, 44 (1998) 1317-1327.
    [7] J.P. Hoare, The Electrochemistry of Oxygen. New York: John Wiley & Sons, (1968) 26-91.
    [8] N.M. Marković, P.N. Ross Jr, Surface science studies of model fuel cell electrocatalysts. Surface Science Reports, 45 (2002) 117-229.
    [9] B.E. Conway, Comprehensive Treatise of Electrochemistry. New York: Kluwer Acadwmic Pub, (1983) 26-91.
    [10] N. Ramaswamy, S. Mukerjee, Fundamental Mechanistic Understanding of Electrocatalysis of Oxygen Reduction on Pt and Non-Pt Surfaces: Acid versus Alkaline Media. Advances in Physical Chemistry, 2012 (2012) 17.
    [11] A. Pavlisic, P. Jovanovic, V.S. Selih, M. Sala, N. Hodnik, M. Gaberscek, Platinum Dissolution and Redeposition from Pt/C Fuel Cell Electrocatalyst at Potential Cycling. J Electrochem Soc, 165 (2018) F3161-F3165.
    [12] H. Yang, W. Vogel, C. Lamy, N. Alonso-Vante, Structure and Electrocatalytic Activity of Carbon-Supported Pt−Ni Alloy Nanoparticles Toward the Oxygen Reduction Reaction. The Journal of Physical Chemistry B, 108 (2004) 11024-11034.
    [13] A. Sarkar, A. Vadivel Murugan, A. Manthiram, Rapid Microwave-Assisted Solvothermal Synthesis of Methanol Tolerant Pt–Pd–Co Nanoalloy Electrocatalysts. Fuel Cells, 10 (2010) 375-383.
    [14] B.J. Hwang, S.M.S. Kumar, C.-H. Chen, Monalisa, M.-Y. Cheng, D.-G. Liu, J.-F. Lee, An Investigation of Structure−Catalytic Activity Relationship for Pt−Co/C Bimetallic Nanoparticles toward the Oxygen Reduction Reaction. The Journal of Physical Chemistry C, 111 (2007) 15267-15276.
    [15] U.A. Paulus, A. Wokaun, G.G. Scherer, T.J. Schmidt, V. Stamenkovic, V. Radmilovic, N.M. Markovic, P.N. Ross, Oxygen Reduction on Carbon-Supported Pt−Ni and Pt−Co Alloy Catalysts. The Journal of Physical Chemistry B, 106 (2002) 4181-4191.
    [16] H. Yang, N. Alonso-Vante, J.-M. Léger, C. Lamy, Tailoring, Structure, and Activity of Carbon-Supported Nanosized Pt−Cr Alloy Electrocatalysts for Oxygen Reduction in Pure and Methanol-Containing Electrolytes. The Journal of Physical Chemistry B, 108 (2004) 1938-1947.
    [17] Z. Chen, D. Higgins, A. Yu, L. Zhang, J. Zhang, A review on non-precious metal electrocatalysts for PEM fuel cells. Energy and Environmental Science, 4 (2011) 3167-3192.
    [18] R. Jasinski, A New Fuel Cell Cathode Catalyst. Nature, 201 (1964) 1212.
    [19] M. Lefe`vre, E. Proietti, F. Jaouen, J.-P. Dodelet, Iron-Based Catalysts with Improved Oxygen Reduction Activity in Polymer Electrolyte Fuel Cells. Science, 324 (2009) 71-74.
    [20] S.-T. Chang, C.-H. Wang, H.-Y. Du, H.-C. Hsu, C.-M. Kang, C.-C. Chen, J.C.S. Wu, S.-C. Yen, W.-F. Huang, L.-C. Chen, M.C. Lin, K.-H. Chen, Vitalizing fuel cells with vitamins: pyrolyzed vitamin B12 as a non-precious catalyst for enhanced oxygen reduction reaction of polymer electrolyte fuel cells. Energy Environ. Sci., 5 (2012) 5305-5314.
    [21] W. Xia, J. Zhu, W. Guo, L. An, D. Xia, R. Zou, Well-defined carbon polyhedrons prepared from nano metal–organic frameworks for oxygen reduction. Journal of Materials Chemistry A, 2 (2014) 11606-11613.
    [22] X. Wang, J. Zhou, H. Fu, W. Li, X. Fan, G. Xin, J. Zheng, X. Li, MOF derived catalysts for electrochemical oxygen reduction. Journal of Materials Chemistry A, 2 (2014) 14064-14070.
    [23] T. Palaniselvam, B.P. Biswal, R. Banerjee, S. Kurungot, Zeolitic Imidazolate Framework (ZIF)-Derived, Hollow-Core, Nitrogen-Doped Carbon Nanostructures for Oxygen-Reduction Reactions in PEFCs. Chemistry - A European Journal, 19 (2013) 9335-9342.
    [24] J.-S. Li, S.-L. Li, Y.-J. Tang, K. Li, L. Zhou, N. Kong, Y.-Q. Lan, J.-C. Bao, Z.-H. Dai, Heteroatoms ternary-doped porous carbons derived from MOFs as metal-free electrocatalysts for oxygen reduction reaction. Scientific Reports, 4 (2014).
    [25] B. Chen, G. Ma, Y. Zhu, Y. Xia, Metal-organic-frameworks derived cobalt embedded in various carbon structures as bifunctional electrocatalysts for oxygen reduction and evolution reactions. Scientific Reports, 7 (2017) 5266.
    [26] D. Yu, Q. Zhang, L. Dai, Highly Efficient Metal-Free Growth of Nitrogen-Doped Single-Walled Carbon Nanotubes on Plasma-Etched Substrates for Oxygen Reduction. Journal of the American Chemical Society 132 (2010) 15127–15129.
    [27] D.H. Lee, W.J. Lee, W.J. Lee, S.O. Kim, Y.H. Kim, Theory, synthesis, and oxygen reduction catalysis of Fe-porphyrin-like carbon nanotube. Phys Rev Lett, 106 (2011) 175502.
    [28] T. Ikeda, M. Boero, S.-F. Huang, K. Terakura, M. Oshim, J.-i. Ozaki, Carbon Alloy Catalysts Active Sites for Oxygen Reduction Reaction. The Journal of Physical Chemistry C, 112 (2008) 14706–14709.
    [29] S.-F. Huang, K. Terakura, T. Ozaki, T. Ikeda, M. Boero, M. Oshima, J.-i. Ozaki, S. Miyata, First-principles calculation of the electronic properties of graphene clusters doped with nitrogen and boron: Analysis of catalytic activity for the oxygen reduction reaction. Physical Review B, 80 (2009).
    [30] S.v. Dommele, K.P.d. Jong, J.H. Bitter, Nitrogen-containing carbon nanotubes as solid base catalysts. Chemical Communications, (2006) 4859.
    [31] K. Ghosh, M. Kumar, T. Maruyama, Y. Ando, Tailoring the field emission property of nitrogen-doped carbon nanotubes by controlling the graphitic/pyridinic substitution. Carbon, 48 (2010) 191-200.
    [32] H. Niwa, K. Horiba, Y. Harada, M. Oshima, T. Ikeda, K. Terakura, J.-i. Ozaki, S. Miyata, X-ray absorption analysis of nitrogen contribution to oxygen reduction reaction in carbon alloy cathode catalysts for polymer electrolyte fuel cells. Journal of Power Sources, 187 (2009) 93-97.
    [33] M. Vikkisk, I. Kruusenberg, S. Ratso, U. Joost, E. Shulga, I. Kink, P. Rauwel, K. Tammeveski, Enhanced electrocatalytic activity of nitrogen-doped multi-walled carbon nanotubes towards the oxygen reduction reaction in alkaline media. RSC Adv., 5 (2015) 59495-59505.
    [34] N.P. Subramanian, X. Li, V. Nallathambi, S.P. Kumaraguru, H. Colon-Mercado, G. Wu, J.-W. Lee, B.N. Popov, Nitrogen-modified carbon-based catalysts for oxygen reduction reaction in polymer electrolyte membrane fuel cells. Journal of Power Sources, 188 (2009) 38-44.
    [35] Z. Lin, G. Waller, Y. Liu, M. Liu, C.-P. Wong, Facile Synthesis of Nitrogen-Doped Graphene via Pyrolysis of Graphene Oxide and Urea, and its Electrocatalytic Activity toward the Oxygen-Reduction Reaction. Advanced Energy Materials, 2 (2012) 884-888.
    [36] P. Wang, Z. Wang, L. Jia, Z. Xiao, Origin of the catalytic activity of graphite nitride for the electrochemical reduction of oxygen: geometric factors vs. electronic factors. Phys Chem Chem Phys, 11 (2009) 2730-2740.
    [37] L. Zhang, Z. Su, F. Jiang, L. Yang, J. Qian, Y. Zhou, W. Li, M. Hong, Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions. Nanoscale, 6 (2014) 6590-6602.
    [38] P. Yin, T. Yao, Y. Wu, L. Zheng, Y. Lin, W. Liu, H. Ju, J. Zhu, X. Hong, Z. Deng, G. Zhou, S. Wei, Y. Li, Single Cobalt Atoms with Precise N-Coordination as Superior Oxygen Reduction Reaction Catalysts. Angewandte Chemie International Edition, 55 (2016) 10800-10805.
    [39] W. Zhang, Z.-Y. Wu, H.-L. Jiang, S.-H. Yu, Nanowire-Directed Templating Synthesis of Metal–Organic Framework Nanofibers and Their Derived Porous Doped Carbon Nanofibers for Enhanced Electrocatalysis. Journal of the American Chemical Society, 136 (2014) 14385-14388.
    [40] H. Zhu, H. Zhang, J. Liang, G. Rao, J. Li, G. Liu, Z. Du, H. Fan, J. Luo, Controlled Synthesis of Tellurium Nanostructures from Nanotubes to Nanorods and Nanowires and Their Template Applications. The Journal of Physical Chemistry C, 115 (2011) 6375-6380.
    [41] Q. Gao, C.-Q. Huang, Y.-M. Ju, M.-R. Gao, J.-W. Liu, D. An, C.-H. Cui, Y.-R. Zheng, W.-X. Li, S.-H. Yu, Phase-Selective Syntheses of Cobalt Telluride Nanofleeces for Efficient Oxygen Evolution Catalysts. Angewandte Chemie International Edition, 56 (2017) 7769-7773.
    [42] S.H. Ahn, M.J. Klein, A. Manthiram, 1D Co- and N-Doped Hierarchically Porous Carbon Nanotubes Derived from Bimetallic Metal Organic Framework for Efficient Oxygen and Tri-iodide Reduction Reactions. Advanced Energy Materials, 7 (2017) 1601979.
    [43] ( 國家同步輻射中心 ) http://www.nsrrc.gov.tw/chinese/lightsource.aspx.
    [44] A.M. Phahle, Electrical properties of thermally evaporated tellurium films. Thin Solid Films, 41 (1977) 235-241.
    [45] H. Fan, Y. Zhang, M. Zhang, X. Wang, Y. Qian, Glucose-Assisted Synthesis of CoTe Nanotubes in Situ Templated by Te Nanorods. Crystal Growth & Design, 8 (2008) 2838-2841.
    [46] L. Ge, Y. Yang, L. Wang, W. Zhou, R. De Marco, Z. Chen, J. Zou, Z. Zhu, High activity electrocatalysts from metal–organic framework-carbon nanotube templates for the oxygen reduction reaction. Carbon, 82 (2015) 417-424.
    [47] H. Wang, F.-X. Yin, B.-H. Chen, X.-B. He, P.-L. Lv, C.-Y. Ye, D.-J. Liu, ZIF-67 incorporated with carbon derived from pomelo peels: A highly efficient bifunctional catalyst for oxygen reduction/evolution reactions. Applied Catalysis B: Environmental, 205 (2017) 55-67.
    [48] L. Lai, J.R. Potts, D. Zhan, L. Wang, C.K. Poh, C. Tang, H. Gong, Z. Shen, J. Lin, R.S. Ruoff, Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy & Environmental Science, 5 (2012) 7936-7942.
    [49] Z. Li, M. Shao, L. Zhou, R. Zhang, C. Zhang, M. Wei, D.G. Evans, X. Duan, Directed Growth of Metal-Organic Frameworks and Their Derived Carbon-Based Network for Efficient Electrocatalytic Oxygen Reduction. Advanced Materials, 28 (2016) 2337-2344.
    [50] Y. Zhang, P. Li, X. Yin, Y. Yan, K. Zhan, J. Yang, B. Zhao, Cobalt sulfide supported on nitrogen and sulfur dual-doped reduced graphene oxide for highly active oxygen reduction reaction. RSC Advances, 7 (2017) 50246-50253.
    [51] K. Strickland, E. Miner, Q. Jia, U. Tylus, N. Ramaswamy, W. Liang, M.-T. Sougrati, F. Jaouen, S. Mukerjee, Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal–nitrogen coordination. Nature Communications, 6 (2015) 7343.
    [52] D. Deng, L. Yu, X. Chen, G. Wang, L. Jin, X. Pan, J. Deng, G. Sun, X. Bao, Iron Encapsulated within Pod-like Carbon Nanotubes for Oxygen Reduction Reaction. Angewandte Chemie International Edition, 52 (2013) 371-375.
    [53] F. Hillman, J.M. Zimmerman, S.-M. Paek, M.R.A. Hamid, W.T. Lim, H.-K. Jeong, Rapid microwave-assisted synthesis of hybrid zeolitic–imidazolate frameworks with mixed metals and mixed linkers. Journal of Materials Chemistry A, 5 (2017) 6090-6099.
    [54] X. Ma, X. Zhao, J. Huang, L. Sun, Q. Li, X. Yang, Fine Co Nanoparticles Encapsulated in a N-Doped Porous Carbon Matrix with Superficial N-Doped Porous Carbon Nanofibers for Efficient Oxygen Reduction. ACS Applied Materials & Interfaces, 9 (2017) 21747-21755.
    [55] T.-H. Lu, C.-J. Chen, Y.-R. Lu, C.-L. Dong, R.-S. Liu, Synergistic-Effect-Controlled CoTe2/Carbon Nanotube Hybrid Material for Efficient Water Oxidation. The Journal of Physical Chemistry C, 120 (2016) 28093-28099.
    [56] SIGMA-ALDRICH.
    [57] T.M. Project.
    [58] G. Saracco, S. Vankova, C. Pagliano, B. Bonelli, E. Garrone, Outer Co(ii) ions in Co-ZIF-67 reversibly adsorb oxygen from both gas phase and liquid water. Physical Chemistry Chemical Physics, 16 (2014) 6139-6145.
    [59] A. Morozan, P. Jégou, B. Jousselme, S. Palacin, Electrochemical performance of annealed cobalt–benzotriazole/CNTs catalysts towards the oxygen reduction reaction. Physical Chemistry Chemical Physics, 13 (2011) 21600-21607.
    [60] B. Pattengale, S. Yang, J. Ludwig, Z. Huang, X. Zhang, J. Huang, Exceptionally Long-Lived Charge Separated State in Zeolitic Imidazolate Framework: Implication for Photocatalytic Applications. Journal of the American Chemical Society, 138 (2016) 8072-8075.
    [61] J. Qi, N. Benipal, D.J. Chadderdon, J. Huo, Y. Jiang, Y. Qiu, X. Han, Y.H. Hu, B.H. Shanks, W. Li, Carbon nanotubes as catalysts for direct carbohydrazide fuel cells. Carbon, 89 (2015) 142-147.
    [62] J. Sanetuntikul, C. Chuaicham, Y.-W. Choi, S. Shanmugam, Investigation of hollow nitrogen-doped carbon spheres as non-precious Fe–N4based oxygen reduction catalysts. J. Mater. Chem. A, 3 (2015) 15473-15481.
    [63] D. Yang, H. Yu, G. Li, Y. Zhao, Y. Liu, C. Zhang, W. Song, Z. Shao, Fine microstructure of high performance electrode in alkaline anion exchange membrane fuel cells. Journal of Power Sources, 267 (2014) 39-47.
    [64] L. Zeng, T.S. Zhao, L. An, A high-performance supportless silver nanowire catalyst for anion exchange membrane fuel cells. J. Mater. Chem. A, 3 (2015) 1410-1416.
    [65] S.M. Unni, S. Ramadas, R. Illathvalappil, S.N. Bhange, S. Kurungot, Surface-modified single wall carbon nanohorn as an effective electrocatalyst for platinum-free fuel cell cathodes. Journal of Materials Chemistry A, 3 (2015) 4361-4367.
    [66] V.M. Dhavale, S.K. Singh, A. Nadeema, S.S. Gaikwad, S. Kurungot, Nanocrystalline Fe-Fe2O3 particle-deposited N-doped graphene as an activity-modulated Pt-free electrocatalyst for oxygen reduction reaction. Nanoscale, 7 (2015) 20117-20125.
    [67] J.W.D. Ng, Y. Gorlin, D. Nordlund, T.F. Jaramillo, Nanostructured Manganese Oxide Supported onto Particulate Glassy Carbon as an Active and Stable Oxygen Reduction Catalyst in Alkaline-Based Fuel Cells. Journal of the Electrochemical Society, 161 (2014) D3105-D3112.
    [68] T. Palaniselvam, V. Kashyap, S.N. Bhange, J.-B. Baek, S. Kurungot, Nanoporous Graphene Enriched with Fe/Co-N Active Sites as a Promising Oxygen Reduction Electrocatalyst for Anion Exchange Membrane Fuel Cells. Advanced Functional Materials, 26 (2016) 2150-2162.
    [69] S. Sultan, J.N. Tiwari, J.-H. Jang, A.M. Harzandi, F. Salehnia, S.J. Yoo, K.S. Kim, Highly Efficient Oxygen Reduction Reaction Activity of Graphitic Tube Encapsulating Nitrided CoxFey Alloy. Advanced Energy Materials, 8 (2018) 1801002.

    QR CODE