簡易檢索 / 詳目顯示

研究生: 陳立修
Li-Hsiu Chen
論文名稱: 燃料電池功率轉換系統之研製
Development of Fuel Cell Power Conversion Systems
指導教授: 黃仲欽
Jonq-Chin Hwang
口試委員: 潘晴財
Ching-Tsai Pan
謝冠群
Guan-Chyun Hsieh
賴炎生
Yen-Shin Lai
陳建富
Jiann-Fuh Chen
吳瑞南
Ruay-Nan Wu
葉勝年
Sheng-Nian Yeh
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 123
中文關鍵詞: 質子交換膜燃料電池多臂式直流-直流功率轉換器單相三線式直流-交流功率轉換器均流控制交錯式脈波寬調變燃料電池電流漣波小信號模型直接設計法
外文關鍵詞: proton exchange membrane fuel cell, multi-leg power converter, single-phase three-wire dc-ac converters, current sharing control, phase-interleaved pulse-width modulation, fuel cell current ripple, small signal model, direct design method
相關次數: 點閱:378下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文旨在研製以質子交換膜燃料電池為能源之燃料電池功率轉換系統。整體系統架構包含用於燃料電池之多臂式直流-直流功率轉換器、單相三線式交流電壓輸出之直流-交流功率轉換器,及可對蓄電池充放電之昇/降壓型直流截波器。系統之輸出除可供應交流負載外也可供應直流負載。此外,文中提出之燃料電池功率轉換系統已克服質子交換膜燃料電池之低壓大電流、響應時間長之特性,並且滿足燃料電池電流漣波之要求。
    針對燃料電池低壓大電流輸出特性,本文採用多臂式直流-直流功率轉換器將燃料電池輸出電流均勻分配至各個開關,達成降低開關電流額定及均勻散熱之目的。本文提出用於多臂式直流-直流功率轉換器創新之交錯式脈波寬調變,利用一個時鐘即可產生多組脈波寬調變輸出,對於不支援相移控制之數位訊號處理器,可應用此方法輸出交錯式脈波寬調變。在均流控制上採用責任週期前饋控制,不僅可簡化均流控制也可降低數位訊號處理器之運算時間。
    因應燃料電池響應時間長之缺點,系統採用響應較快之蓄電池為能量緩衝器並結合能量管理可彌補燃料電池化學能轉電能之反應時間,使系統不管瞬間加入直流負載或交流負載都可維持動態之能量平衡。能量管理除「暫態補償模式」可降低燃料電池對系統動態響應之影響,其「協同供電模式」在燃料電池能量不足時可由蓄電池分擔部分負載,此外蓄電池在「蓄電池充電模式」可由燃料電池補充能量。
    本系統架構含直流-直流及直流-交流功率轉換器,若不經控制將會為燃料電池分別引進高頻開關頻率及二倍市電頻率之電流漣波,過大之電流漣波會導致燃料電池受損,因此系統採用多臂式直流-直流功率轉換器及設計輸入電感使各臂電感電流維持在連續導通模式,並搭配交錯式脈波寬調變及均流控制降低燃料電池開關頻率之電流漣波。對於二倍市電頻率之燃料電池電流漣波,本文以帶拒濾波器及直流鏈電容值之設計來抑制直流鏈電壓之二倍市電頻率之低頻電壓漣波,間接降低燃料電池電流之低頻電流漣波。
    在數位調節器參數設計上,透過小信號模型以直接設計法(direct design method)結合頻率響應設計系統中各功率轉換器之調節器參數,可縮短調適參數時間也可幫助直流鏈電壓、電感電流及交流電壓等控制信號兼顧動態響應及穩定度。
    本文提出之燃料電池功率轉換系統採用32位元之數位信號處理器(DSP,TMS320F2812)為整體系統之控制核心,除電力電路、回授電路及驅動電路外皆由數位信號處理器取代。本文已完成1 kW系統雛形,其輸入為燃料電池及24V蓄電池,輸出可供直流負載及交流負載,對直流負載效率為94.8%、對交流負載效率為89.2%,燃料電池電流漣波因數小於4%。


    This dissertation presets the application of fuel cell power conversion systems based on proton exchange membrane fuel cells. The system introduces multi-leg dc-dc power converters, buck/boost converters, and single-phase three-wire dc-ac converters for fuel cells, batteries, and ac/dc outputs. The presented fuel cell power conversion system overcomes low-voltage-high-current behavior and slow dynamic response of fuel cells, and meets current ripple requirements.
    For low-voltage-high-current behavior of fuel cells, multi-leg dc-dc converters is adopted to decrease current standing rating of switches, while interleaved switching techniques and current sharing control are introduced. This dissertation proposes a novel phase-interleaved pulse-width modulation for the converter, which can significantly minimize the number of timer to one regardless of the number of PWM outputs. On the other hand, the current sharing control with duty feedforward not only achieves equal current distribution, but also save computation time of digital signal processors.
    As to fuel cell slow dynamic response, the system uses batteries to serve an energy buffer to dynamically and quickly sustain energy balance by battery discharging. In addition to discharging, the system charges batteries, when fuel cells are able to supply this extra load from charging.
    The dc-dc and dc-ac converters of the proposed system bring current ripples at switching frequency and twice utility frequency for fuel cells. To meet the power conditioning requirements for fuel cells, multi-leg boost converter with phase interleaving pulse-width modulation is proposed for the system. The converter always operates in continuous conduction mode to conform to the current ripple specification with designed input inductors. However, this method which is only for high frequency current ripples can not depress the current ripples at twice utility frequency. A notch filter with designed dc-link capacitors are presented to reduce voltage ripples of dc-link capacitors, which can indirectly decrease low frequency current ripples.
    The control parameters of regulators for fuel cell power converters are designed by frequency response and direct design method through small-signal models. This analytic method can save the time of parameters tuning, and compromise system dynamic response and stability. The relative control of the system is realized by a 32bit digital signal processor, TMS320F2812.
    Finally, experimental results of a 1 kW prototype are given to justify the feasibility of the implemented fuel cell power converter system through a digital signal processor. The system inputs use fuel cell and 24V batteries, and can supply dc and ac loads. Besides, experimentally it shows an efficiency of 94.8% at dc loads and of 89.2% at ac loads, and current ripple factors under 4%.

    中文摘要 I 英文摘要 III 誌謝 V 目錄 VI 圖表索引 IX 符號索引 XIV 符號索引 XIV 第一章 緒論 1 1.1 研究動機 1 1.2 文獻探討 2 1.3 系統架構 8 1.4 論文貢獻 10 1.5 論文大綱 10 第二章 燃料電池及需求之功率轉換器 12 2.1 前言 12 2.2 燃料電池種類 12 2.3 燃料電池之電氣特性 14 2.3.1 燃料電池之發電原理 14 2.3.2 燃料電池之極化現象 14 2.4 燃料電池之功率轉換器設計考量 17 2.4.1 燃料電池之電壓變化率高 17 2.4.2 燃料電池之反應時間長 17 2.4.3 負載電流漣波 18 2.5 結語 19 第三章 多臂式直流-直流功率轉換器分析及控制 20 3.1 前言 20 3.2 多臂式直流-直流功率轉換器之電路架構 20 3.3 多臂式直流-直流功率轉換器之被動功率元件設計 21 3.3.1 多臂式直流-直流功率轉換器之輸入電感設計 21 3.3.2 多臂式直流-直流功率轉換器之直流鏈電容設計 22 3.4 多臂式直流-直流功率轉換器之數學模型 23 3.5 新型交錯式脈波寬調變控制策略 25 3.6 多臂式直流-直流功率轉換器之小信號模型 30 3.7 多臂式直流-直流功率轉換器之控制策略 35 3.8 燃料電池減少低頻電流漣波之策略 37 3.9 多臂式直流-直流功率轉換器之電壓及電流調節器設計 39 3.9.1 多臂式直流-直流功率轉換器之輸入電感電流調節器 39 3.9.2 多臂式直流-直流功率轉換器之直流鏈電壓調節器 43 3.9.3 多臂式直流-直流功率轉換器之直流鏈電壓帶拒濾波器 45 3.10 結語 46 第四章 單相三線式直流-交流功率轉換器分析與控制 47 4.1 前言 47 4.2 單相三線式直流-交流功率轉換器之電路架構 47 4.3 交流輸出電壓之分類 48 4.4 單相三線式直流-交流功率轉換器之數學模型 49 4.5 單相三線式直流-交流功率轉換器之脈波寬調變策略 51 4.6 單相三線式直流-交流功率轉換器之最小直流鏈電壓分析 53 4.7 單相三線式直流-交流功率轉換器之直流鏈電壓漣波 54 4.8 單相三線式直流-交流功率轉換器之等效直流及小訊號模型 55 4.8.1 單相三線式直流-交流功率轉換器之差模開迴路轉移函數 58 4.8.2 單相三線式直流-交流功率轉換器之共模開迴路轉移函數 59 4.9 單相三線式直流-交流功率轉換器之電壓及電流閉迴路控制器 60 4.9.1 單相三線式直流-交流功率轉換器之差模控制器 60 4.9.2 單相三線式直流-交流功率轉換器之共模控制器 61 4.10 結語 63 第五章 燃料發電系統之能量管理 64 5.1 前言 64 5.2 能量管理策略 64 5.3 蓄電池昇/降壓型直流截波器之昇壓模式 67 5.4 蓄電池昇/降壓型直流截波器之降壓模式 71 5.5 討論 74 第六章 實體製作 76 6.1 前言 76 6.2 硬體電路 76 6.3 數位信號處理器之韌體設定 80 6.4 軟體規劃及程式 84 6.4.1 主程式及中斷副程式規劃 85 6.4.2 能量管理程式規劃 86 6.4.3 多臂式直流-直流功率轉換器控制程式規劃 86 6.4.4 單相三線式直流-交流功率轉換器控制程式規劃 88 6.4.5 昇/降壓型直流截波器控制程式規劃 89 6.5 實測結果 95 6.5.1 燃料電池之低壓及大電流特性 95 6.5.2 燃料電池之低電流漣波要求 96 6.5.3 燃料電池之響應時間長 96 6.5.4 系統效率 97 6.6 討論 108 第七章 結論與建議 109 7.1 結論 109 7.2 未來研究方向 111 參考文獻 112 附錄A 系統規格、電路及數位訊號處理器參數 117 作者簡介 122

    1. EG&G Technical Services, Fuel cell handbook. 7th ed., U.S. Dept. of Energy, Office of Fossil Energy, National Energy Technology Laboratory, http://www.netl.doe.gov/seca/pubs/FCHandbook7.pdf (2004).
    2. R. S. Gemmen,“Analysis for the effect of inverter ripple current on fuel cell operating condition,” J. of Fluids Engineering, vol.125, no.3, pp.576-85 (2003).
    3. W. Choi, P. N. Enjeti and J. W. Howze, “Development of an equivalent circuit model of a fuel cell to evaluate the effects of inverter ripple current,” Proc. of IEEE Applied Power Electronics Conference and Exposition, vol.1, pp.355-361 (2004).
    4. S. K. Mazumder, K. Acharya, C. L. Haynes, R. Jr. Williams, M. R. von Spakovsky, D. J. Nelson, D. F. Rancruel, J. Hartvigsen and R.S. Gemmen, “Solid-oxide-fuel-cell performance and durability: resolution of the effects of power-conditioning systems and application loads,” IEEE Trans. on Power Electronics, vol.19, no.5, pp.1263-1278 (2004).
    5. 工程科技叢書編委會屋內線路裝置規則手冊編輯小組,屋內線路裝置規則手冊,聯經出版事業公司,台北,第7-8頁,民國七十三年。
    6. National Electrical Manufacturers Association, American National Standard for Electric Power Systems for Equipments-voltage Ratings (60 Hertz), ANSI C84.1-1995(R2001), National Electrical Manufacturers Association, Virginia, pp. 5-7 (1996).
    7. X. Zhou, P. Wong, P. Xu, F. C. Lee and A. Q. Huang, “Investigation of candidate VRM topologies for future microprocessors,” IEEE Trans. on Power Electronics, vol.15, no.6, pp.1172-1182 (Nov. 2000).
    8. C. Liu, A. Johnson and J. S. Lai, “A novel three-phase high-power soft-switched DC/DC converter for low-voltage fuel cell applications,” IEEE Trans. on Industry Applications, vol. 41, no. 6, pp. 1691-1697(2005).
    9. X. Kong and A. M. Khambadkone, “Analysis and implementation of a high efficiency, interleaved current-fed full bridge converter for fuel cell system,” Proc. of the IEEE Power Electronics and Drives Systems, pp. 474-479(2005).
    10. L. H. Chen, J. C. Hwang, S. N. Yeh and G. C. Yu, “Analysis and design of four-leg fuel cell boost converter,” Proc. of IEEE Industrial Electronics Society Annual Conference, pp. 4285-4290(2006).
    11. K. Harada and S. Nonaka, “FFT analysis of the composite PWM voltage source inverter,” Proc. of IEEE Power Conversion Conference, vol.3, pp.1257-1261 (2002).
    12. C. Liu and J. S. Lai, “Low frequency current ripple reduction technique with active control in a fuel cell power system with inverter load,” Proc. of IEEE Power Electronics Specialists Conference, vol.3, pp.2905-2911 (2005).
    13. R. Gopinath, K. Sangsun, H. Jae-Hong, P. N. Enjeti, M. B. Yeary and J. W. Howze, “Development of a low cost fuel cell inverter system with dsp control,” IEEE Trans. on Power Electronics, vol.19, no.5, pp.1256-1262 (2004).
    14. Y. J. Song, S. K. Chung and P. N. Enjeti, “A current-fed HF link direct DC/AC converter with active harmonic filter for fuel cell power systems,” Proc. of IEEE Industry Applications Conference, vol.1, pp.123-128(2004).
    15. W. Shireen and H. Nene, “Active filtering of input ripple current to obtain efficient and reliable power from fuel cell sources,” Proc. of IEEE International Telecommunications Energy Conference , pp.1-6(2006).
    16. S. J. Cheng; K. L. Chai and Y. Y. Tzou, “Design and implementation of single-phase three-wire rectifier-inverter for ups applications,” Proc. of IEEE Power Electronics Specialists Conference, vol.3, pp.1927-1932 (Jun. 2004).
    17. 沈志隆,「結合光電能饋入與電力品質控制功能之單相三線式換流器」,國立中正大學工學院電機工程系博士論文,第41∼44頁,民國九十二年。
    18. T. F. Wu, C. L. Shen, H. S. Nein and G. F. Li, “A 1ø3w inverter with grid connection and active power filtering based on nonlinear programming and fast-zero-phase detection algorithm,” IEEE Trans. on Power Electronics, vol.20, no.1, pp.218-226 (Jan. 2005).
    19. S. J. Chiang and C. M. Liaw, “Design and implementation of a single-phase three-wire transformerless battery energy storage system,” IEEE Trans. on Industrial Electronics, vol.41, no.5, pp.540-549 (Oct. 1994).
    20 S. J. Chiang and C. M. Liaw, “Design and implementation of a single-phase three-wire transformerless battery energy storage system,” Proc. of IEEE Power Electronics Specialists Conference, vol.1, pp.410-417 (Jun. 1994).
    21 Y. C. Kuo, T. J. Liang and J. F. Chen, “A high-efficiency single-phase three-wire photovoltaic energy conversion system,” IEEE Trans. on Industrial Electronics, vol.50, no.1, pp.116-122 (Feb. 2003).
    22 J. F. Chen, L. Y. Chiang, C. L. Chu, Y. L. Lee and T. J. Liang, “Study and implementation of the single-phase three-wire photovoltaic energy conversion system,” Proc. of IEEE Power Electronics and Drive Systems, vol.2, pp.692-695 (Jul. 1999).
    23. J. Lee, J. Jo, S. Choi and S. B. Han, “A 10-kw sofc low-voltage battery hybrid power conditioning system for residential use,” IEEE Trans. on Energy Conversion, vol.21, no.2, pp.575-585 (Jun. 2006).
    24. L. Solero, A. Lidozzi, J. A. Pomilio, “Design of multiple-input power converter for hybrid vehicles,” IEEE Trans. on Power Electronics, vol.20, no.5, pp.1007-1016 (Jun. 2006).
    25. Ballard NexaTM Power Module User’s Manual, MAN5100078, pp.91 (Jun. 2003).
    26. 台灣燃料電池資訊網,http://www.tfci.org.tw/index.asp。
    27. 林昇佃,余子隆等人合著,燃料電池新世紀能源,民國93年。
    28. Homepages of Ballard power system, Inc. http://www.ballard.com/be_informed/fuel_cell_technology/how_the_technology_works.
    29. J. J. Baschuk and X. Li, “Modelling of polymer electrolyte membrane fuel cells with variable degrees of water flooding,” J. of Power Sources, vol.86, no.1-2, pp.181-196 (Mar. 2006).
    30. J. M. Correa, F. A. Farret, L. N. Canha, M. G. Simoes, “An electrochemical-based fuel-cell model suitable for electrical engineering automation approach,” IEEE Trans. on Industrial Electronics, vol.51, no.5, pp.1103–1112 (Oct. 2004).
    31. Ballard NexaTM Power Module User’s Manual, MAN5100078, pp.12 (Jun. 2003).
    32. A. O. Taufik Shaban and A. Nafisi, “Output current ripple factor performance of half-wave rectifier with and without freewheeling diode,” Proc. of IEEE Idustry Applications Conference, vol.2, pp.1186-1189 (2000).
    33. I. Batarseh, W. Gu, J. Abu-Qahouq, W. Wu and H. Mao, “Control method and circuit to provide voltage and current regulation for multiphase dc/dc converters,” United States Patent, US6,628,106 B1, University of Central Florida, Orlando, FL(US) (Sep. 30, 2003).
    34. D. J. Nguyen and T. Solivan, “Hysteretic-mode multi-phase switching regulator,” United States Patent, US6,366,069 B1, Intel Corporation, Santa Clara, CA(US) (Apr. 2, 2002).
    35. B. K. Kates and E. P. Sheehan, “Method and apparatus for a multiple stage sequential synchronous regulator,” United States Patent, US6,218,815 B1, Dell USA, D.P., Round Rock, TX(US) (Apr. 17, 2001).
    36. M. B. Harris and M. M. Walters, “Clocked cascading current-mode regulator with high noise immunity and arbitrary phase count” United States Patent, US7,002,325 B2, Intersil Americas Inc., Milpitas, CA(US) (Feb. 21, 2006).
    37. Texas Instruments, “TMS320x28xx, 28xxx enhanced pulse width modulator (ePWM): Reference guide (SPRU791B),” Texas Instruments, http://www.ti.com/litv/pdf/spru791b (2006).
    38. 余景州,「數位控制之多臂式直流-直流功率轉換器於燃料電池供電系統之應用」,國立台灣科技大學電機工程系碩士論文,第21∼22頁,民國九十五年。
    39. V. Vorpérian, “Simplified analysis of PWM converters using model of PWM switch part 1: continuous conduction mode,” IEEE Trans. on Aerospace and Electronic Systems, vol.26, no.3, pp.490-496 (1990).
    40. C. Collins and M. Duffy, “Distributed (parallel) inductor design for VRM applications,” IEEE Trans. on Magnetics, vol.41, no.10, pp.4000-4002 (2005).
    41. G. F. Franklin, J. D. Powell and Michael Workman, Digital Control Of Dynamic Systems, 3rd ed., Addison Wesley Longman, Inc, (1998).
    42. D. Mattingly, “Designing stable compensation networks for single phase voltage mode buck regulators,” Intersil Technical Brief; http://www.intersil.com/data/tb/tb417.pdf. (2003)
    43. S. J. Chiang and C. M. Liaw, “Single-phase three-wire transformerless inverter,” Proc. of IEE Electric Power Applications, vol.141, no.4, pp.197-205 (Jul. 1994).
    44. 江炫樟,「多功能蓄電池儲能系統之研製」,國立清華大學電機工程系博士論文,第58∼59頁,民國八十三年。
    45. M. J. Ryan, R. D. Lorenz and R. De Doncker, “Modeling of multileg sine-wave inverters: a geometric approach,” IEEE Trans. on Industrial Electronics, vol.46, no.6, pp.1183-1191 (Dec. 1999).
    46. R. W. Erickson and D. Maksimovic´, Fundamentals of Power Electronics, 2nd ed., Boston, Kluwer Academic Publishers, pp.668–673 (2001).
    47. http://en.wikipedia.org/wiki/Sallen_Key_filter
    48. 陳勝展,「以數位信號處理器為基礎之風力與太陽能混合發電及照明系統之研製」,國立台灣科技大學電機工程系碩士論文,第37頁,民國九十五年。

    QR CODE