簡易檢索 / 詳目顯示

研究生: 陳藝文
Yi-Wen Chen
論文名稱: 矽藻土/偏高嶺土多孔塊材應用於太陽能界面蒸發海水淡化
The application of solar interfacial evaporation for desalination seawater with celite/metakaolin porous block
指導教授: 蔡協致
Hsieh-Chin Tsai
口試委員: 洪維松
Wei-Song Hung
胡蒨傑
Chien-Chieh Hu
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 87
中文關鍵詞: 矽藻土高嶺土偏高嶺土太陽能蒸發表面疏水改質
外文關鍵詞: Solar-to-steam conversion system, Celite(diatomite), Kaolin, Metakaolin, Hydrophobic modification
相關次數: 點閱:298下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近幾年太陽能驅動的界面蒸發技術快速發展,該技術是一種低成本、環保、高效率的海水淡化技術。依靠低熱傳係數、具優異水傳輸效果的材料作為基材,將水輸送至表面的光熱材料進行界面加熱蒸發海水,以獲得淡化水。然而界面蒸發效率會受到鹽溶液濃度的影響,在本研究中比較了兩種水路系統(二維與一維)與兩種表面光熱材料(CNT與PVDF-CNT),會造成蒸發效率、結晶鹽型態的不同。
    本研究中使用矽藻土與高嶺土作為基材,因矽藻土無法單獨成型,利用高嶺土加水之後易於塑型的特點,與矽藻土以7:3比例結合,再經過900 ℃ 燒結後,高嶺土轉為強度較高的偏高嶺土以此穩定結構,形成多孔塊材。矽藻土/偏高嶺土多孔塊材熱傳導係數為0.201 W m-1K-1;在太陽光光譜範圍波長250 nm –2500 nm 檢測表面塗層CNT與PVDF-CNT後的吸光率,分別為95.92 %與93.59 %,具有高吸光率,並在紅外線熱顯像儀的觀察下,能夠快速聚集熱量,其中一維系統比二維系統具有更高的表面溫度,並且PVDF-CNT疏水表面比CNT表面具有更高的溫度。一倍太陽光(1 kW/m2h)下蒸發純水8小時僅能獲得3.755 Kg/m2,在矽藻土/偏高嶺土為基材的蒸發裝置幫助後,二維水路系統在3.5 % NaCl溶液下平均能夠提升4.1倍的蒸發量,而一維系統平均可以提升5.3倍;10 % NaCl溶液二維系統平均能夠提升3.8倍的蒸發量,一維系統平均可以提升4.2倍。海水淡化實驗中,阻鹽率可達到99.96 %,淡化水經離子層析儀檢測符合WHO與EPA飲用水標準,並且裝置在經過連續循環模擬仍然可以維持高蒸發量。矽藻土每公斤價格為0.12元,高嶺土為每公斤0.22元,因此低成本,易於大規模製造,能夠更輕易地開發出高效的太陽能蒸發裝置。


    The interfacial solar-to-steam conversion (ISSC) system was developed quickly in recent years. The materials play an important role in the ISSC system. There are three key components making up a solar interfacial evaporation system, which are photothermal materials, heat management and water supply. Relying on the material with low heat transfer coefficient and excellent water transmission effect as the base material, the photothermal material that transports water to the surface heats and evaporates seawater at the interface to obtain desalinated water. However, the interface evaporation efficiency will be affected by the concentration of the salt solution. In this study, two water path way systems (two-dimensional and one-dimensional) and two surface photothermal materials (CNT and PVDF-CNT) are compared, which will cause the difference in the evaporation efficiency and crystalline salt.
    In this study, we used celite and kaolin as substrates. Because celite can’t be formed by itself, and kaolin is easy to mold after adding water. We combined celite and kaolin in a ratio of 7:3. After sintering at 900 ℃, the kaolin is converted to metakaolin with higher strength to stabilize the structure and form a porous block material. The thermal conductivity coefficient of celite/metakaolin porous block material is 0.201 wm-1K-1. After coating CNT and PVDF-CNT on the surface, the absorbance is 95.92% and 93.59%, respectively. It has quickly accumulate heat observed in infrared thermal imaging camera. The 1D system has a higher surface temperature than the 2D system, and the PVDF-CNT surface has a higher temperature than CNT surface. Evaporating bulk water under 1 sun intensity for 8 hours can only obtain 3.755 Kg/m2. With the help of an evaporation device based on celite/metakaolin, the 2D system can increase and average if 4.1 times in 3.5% NaCl solution. The 1D system can increase the evaporation by an average of 5.3 times;The 2D system with a 10% NaCl solution can increase the evaporation by an average of 3.8 times, and the 1D system can increase the evaporation by an average of 4.2 times. In the seawater desalination experiment, the salt rejection rate can reach 99.96%. The desalinated water is tested by ion chromatography to meet the WHO and EPA drinking water standards, and the device can still maintain high evaporation after continuous circulation simulation. The price of celite is 0.12 NTD/Kg and kaolin is 0.22 NTD/Kg. Therefore, it is low-cost and easy to manufacture on a large scale. It’s easier to develop efficient solar evaporation devices. This study successfully fabricated celite/metakaolin porous block material which has great potential in interfacial solar-to-steam conversion system.

    誌謝 i 摘要 ii Abstract iii 目錄 v 圖目錄 viii 表目錄 xiii 第一章 緒論 1 第二章 文獻回顧 2 2-1 影響蒸發效率的因素—材料的選擇 2 2-2 光熱材料的介紹 3 2-2-1 金屬奈米材料 4 2-2-2 半導體材料 5 2-2-3 碳基材料 6 2-2-4 聚合物 7 2-3 影響蒸發效率的因素—材料的位置 8 2-3-1 底部加熱系統 8 2-3-2 體積系統 10 2-3-3 界面系統 11 2-4 蒸發性能評估 12 2-4-1 效率計算 12 2-5 結晶鹽的挑戰 13 2-5-1 結晶鹽出現的機制 13 2-5-2 結晶鹽的破壞性 14 2-5-3 排除結晶鹽的設計 15 2-6 矽藻土 (Celite) 19 2-7 高嶺土 (Kaolin) 21 2-8 奈米碳管 (Carbon nanotube, CNT) 22 2-9 聚偏氟乙烯 (Poly (vinylidene fluoride), PVDF) 23 第三章 實驗材料與方法 24 3-1 實驗藥品與耗材 24 3-2 實驗設備 25 3-3 實驗儀器 28 3-4 實驗方法與設計 33 3-4-1 矽藻土/偏高嶺土塊材製備 33 3-4-2 噴塗奈米碳管 (CNT, carbon nanotube) 33 3-4-3 噴塗聚偏二氟乙烯 (PVDF, polyvinylidene fluoride) /CNT 33 3-4-4 組裝太陽能蒸發裝置 34 3-4-5 模擬太陽光下的蒸發實驗 35 3-4-6 收集淡化水 35 3-5 實驗流程圖 36 第四章 結果與討論 37 4-1 矽藻土/偏高嶺土塊材分析與鑑定 37 4-1-1 熱重損失分析儀 38 4-1-2 X光繞射分析 39 4-1-3 比表面積與孔徑測定 40 4-1-4 掃描式電子顯微鏡成像分析 42 4-1-5 熱傳導係數儀分析 43 4-2 CNT塗層與PVDF-CNT塗層分析與鑑定 44 4-2-1 掃描式電子顯微鏡成像分析 44 4-2-2 CNT、PVDF-CNT塗層表面吸光率檢測 46 4-2-3 CNT、PVDF-CNT表面水接觸角測試 48 4-2-4 紅外線熱顯像圖與溫度曲線圖 49 4-2-5 一維水路系統吸水效果測試 51 4-3 蒸發性能評估 52 4-3-1 二維水路系統的模擬測試 52 4-3-2 一維水路系統的模擬測試 56 4-3-3 蒸發效率的評估 61 4-4 海水淡化 63 第五章 結論 67 參考文獻 68

    1. Dao, V.-D., N.H. Vu, and S.J.N.E. Yun, Recent advances and challenges for solar-driven water evaporation system toward applications. 2020. 68: p. 104324.
    2. Zhu, M., et al., Plasmonic wood for high‐efficiency solar steam generation. 2018. 8(4): p. 1701028.
    3. Wang, X., et al., Solar steam generation through bio-inspired interface heating of broadband-absorbing plasmonic membranes. 2017. 195: p. 414-425.
    4. Politano, A., et al., Photothermal membrane distillation for seawater desalination. 2017. 29(2): p. 1603504.
    5. Shang, M., et al., Full-spectrum solar-to-heat conversion membrane with interfacial plasmonic heating ability for high-efficiency desalination of seawater. 2017. 1(1): p. 56-61.
    6. Lin, Y., et al., Copper nanoparticles with near-unity, omnidirectional, and broadband optical absorption for highly efficient solar steam generation. 2018. 30(1): p. 015402.
    7. Liu, X., et al., Bifunctional, moth-eye-like nanostructured black titania nanocomposites for solar-driven clean water generation. 2018. 10(46): p. 39661-39669.
    8. Liu, X., et al., Black titania/graphene oxide nanocomposite films with excellent photothermal property for solar steam generation. 2018. 33(6): p. 674.
    9. Zhu, G., et al., Constructing black titania with unique nanocage structure for solar desalination. 2016. 8(46): p. 31716-31721.
    10. Ghim, D., et al., Mechanically interlocked 1T/2H phases of MoS2 nanosheets for solar thermal water purification. 2018. 53: p. 949-957.
    11. Yang, X., et al., An ultrathin flexible 2D membrane based on single‐walled nanotube–MoS2 hybrid film for high‐performance solar steam generation. 2018. 28(3): p. 1704505.
    12. Guo, Z., et al., PEGylated self-growth MoS2 on a cotton cloth substrate for high-efficiency solar energy utilization. 2018. 10(29): p. 24583-24589.
    13. Ding, D., et al., Non-stoichiometric MoO 3− x quantum dots as a light-harvesting material for interfacial water evaporation. 2017. 53(50): p. 6744-6747.
    14. Chen, R., et al., Magnetically recyclable self-assembled thin films for highly efficient water evaporation by interfacial solar heating. 2017. 7(32): p. 19849-19855.
    15. Song, H., et al., Cold vapor generation beyond the input solar energy limit. 2018. 5(8): p. 1800222.
    16. Zhu, L., et al., Shape conformal and thermal insulative organic solar absorber sponge for photothermal water evaporation and thermoelectric power generation. 2019. 9(22): p. 1900250.
    17. Li, T., et al., Scalable and highly efficient mesoporous wood‐based solar steam generation device: localized heat, rapid water transport. 2018. 28(16): p. 1707134.
    18. Kim, K., et al., Mesoporous three-dimensional graphene networks for highly efficient solar desalination under 1 sun illumination. 2018. 10(18): p. 15602-15608.
    19. Wang, C., et al., A facile and general strategy to deposit polypyrrole on various substrates for efficient solar‐driven evaporation. 2019. 3(1): p. 1800108.
    20. Wu, X., et al., Evaporation above a bulk water surface using an oil lamp inspired highly efficient solar-steam generation strategy. 2018. 6(26): p. 12267-12274.
    21. Wu, X., et al., A plant‐transpiration‐process‐inspired strategy for highly efficient solar evaporation. 2017. 1(6): p. 1700046.
    22. Yin, X., et al., Macroporous double-network hydrogel for high-efficiency solar steam generation under 1 sun illumination. 2018. 10(13): p. 10998-11007.
    23. Zhao, F., et al., Highly efficient solar vapour generation via hierarchically nanostructured gels. 2018. 13(6): p. 489-495.
    24. Arunkumar, T., et al., An experimental study on a hemispherical solar still. 2012. 286: p. 342-348.
    25. Dwivedi, V. and G.J.D. Tiwari, Experimental validation of thermal model of a double slope active solar still under natural circulation mode. 2010. 250(1): p. 49-55.
    26. Kabeel, A., et al., Theoretical and experimental parametric study of modified stepped solar still. 2012. 289: p. 12-20.
    27. Sivakumar, V., E.G.J.R. Sundaram, and S.E. Reviews, Improvement techniques of solar still efficiency: A review. 2013. 28: p. 246-264.
    28. Neumann, O., et al., Solar vapor generation enabled by nanoparticles. 2013. 7(1): p. 42-49.
    29. Guo, A., et al., Diameter effect of gold nanoparticles on photothermal conversion for solar steam generation. 2017. 7(8): p. 4815-4824.
    30. Fang, Z., et al., Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle. 2013. 13(4): p. 1736-1742.
    31. Li, X., et al., Graphene oxide-based efficient and scalable solar desalination under one sun with a confined 2D water path. 2016. 113(49): p. 13953-13958.
    32. Li, Y., et al., Graphene oxide-based evaporator with one-dimensional water transport enabling high-efficiency solar desalination. 2017. 41: p. 201-209.
    33. Xu, N., et al., Mushrooms as efficient solar steam‐generation devices. 2017. 29(28): p. 1606762.
    34. Li, W., et al., Synergistic High‐Rate Solar Steaming and Mercury Removal with MoS2/C@ Polyurethane Composite Sponges. 2018. 8(32): p. 1802108.
    35. Derluyn, H., et al., Saline water evaporation and crystallization-induced deformations in building stone: insights from high-resolution neutron radiography. 2019. 128(3): p. 895-913.
    36. Finnerty, C., et al., Synthetic graphene oxide leaf for solar desalination with zero liquid discharge. 2017. 51(20): p. 11701-11709.
    37. Ito, Y., et al., Multifunctional porous graphene for high‐efficiency steam generation by heat localization. 2015. 27(29): p. 4302-4307.
    38. Kou, H., et al., Recyclable CNT-coupled cotton fabrics for low-cost and efficient desalination of seawater under sunlight. 2019. 462: p. 29-38.
    39. He, S., et al., Nature-inspired salt resistant bimodal porous solar evaporator for efficient and stable water desalination. 2019. 12(5): p. 1558-1567.
    40. Xu, W., et al., Flexible and salt resistant Janus absorbers by electrospinning for stable and efficient solar desalination. 2018. 8(14): p. 1702884.
    41. Hu, R., et al., A Janus evaporator with low tortuosity for long-term solar desalination. 2019. 7(25): p. 15333-15340.
    42. Yang, Y., et al., A general salt-resistant hydrophilic/hydrophobic nanoporous double layer design for efficient and stable solar water evaporation distillation. 2018. 5(6): p. 1143-1150.
    43. Shi, Y., et al., Solar evaporator with controlled salt precipitation for zero liquid discharge desalination. 2018. 52(20): p. 11822-11830.
    44. Xia, Y., et al., Spatially isolating salt crystallisation from water evaporation for continuous solar steam generation and salt harvesting. 2019. 12(6): p. 1840-1847.
    45. Al-Ghouti, M., et al., The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth. 2003. 69(3): p. 229-238.
    46. Qian, T., J. Li, and Y.J.S.r. Deng, Pore structure modified diatomite-supported PEG composites for thermal energy storage. 2016. 6: p. 32392.
    47. Fang, J., et al., Ag/diatomite for highly efficient solar vapor generation under one-sun irradiation. 2017. 5(34): p. 17817-17821.
    48. Hubadillah, S.K., et al., Effect of fabrication parameters on physical properties of metakaolin-based ceramic hollow fibre membrane (CHFM). 2016. 42(14): p. 15547-15558.
    49. Hubadillah, S.K., et al., Effect of kaolin particle size and loading on the characteristics of kaolin ceramic support prepared via phase inversion technique. 2016. 4(2): p. 164-177.
    50. Frost, R.L. and J. Kristof, Raman and infrared spectroscopic studies of kaolinite surfaces modified by intercalation, in Clay surfaces: fundamental and applications. 2004, Elsevier. p. 184-215.
    51. Wen, D., Y.J.J.o.t. Ding, and h. transfer, Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids). 2004. 18(4): p. 481-485.
    52. Kasaeian, A., et al., Performance evaluation and nanofluid using capability study of a solar parabolic trough collector. 2015. 89: p. 368-375.
    53. Li, M., et al., Carbon nanotube grafted with polyalcohol and its influence on the thermal conductivity of phase change material. 2014. 83: p. 325-329.
    54. Berber, S., Y.-K. Kwon, and D.J.P.r.l. Tománek, Unusually high thermal conductivity of carbon nanotubes. 2000. 84(20): p. 4613.
    55. Shi, L., et al., Recyclable Fe3O4@ CNT nanoparticles for high-efficiency solar vapor generation. 2017. 149: p. 401-408.
    56. Han, Z. and A.J.P.i.p.s. Fina, Thermal conductivity of carbon nanotubes and their polymer nanocomposites: A review. 2011. 36(7): p. 914-944.
    57. Li, W., et al., Fe3O4/PVDF-HFP photothermal membrane with in-situ heating for sustainable, stable and efficient pilot-scale solar-driven membrane distillation. 2020. 478: p. 114288.
    58. Wu, X., et al., Localized heating with a photothermal polydopamine coating facilitates a novel membrane distillation process. 2018. 6(39): p. 18799-18807.
    59. Alsharief, A., et al., CNT–PVDF freestanding sheets for direct solar evaporation toward continuous desalination applications. 2020. 55(7): p. 2860-2869.
    60. Zou, Y., et al., Flexible and Robust Polyaniline Composites for Highly Efficient and Durable Solar Desalination. 2020. 3(3): p. 2634-2642.
    61. Wang, H., et al., Characterization and thermal behavior of kaolin. 2011. 105(1): p. 157-160.
    62. Rashad, A.M.J.C. and b. materials, Metakaolin as cementitious material: History, scours, production and composition–A comprehensive overview. 2013. 41: p. 303-318.
    63. Kurdyukov, D., et al., Infiltration of silica colloidal crystals with molten salts and semiconductors under capillary forces. 2010. 492(1-2): p. 611-615.
    64. Bian, Y., et al., Carbonized Bamboos as Excellent 3D Solar Vapor‐Generation Devices. 2019. 4(4): p. 1800593.
    65. Cotruvo, J.A.J.N.i.D.W., Desalination guidelines development for drinking water: background. 2005. 13.
    66. Organization, W.H., Guidelines for drinking-water quality. 1993: World Health Organization.

    無法下載圖示 全文公開日期 2026/01/11 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE