簡易檢索 / 詳目顯示

研究生: 王碩豪
Shuo-Hao Wang
論文名稱: 特殊潤濕性碳複合材料之製備及其在油水分離的應用
Preparation of Superwetting Carbon-Based Composites for Oil/Water Separation
指導教授: 王志逢
Chih-Feng Wang
賴君義
Juin-Yih Lai
口試委員: 王大銘
Da-Ming Wang
郭紹偉
Shiao-Wei Kuo
洪維松
Wei-Song Hung
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 113
中文關鍵詞: 碳纖維布菱角炭特殊潤濕性油水分離光熱效應
外文關鍵詞: carbon fabric, carbonized water caltrop biochar grains, superwetting property, oil/water separation
相關次數: 點閱:352下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來人們環保意識提高,由於工業發展及能量需求導致有許多的含油的工業廢水排放或是原油洩漏危害環境,因此迫切需要高效能的油水分離材料。本研究製備特殊潤濕性碳材料,以移除高黏度原油洩漏及分離油水混合物以及水多油少之乳化液。本研究分為兩部分:
    1. 超疏水碳纖維布於油水分離上的應用
    我們發現了市售的碳纖維布具有吸光轉熱及焦耳生熱的效應,並且利用poly(4-vinylphenol) (PVPh)和1,3-Bis(4,5-dihydro-2-oxazolyl)benzene (PBO)交聯做為疏水改質劑,成功將原本超親水的碳纖維布改質成超疏水碳纖維布,並且保有其吸光轉熱及焦耳生熱特性。這種改質完的超疏水碳纖維布PP@CF40能應用於一般油水之分離,並且在水與己烷的混合液分離中獲得最大通量192500,分離效率也高達95%以上。此外,將超疏水碳纖維布放置一倍太陽光的照射下,以及給予10伏特的電壓,能讓超疏水碳纖維表面的溫度提高至70℃以上。因為優秀的光轉熱效應與焦耳加熱提高表面的溫度,能提升高黏度油類的流動性。在光照下40分鐘,分離並收集的原油重量是未照光的1.7倍。
    2. 疏水菱角碳粉於油水分離上的應用
    我們將市售的超親水菱角碳粉,利用米糠蠟將其改質成疏水菱角碳粉,改過的疏水菱角碳粉具有親油性及水面漂浮特性。我們將疏水的菱角碳粉裝入自製裝置後,可以成功將有機溶劑或油類自水面移除,收集到的有機溶劑及油類之純度皆在99.95 wt%以上。此外,將改質後疏水菱角碳粉投入以Tween 80為界面活性劑之水多油少乳化液(oil-in-water emulsion)中,經過一定時間的搖晃後,疏水菱角碳粉可以吸收乳化液中的油滴,濾液中的總有機碳降至100 ppm以下。以上結果說明疏水菱角碳粉能有效的分離一般油水混和液及水多油少乳化液。


    As a result of the rapid development of various industries, oil spills, water pollution, and environmental problems have increased. Cost-effective, high-performance materials for the removal of oil contamination from water, specifically oil/water emulsions are urgently required. In this thesis, we prepared superwetting carbon materials to remove high-viscosity crude oil from water surface and separate emulsions. This study includes two subjects and describes as follows, respectively:
    1. Preparation of photothermal superhydrophobic carbon fabrics for oil/water separations.
     We prepared photothermal superhydrophobic carbon fabrics (PP@CF40) by modifying pristine carbon fabrics with poly (vinyl phenol) (PVPh) and 1,3-phenylene bisoxazoline (PBO). The PP@CF40 can be used to separate oil/water mixtures. The separation flux was up to 192500 L h-1 m-2 and the separation efficiency was greater than 95%. In addition, The temperature of PP@CF40 can reach over 70℃ under 1 sun solar irradiation or 10 volts due to its photothermal and joule-heating properties. The high temperature of PP@CF40 can reduce the viscosity of the crude oils and increase their fluidity of. After contacting with crude oil for 40 minutes, the amount of crude oil removal of irradiated oil/water separation setup was 1.7 times as much as that of irradiated setup.
    2. Preparation of hydrophobic carbonized water caltrop biochar grains for oil/water separations
    We prepared hydrophobic carbonized water caltrop biochar grains (HCWCGs) from rice bran wax and carbonized water caltrop biochar grains (CWCGs). The HCWCGs can be used to prepare an oil/water setup for the continuous expulsion of oils and organic solvents from water surfaces. The oil purities of all collected oils and organic solvents were greater than 99.95 wt%. Furthermore, HCWCGs also can be used to separate oil-in-water emulsions through the adsorption process. The oil content in all filtrates was lower than 100 ppm. Above results indicated that HCWCGs possessed outstanding oil/water separation and emulsion separation performances.

    摘要 I Abstract III 致謝 V 總目錄 VI 圖目錄 IX 表目錄 XIV 第一章、緒論 1 背景 1 1.1油水分離 1 1.2原油去除 1 1.3.研究動機 2 第二章、文獻回顧 3 2.1 原油洩漏對與含油廢水對環境的汙染 3 2.2 潤濕性 4 2.2.1 接觸角 4 2.2.2 Young’s equation 5 2.2.3 Wenzel equation 6 2.2.4 Cassie -Baxter equation 7 2.2.5遲滯角與滾動角 8 2.3 自然界啟發的特殊潤濕性 10 2.4 人造特殊潤濕性材料於油水分離上的應用 16 2.5 特殊潤濕性碳材料在油水分離的應用 22 2.6 光轉熱材料於高黏度油的去除 27 2.7 以吸附法處理水多油少乳化液 33 第三章、實驗方法與設計 39 3.1實驗材料 39 3.2實驗儀器 40 3.3實驗步驟 43 3.3.1超疏水碳纖維布的製作 43 3.3.2疏水菱角碳粉的製備 45 3.3.3水多油少乳化液的製備 46 3.4材料鑑定與性質檢測 46 3.4.1材料鑑定 46 3.4.2油水混合液分離檢測 49 3.4.3水多油少乳化液分離檢測 52 3.4.4原油移除收集實驗 52 第四章、超疏水碳纖維布於油水分離上的應用 55 4.1 掃描式電子顯微鏡觀察超疏水碳纖維布微結構 55 4.2 潤濕性探討 59 4.2.1 不同疏水劑濃度改質碳纖維布的潤濕性 59 4.2.2擋水能力 62 4.2.3 不同條件的溶液接觸角 63 4.2.4 長時間光照後的潤濕性 65 4.3 PP@CF40光轉熱效應 66 4.4 PP@CF40焦耳生熱效應 69 4.5原油黏度隨時間變化趨勢 70 4.6 PP@CF40對有機溶劑的吸收能力 71 4.7原油吸附速率 72 4.8油水分離 73 4.8.1 水中油類去除 73 4.8.2 一般油水分離 75 4.8.3 高黏度原油去除 79 4.9重複性測試 80 第五章、疏水菱角碳粉於油水分離上的應用 81 5.1 掃描式電子顯微鏡觀察疏水菱角碳粉微結構 81 5.2疏水菱角碳潤濕性探討 82 5.3水上油類去除 83 5.4水多油少乳化液分離 85 第六章、結論 90 第七章、參考文獻 91

    1. J.P. Incardona, C.A. Vines, B.F. Anulacion, D.H. Baldwin, H.L. Day, B.L. French, J.S. Labenia, T.L. Linbo, M.S. Myers, O.P. Olson, C.A. Sloan, S. Sol, F.J. Griffin, K. Menard, S.G. Morgan, J.E. West, T.K. Collier, G.M. Ylitalo, G.N. Cherr, N.L. Scholz, Unexpectedly high mortality in Pacific herring embryos exposed to the 2007 Cosco Busan oil spill in San Francisco Bay, Proceedings of the National Academy of Sciences of the United States of America 109(2) (2012) 51-58
    2. M. Fonseca, G.A. Piniak, N. Cosentino-Manning, Susceptibility of seagrass to oil spills: A case study with eelgrass, Zostera marina in San Francisco Bay, the United States of America, Marine Pollution Bulletin 115(1-2) (2017) 29-38.
    3. Z. Tao, S. Bullard, C. Arias, High numbers of vibrio vulnificus in tar balls collected from oiled areas of the north-central gulf of Mexico following the 2010 BP Deepwater Horizon oil spill, Ecohealth 8(4) (2011) 507-511.
    4. L.A. Soto, A.V. Botello, S. Licea-Duran, M.L. Lizarraga-Partida, A. Yanez-Arancibia, The environmental legacy of the Ixtoc-I oil spill in Campeche sound, southwestern Gulf of Mexico, Frontiers in Marine Science 1 (2014) 57
    5. J. Beyer, H.C. Trannum, T. Bakke, P.V. Hodson, T.K. Collier, Environmental effects of the Deepwater Horizon oil spill: A review, Marine Pollution Bulletin 110(1) (2016) 28-51.
    6. R.L. Eklund, L.C. Knapp, P.A. Sandifer, R.C. Colwell, Oil Spills and Human Health: Contributions of the gulf of Mexico research initiative, Geohealth 3(12) (2019) 391-406.
    7. B.Q. Huynh, L.H. Kwong, M.V. Kiang, E.T. Chin, A.M. Mohareb, A.O. Jumaan, S. Basu, P. Geldsetzer, F.M. Karaki, D.H. Rehkopf, Public health impacts of an imminent Red Sea oil spill, Nature Sustainability 4(12) (2021) 1084-1091.
    8. Z. Xue, Y. Cao, N. Liu, et al., Special wettable materials for oil/water separation. Journal of Materials Chemistry A, 2014. 2(8): 2445-2460.
    9. A. Ullah, J.H. Tanudjaja, M. Ouda, W.S. Hasan, J.W. Chew, Membrane fouling mitigation techniques for oily wastewater: A short review, Journal of Water Process Engineering 43 (2021). 102293
    10. R.K. Gupta, G.J. Dunderdale, M.W. England, A. Hozumi, Oil/water separation techniques: a review of recent progresses and future directions, Journal of Materials Chemistry A 5(31) (2017) 16025-16058.
    11. A.M. Middlebrook, D.M. Murphy, R. Ahmadov, E.L. Atlas, R. Bahreini, D.R. Blake, J. Brioude, J.A. de Gouw, F.C. Fehsenfeld, G.J. Frost, J.S. Holloway, D.A. Lack, J.M. Langridge, R.A. Lueb, S.A. McKeen, J.F. Meagher, S. Meinardi, J.A. Neuman, J.B. Nowak, D.D. Parrish, J. Peischl, A.E. Perring, I.B. Pollack, J.M. Roberts, T.B. Ryerson, J.P. Schwarz, J.R. Spackman, C. Warneke, A.R. Ravishankara, Air quality implications of the Deepwater Horizon oil spill, Proceedings of the National Academy of Sciences of the United States of America 109(50) (2012) 20280-20285.
    12. S. Jaligama, Z.L. Chen, J. Saravia, N. Yadav, S.M. Lomnicki, T.R. Dugas, S.A. Cormier, Exposure to Deepwater Horizon crude oil burn off particulate matter induces pulmonary inflammation and alters adaptive immune response, Environmental Science & Technology 49(14) (2015) 8769-8776.
    13. C.-F. Wang, Y.-J. Tsai, S.-W. Kuo, K.-J. Lee, C.-C. Hu, J.-Y. Lai, Toward superhydrophobic/superoleophilic materials for separation of oil/water mixtures and water-in-oil emulsions using phase inversion methods, Coatings 8(11) (2018) 396.
    14. N. Nuraje, W.S. Khan, Y. Lei, M. Ceylan, R. Asmatulu, Superhydrophobic electrospun nanofibers, Journal of Materials Chemistry A 1(6) (2013) 1929-1946.
    15. S. Das, S. Kumar, S.K. Samal, S. Mohanty, S.K. Nayak, A Review on Superhydrophobic polymer nanocoatings: Recent development and applications, Industrial & Engineering Chemistry Research 57(8) (2018) 2727-2745.
    16. T. Young, An essay on the cohesion of fluids, Abstracts of the papers printed in the philosophical transactions of the royal society of London, The Royal Society London, 1832, 171-172.
    17. D.Y. Kwok, A.W. Neumann, Contact angle measurement and contact angle interpretation, Advances in colloid and interface science 81(3) (1999) 167-249.
    18. R.N. Wenzel, Resistance of solid surfaces to wetting by water, Industrial & Engineering Chemistry 28(8) (1936) 988-994.
    19. A. Marmur, Wetting on hydrophobic rough surfaces: to be heterogeneous or not to be?, Langmuir 19(20) (2003) 8343-8348.
    20. A. Cassie, S. Baxter, Wettability of porous surfaces, Transactions of the Faraday society 40 (1944) 546-551.
    21. A. Milne, A. Amirfazli, The Cassie equation: How it is meant to be used, Advances in colloid and interface science 170(1-2) (2012) 48-55.
    22. S. Li, J. Huang, Z. Chen, G. Chen, Y. Lai, A review on special wettability textiles: theoretical models, fabrication technologies and multifunctional applications, Journal of Materials Chemistry A 5(1) (2017) 31-55.
    23. W. Barthlott, C. Neinhuis, Purity of the sacred lotus, or escape from contamination in biological surfaces, Planta 202(1) (1997) 1-8.
    24. J. Yong, F. Chen, Q. Yang, J. Huo, X. Hou, Superoleophobic surfaces, Chemical Society Reviews 46(14) (2017) 4168-4217.
    25. Z. Qin, H. Sun, Y. Tang, S. Yin, L. Yang, M. Xu, Z. Liu, Bioinspired Hydrophilic–Hydrophobic Janus composites for highly efficient solar steam generation, ACS Applied Materials & Interfaces 13(16) (2021) 19467-19475.
    26. Y. Zhang, N. Meng, A.A. Babar, X. Wang, J. Yu, B. Ding, Multi-bioinspired and multistructural integrated patterned nanofibrous surface for spontaneous and efficient fog collection, Nano Letters 21(18) (2021) 7806-7814.
    27. C. Zhang, B. Zhang, H. Ma, Z. Li, X. Xiao, Y. Zhang, X. Cui, C. Yu, M. Cao, L. Jiang, Bioinspired pressure-tolerant asymmetric slippery surface for continuous self-transport of gas bubbles in aqueous environment, ACS nano 12(2) (2018) 2048-2055.
    28. C. Liu, L. Zhang, X. Zhang, Y. Jia, Y. Di, Z. Gan, Bioinspired free-standing one-dimensional photonic crystals with janus wettability for water quality monitoring, ACS Applied Materials & Interfaces 12(36) (2020) 40979-40984.
    29. X. Jiang, Y. Shao, J. Li, M. Wu, Y. Niu, X. Ruan, X. Yan, X. Li, G. He, Bioinspired hybrid micro/nanostructure composited membrane with intensified mass transfer and antifouling for high saline water membrane distillation, ACS nano 14(12) (2020) 17376-17386.
    30. A. Prasannan, J. Udomsin, H.-C. Tsai, M. Sivakumar, C.-C. Hu, C.-F. Wang, W.-S. Hung, J.-Y. Lai, Special wettable underwater superoleophobic material for effective simultaneous removal of high viscous insoluble oils and soluble dyes from wastewater, Journal of Membrane Science 603 (2020) 118026.
    31. W. Zhang, Y. Zhu, X. Liu, D. Wang, J. Li, L. Jiang, J. Jin, Salt‐induced fabrication of superhydrophilic and underwater superoleophobic PAA‐g‐PVDF membranes for effective separation of oil‐in‐water emulsions, Angewandte Chemie International Edition 53(3) (2014) 856-860.
    32. M. Wang, M. Peng, J. Zhu, Y.-D. Li, J.-B. Zeng, Mussel-inspired chitosan modified superhydrophilic and underwater superoleophobic cotton fabric for efficient oil/water separation, Carbohydrate polymers 244 (2020) 116449.
    33. H.-Y. Mi, H. Li, X. Jing, Q. Zhang, P.-Y. Feng, P. He, Y. Liu, Robust superhydrophobic fluorinated fibrous silica sponge with fire retardancy for selective oil absorption in harsh environment, Separation and Purification Technology. 241 (2020) 116700.
    34. Y. Su, T. Fan, H. Bai, H. Guan, X. Ning, M. Yu, Y. Long, Bioinspired superhydrophobic and superlipophilic nanofiber membrane with pine needle-like structure for efficient gravity-driven oil/water separation, Separation and Purification Technology 274 (2021) 119098.
    35. M.J. Prather, D.R. Blake, F. Sherwood Rowland (1927–2012), Nature 484(7393) (2012) 168-168.
    36. D.D. Ejeta, C.-F. Wang, S.-W. Kuo, J.-K. Chen, H.-C. Tsai, W.-S. Hung, C.-C. Hu, J.-Y. Lai, Preparation of superhydrophobic and superoleophilic cotton-based material for extremely high flux water-in-oil emulsion separation, Chemical Engineering Journal 402 (2020) 126289.
    37. F. Wang, T. Xie, W. Zhong, J. Ou, M. Xue, W. Li, A renewable and biodegradable all-biomass material for the separation of oil from water surface, Surface and Coatings Technology 372 (2019) 84-92.
    38. B. Pan, J. Xiao, J. Li, P. Liu, C. Wang, G. Yang, Carbyne with finite length: The one-dimensional sp carbon, Science advances 1(9) (2015) 1500857.
    39. C. Ji, K. Zhang, L. Li, X. Chen, J. Hu, D. Yan, G. Xiao, X. He, High performance graphene-based foam fabricated by a facile approach for oil absorption, Journal of Materials Chemistry A 5(22) (2017) 11263-11270.
    40. J. Udomsin, A. Prasannan, C.-F. Wang, J.-K. Chen, H.-C. Tsai, W.-S. Hung, C.-C. Hu, J.-Y. Lai, Preparation of carbon nanotube/tannic acid/polyvinylpyrrolidone membranes with superwettability for highly efficient separation of crude oil-in-water emulsions, Journal of Membrane Science 636 (2021) 119568.
    41. Y.-Q. Li, Y.A. Samad, K. Polychronopoulou, S.M. Alhassan, K. Liao, Carbon aerogel from winter melon for highly efficient and recyclable oils and organic solvents absorption, ACS Sustainable Chemistry & Engineering 2(6) (2014) 1492-1497.
    42. X. Sun, L. Bai, J. Li, L. Huang, H. Sun, X. Gao, Robust preparation of flexibly super-hydrophobic carbon fiber membrane by electrospinning for efficient oil-water separation in harsh environments, Carbon 182 (2021) 11-22.
    43. Z. Liu, M. Chen, C. Lin, F. Li, J.T. Aladejana, J. Hong, G. Zhao, Z. Qin, X. Zhu, W. Zhang, Solar-assisted high-efficient cleanup of viscous crude oil spill using an ink-modified plant fiber sponge, Journal of Hazardous Materials 432 (2022) 128740.
    44. C. Zhang, M.-B. Wu, B.-H. Wu, J. Yang, Z.-K. Xu, Solar-driven self-heating sponges for highly efficient crude oil spill remediation, Journal of Materials Chemistry A 6(19) (2018) 8880-8885.
    45. B.-J. Ku, B.-M. Lee, D.H. Kim, A. Mnoyan, S.-K. Hong, K.S. Go, E.H. Kwon, S.-H. Kim, J.-H. Choi, K. Lee, Photothermal fabrics for efficient oil-spill remediation via solar-driven evaporation combined with adsorption, ACS Applied Materials & Interfaces 13(11) (2021) 13106-13113.
    46. T. Fan, Y. Su, Q. Fan, Z. Li, W. Cui, M. Yu, X. Ning, S. Ramakrishna, Y. Long, Robust graphene@ PPS fibrous membrane for harsh environmental oil/water separation and all-weather cleanup of crude oil spill by joule heat and photothermal effect, ACS Applied Materials & Interfaces 13(16) (2021) 19377-19386.
    47. J. Chang, Y. Shi, M. Wu, R. Li, L. Shi, Y. Jin, W. Qing, C. Tang, P. Wang, Solar-assisted fast cleanup of heavy oil spills using a photothermal sponge, Journal of Materials Chemistry A 6(19) (2018) 9192-9199.
    48. Y. Wang, L. Zhou, X. Luo, Y. Zhang, J. Sun, X. Ning, Y. Yuan, Solar-heated graphene sponge for high-efficiency clean-up of viscous crude oil spill, Journal of Cleaner Production 230 (2019) 995-1002.
    49. L. Gong, H. Zhu, W. Wu, D. Lin, K. Yang, A durable superhydrophobic porous polymer coated sponge for efficient separation of immiscible oil/water mixtures and oil-in-water emulsions, Journal of Hazardous Materials 425 (2022) 127980.
    50. Z. Guo, B. Long, S. Gao, J. Luo, L. Wang, X. Huang, D. Wang, H. Xue, J. Gao, Carbon nanofiber based superhydrophobic foam composite for high performance oil/water separation, Journal of Hazardous Materials 402 (2021) 123838.
    51. L. Han, H. Bi, X. Xie, S. Su, P. Mao, L. Sun, Superhydrophobic graphene-coated sponge with microcavities for high efficiency oil-in-water emulsion separation, Nanoscale 12(34) (2020) 17812-17820
    52. W. Liu, X. Huang, K. Peng, Y. Xiong, J. Zhang, L. Lu, J. Liu, S. Li, PDA-PEI copolymerized highly hydrophobic sponge for oil-in-water emulsion separation via oil adsorption and water filtration, Surface and Coatings Technology 406 (2021) 126743.
    53. Y. Xu, G. Wang, L. Zhu, W. Deng, C. Wang, T. Ren, B. Zhu, Z. Zeng, Desert beetle-like microstructures bridged by magnetic Fe3O4 grains for enhancing oil-in-water emulsion separation performance and solar-assisted recyclability of graphene oxide, Chemical Engineering Journal 427 (2022) 130904.
    54. Y. Sun, Y. Liu, B. Xu, J. Chen, W. Yuan, C. Jiang, D. Wang, H. Wang, Simultaneously achieving high-effective oil-water separation and filter media regeneration by facile and highly hydrophobic sand coating, Science of the Total Environment 800 (2021) 149488.
    55. C.-H. Xue, Y.-R. Li, J.-L. Hou, L. Zhang, J.-Z. Ma, S.-T. Jia, Self-roughened superhydrophobic coatings for continuous oil–water separation, Journal of Materials Chemistry A 3(19) (2015) 10248-10253.
    56. C.-F. Wang, X.-Y. Huang, H.-P. Lin, J.-K. Chen, H.-C. Tsai, W.-S. Hung, C.-C. Hu, J.-Y. Lai, Sustainable, Biocompatible, and Mass-Producible Superwetting Water Caltrop Shell Biochars for Emulsion Separations, Journal of Hazardous Materials (2022) 129567.

    無法下載圖示 全文公開日期 2025/08/24 (校內網路)
    全文公開日期 2025/08/24 (校外網路)
    全文公開日期 2025/08/24 (國家圖書館:臺灣博碩士論文系統)
    QR CODE