簡易檢索 / 詳目顯示

研究生: 施文慶
Wun-ching Shih
論文名稱: 熱處理加工對活性碳纖維應用於超級電容之電化學性質影響
Effect of High Temperature Treatment on Electrochemical Properties of Activated Carbon Fabric Applied in Supercapacitor
指導教授: 蘇清淵
Ching-iuan Su
口試委員: 王英靖
Ing-jing Wang
李俊毅
Jiunn-yih Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 112
中文關鍵詞: 超級電容器活性碳纖維高溫熱處理加工
外文關鍵詞: supercapacitor, activated carbon fiber, high temperature treatment
相關次數: 點閱:341下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以嫘縈針織布作為活性碳纖維布原料,於活性碳製備過程中改變三組碳化溫度條件800℃、900℃以及1000℃,使之生產並改變活性碳纖維布的結晶特性、導電性質以及比表面積,接下來將1000℃備製溫度備製下所得到的活性碳樣品以五組不同溫度條件進行熱處理加工,實驗中可得到的三組活性碳纖維布及五組經過熱處理後的樣品,在此探討八組溫度條件對於活性碳纖維布材料特性影響,並加快充放電速率觀察其電容保留比率,以判斷是否適用於高功率之超級電容器電極。
    實驗結果顯示,於製備活性碳纖維布過程中,可藉由提高碳化溫度條件增加樣品比表面積以及導電性質,使活性碳纖維布可提供更高之電容儲存量。當活性碳纖維進行完熱處理後,可使碳材中孔百分率提昇,電阻值下降,可降低高速充電過程所造成的電容下降值。於1300℃、1400℃以及1500℃等熱處理溫度條件下所得的樣品,中孔百分率可達56%以上,快速充放電(250mV/s)下仍可保留40%以上的電容值。


    This study used rayon knitted fabrics as the raw material of activated carbon fabrics at different carbonization temperature 800℃, 900℃ and 1000℃. It shows different crystalline properties, electrical properties and the specific surface area.Then, the activated carbon fabrics ,which made in 1000 ℃, processes five different high temperatures treatment1100℃、1200℃、1300℃、1400℃、1500℃, and Evaluating activated carbon fiber electrode’s capacitance properties in high charge rate.
    The Results show the higher specific surface area and electrical properties would gain as increase carbonization temperature resulting increased the capacitance. The other hand, activated carbon fabrics, which process high temperature, increased the mesopores ratio and improved the resistance, resulting reduces the capacitance decline in high charge rate. The activated carbon fabrics processed the high temperature treatment, obtained percentage of mesopores up to 56% or more resulting high rate charge (250mV/s) still is retained more than 40% of capacitance values.

    目錄 中文摘要...............................................................................................I 英文摘要...............................................................................................II 致謝.....................................................................................................III 目錄.....................................................................................................IV 圖目錄..................................................................................................VIII 表目錄..................................................................................................X 第一章 緒言...........................................................................................1 1.1 前言................................................................................................1 1.2 超級電容器電極材料介紹....................................................................3 1.3 超級電容器應用及發展.......................................................................5 1.4 研究動機與目的................................................................................6 第二章 理論與文獻回顧............................................................................7 2.1 活性碳纖維.......................................................................................7 2.1.1 活性碳纖維之製造方法....................................................................7 2.1.2 前處理工程....................................................................................8 2.1.3 氧化工程(低溫裂解工程).............................................................10 2.1.4 碳化工程......................................................................................12 2.1.5 活化工程......................................................................................14 2.1.5.1 物理活化法................................................................................15 2.1.5.2 化學活化法................................................................................18 2.2 孔洞結構形成...................................................................................19 2.3 碳纖維之微細構造.............................................................................20 2.4 活性碳吸附理論................................................................................23 2.4.1 吸附機構.......................................................................................23 2.4.2 孔洞分析及理論.............................................................................25 2.4.3 等溫吸附曲(Isotherm)................................................................26 2.4.4 遲滯圈(Hysteris Loops).............................................................29 2.4.5 藍牟爾吸附理論(Langmuir)........................................................30 2.4.6 BET等溫吸附.................................................................................33 2.5 電雙層之概念與結構..........................................................................35 2.5.1 電雙層基本原理.............................................................................35 2.5.2 Helmholtz 電雙層模型..................................................................36 2.5.3 Stern 電雙層模型..........................................................................37 2.5.4 電雙層結構...................................................................................39 2.6 三極式電化學系統組裝......................................................................40 2.7 電化學測試分析................................................................................41 2.7.1 循環伏安法...................................................................................41 2.7.2 交流阻抗分析................................................................................42 第三章 實驗...........................................................................................44 3.1 實驗材料.........................................................................................44 3.1.1 實驗基材......................................................................................44 3.1.2 實驗藥品......................................................................................44 3.1.3 實驗氣體.......................................................................... ............44 3.2 實驗設備.........................................................................................45 3.3 測試儀器.........................................................................................47 3.4 實驗流程.........................................................................................48 3.5 實驗方法.........................................................................................49 3.5.1 原布整備......................................................................................49 3.5.2 前處理工程...................................................................................49 3.5.3 氧化、碳化及活化工程...................................................................50 3.5.4 後處理工程...................................................................................50 3.5.5 熱處理工程...................................................................................50 3.6 基本物性分析...................................................................................52 3.6.1 產率分析......................................................................................52 3.6.2 掃描式電子顯微鏡表面觀察.............................................................52 3.6.3 比表面積及孔洞性質分析................................................................53 3.7 材料特性分析...................................................................................54 3.7.1 X射線繞射分析..............................................................................54 3.7.2 電性質分析...................................................................................54 3.8 電化學性質分析................................................................................55 3.8.1 測試裝置組裝................................................................................55 3.8.2 循環伏安法...................................................................................56 3.8.3 交流阻抗分析................................................................................56 第四章 結果與討論.................................................................................57 4.1 活性碳纖維之產率分析.....................................................................58 4.2 氮氣等溫脫附曲線...........................................................................61 4.3 BET比表面積與孔洞性質分析............................................................63 4.4 活性碳微細結構分析........................................................................66 4.5 活性碳纖維布電性質之分析.................................................... ..........70 4.6 活性碳表面微結構觀察.....................................................................72 4.7 循環伏安曲線..................................................................................75 4.8 循環伏安法之電容值分析..................................................................80 4.9 交流阻抗分析..................................................................................85 第五章 結論..........................................................................................88 參考文獻...............................................................................................90 圖目錄 圖1.1 儲能裝置之能量密度(Specific Energy)及功率密度(Specific Power)Ragone比較圖........................................................................... 2 圖2.1 耐燃劑對纖維素熱裂解化學效應............................................. 9 圖2.2 纖維素熱裂解反應機構............................................................. 11 圖2.3 加熱處理時碳化石墨化反應結構之變化................................. 13 圖2.4 石墨之晶格結構......................................................................... 20 圖2.5 熱處理對d002面之影響............................................................... 21 圖2.6 石墨結構與亂層結構之模型..................................................... 22 圖2.7 碳結構之三次元模型................................................................. 22 圖2.8 活性碳吸附氣體之反應步驟..................................................... 24 圖2.9 等溫吸附曲線............................................................................. 25 圖2.10 BDDT分類之五種等溫吸附曲線型態及第六種階梯型........ 28 圖2.11 de Bore歸納出五種遲滯圈...................................................... 29 圖2.12 BET等溫線............................................................................... 34 圖2.13 Helmholtz電雙層模型與電勢分佈圖...................................... 36 圖2.14 Stern電雙層模型與電勢分佈圖.............................................. 38 圖2.15 電雙層構造示意圖................................................................... 39 圖2.16 循環伏安圖............................................................................... 41 圖3.1 直立式高溫爐............................................................................. 46 圖3.2 三極式電化學測試裝置............................................................. 55 圖4.1 碳化溫度下活性碳纖維之產率分析......................................... 60 圖4.2 熱處理加工下活性碳纖維之產率分析..................................... 60 圖4.3 不同碳化溫度下製備活性碳纖維布之等溫氮氣吸脫附曲線........................................................................................................... 62 圖4.4 不同熱處理溫度加工下活性碳纖維布之等溫氮氣吸脫附曲線........................................................................................................... 62 圖4.5 為活性碳纖維布X光繞射分析圖.............................................. 69 圖4.6 溫度條件對結晶厚度與結晶緻密性之影響............................. 69 圖4.7 溫度條件對於活性碳纖維布之電阻值及結晶緻密度影響..... 71 圖4.8 為樣品R8、R9以及R10表面微結構圖..................................... 73 圖4.9 為R10樣品經過1000~1500℃熱處理加工後,H11~H15表面微結構圖................................................................................................... 74 圖4.10 各組活性碳纖維布在掃描速率5mV/s的伏安曲線圖............ 77 圖4.11 各組活性碳纖維布在掃描速率100mV/s的伏安曲線圖........ 78 圖4.12 各組活性碳纖維布在掃描速率200mV/s的伏安曲線圖........ 79 圖4.13 活性碳纖維布在八組掃描速率條件下之電容值趨勢圖....... 84 圖4.14 活性碳纖維布在八組掃描速率條件下的電容百分比........... 84 圖4.15 樣品R10之交流阻抗分析圖.................................................... 86 圖4.16 經過熱處理加工後之樣品(H11~H15)交流阻抗分析圖........ 87 表目錄 表2.1 孔洞大小之分類......................................................................... 19 表3.1 製備活性碳纖維布之條件......................................................... 51 表3.2 活性碳纖維布進行熱處加工之條件......................................... 51 表4.1 不同碳化溫度下活性碳纖維布之孔洞性質比較表.................. 65 表4.2 不同熱處理溫度加工下活性碳纖維布之孔洞性質比較表..... 65 表4.3 X光繞射(002)面結晶分析資料................................................. 68 表4.4 不同伏特掃描速率下R8~R10之電容量分析表....................... 82 表4.5 不同伏特掃描速率下H11~H12之電容量分析表..................... 83 表4.6 不同伏特掃描速率下H14~H15之電容量分析表..................... 83 表4.7 交流阻抗數值分析表................................................................. 87

    參考文獻

    1.A. G. Pandolfo, and A.F. Hollenkamp, Carbon properties and their role in supercapacitors, Journal of Power Sources, 157(1): p. 11-27 (2006.).
    2.R. Kotz, and M. Carlen, Principles and applications of electrochemical capacitors,Electrochimica Acta, 45(15-16): p. 2483-2498, (2000).
    3.胡毅、劉俊興, 氧化錳系超電容之研究, 大同大學 (2006).
    4.K. Hung, C. Masarapu, T. Ko, and B.l. Wei, Wide-temperature range operation supercapacitors from nanostructured activated carbon fabric, Journal of Power Sources, 193(2): p. 944-949 (2009).
    5.V. Barranco, M. A. Lillo-Rodenas, A. Linares-Solano, A. Oya, F. Pico, J. Ibanez, F. Agullo-Rueda, J. M. Amarilla, and J. M. Rojo, Amorphous Carbon Nanofibers and Their Activated Carbon Nanofibers as Supercapacitor Electrodes, The Journal of Physical Chemistry C, 114(22): p. 10302-10307 (2010).
    6.H. Shi, Activated carbons and double layer capacitance, Electrochimica Acta, 41(10): p. 1633-1639 (1996).
    7. G.Xu, C. Zheng, Q. Zhang, J. Huang, M. Zhao, J. Nie, X. Wang, and F Wei, C. Zhang, Q. Huang, J. Zhao, M. Nie, J. Wang, X. W. Fei, Binder-free activated carbon/carbon nanotube paper electrodes for use in supercapacitors, Nano Research, p. 1-12 (2011).
    8.B. Xu, and Y.P. Feng, Electronic structures and transport properties of sulfurized carbon nanotubes. Solid State Communications, 150(41-42): p. 2015-2019 (2010).
    9.A. Davies, and A. Yu, Material advancements in supercapacitors: From activated carbon to carbon nanotube and graphene, Canadian Journal of Chemical Engineering, (2011).
    10.Q. Wu, Y. Xu, Z. Yao, A. Liu, and G. Shi., Supercapacitors based on flexible graphene/polyaniline nanofiber composite films, ACS Nano, 4(4): p. 1963-1970 (2010).
    11.Q. T. Qu, B. Wang, L. C. Yang, Y. Shi, S. Tian and Y. P. Wu, et al., Electrochemical performance of MnO2 nanorods in neutral aqueous electrolytes as a cathode for asymmetric supercapacitors, Journal of Physical Chemistry C, 113(31): p. 14020-14027 (2009).
    12.G.A. Snook, P. Kao, and A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes, Journal of Power Sources, 196(1): p. 1-12 (2011).
    13.沈曾民、張文辉、張學軍,活性碳電極的備製與應用,北京,化學工業出版社.
    14.B.E. Conway, V. Birss, and J. Wojtowicz, The role and utilization of pseudocapacitance for energy storage by supercapacitors, Journal of Power Sources, 66(1-2): p. 1-14 (1997).
    15.H.E. Becker, U.S. Patent 2 800 616 (to General Electric)(1957).
    16.W. Bingbing, Y. Zhongdong, and X. Xiangning. Super-capacitors energy storage system applied in the microgrid, (2010).
    17.A. Jarushi, M. and N. Schofield. Battery and supercapacitor combination for a series hybrid electric vehicle. (2010).
    18.Mokhoff, N. Energy storage to be a $45 billion market in 2015, EE Times, (2010).
    19.G. Gourdin, A. Meehan, T. Jiang, P. Smith and D. Qu, Investigation of the impact of stacking pressure on a double-layer supercapacitor, Journal of Power Sources, 196(1): p. 523-529 (2011).
    20.J. G. Zhao, L. X. Yang, F. Y. Li, R. C. Yu and C. Q. Jin, Electrical property evolution in the graphitization process of activated carbon by high-pressure sintering, Solid State Sciences, 10(12): p. 1947-1950 (2008).
    21.J.G. Zhao, F.Y. Li, and C.Q. Jin, Graphitization of activated carbon under high pressures and high temperatures, Solid State Communications, 149(19-20): p. 818-821 (2009).
    22.J. Wang, M. Chen, C. Wang and J. Zheng,, Preparation of mesoporous carbons from amphiphilic carbonaceous material for high-performance electric double-layer capacitors, Journal of Power Sources, 196(1): p. 550-558 (2011).
    23.劉熾章,纖維理化,新學識文教出版中心, pp.110-127 (1996).
    24.J. J. Freeman, F. G. R. Gimblett, R. A. Roberts and K. S. W. Sing, Studies of activated charcoal cloth. I. Modification of adsorptive properties by impregnation with boron-containing compounds, Carbon, 25(4): p. 559-563 (1987).
    25.J.J. Freeman, and F.G.R. Gimblett, Studies of activated charcoal cloth. II. Influence of boron-containing impregnants on the rate of activation in carbon dioxide gas, Carbon, 25(4): p. 565-568 (1987).
    26.J. J. Freeman, F. G. R. Gimblett, R. A. Roberts and K. S. W. Sing, Studies of activated charcoal cloth. III. Mesopore development induced by phosphate impregnants, Carbon, 26(1): p. 7-11 (1988).
    27.J.J. Freeman, and F.G.R. Gimblett, Studies of activated charcoal cloth, IV. Influence of phosphate impregnants on the rate of activation in carbon dioxide gas. Carbon, 26(4): p. 501-505 (1988).
    28.J.J. Freeman, , F.G.R. Gimblett, and K.S.W. Sing, Studies of activated charcoal cloth. V. Modification of pore structure by impregnation with certain transition metal salts and oxo-complexes, Carbon, 27(1): p. 85-93 (1989).
    29.陳琰,塑膠添加劑, 5, p. 113-134 (1988)。
    30.村上謙吉,高分子材料の難燃加工,地人書館, 14(1975).
    31.H. Schuyten , A. W. Weaver J, and D. Reid J, Some Theoretical Aspects of the Flameproofing of Cellulose, in FIRE RETARDANT PAINTS1954, American Chemical Society. p. 7-20.
    32.T. P. T. P. Nevell, 1916- and S. H. Zeronian, 1932-, Cellulose chemistry and its applications / editors, T.P. Nevell and S. Haig Zeronian. (Chichester, West Sussex, England : E. Horwood ,New York : Halsted Press, 1985, New Yor, 1985).
    33.J.B. Donnet, and R.C. Bansal, Carbon fibres, Marcel Dekker, 46-55 (1984).
    34.H. Marsh, and J.A. Griffiths. HIGH RESOLUTION ELECTRON MICROSCOPY STUDY OF GRAPHITIZATION OF GRAPHITIZABLE CARBON.,Toyohashi, Jpn Tokyo, (1982).
    35.H. Marsh, and B. Rand, The process of activation of carbons by gasification with CO2-I. Gasification of pure polyfurfuryl alcohol carbon, Carbon, 9(1): p. 47-61 (1971).
    36.P. Gonzalez-Vilchez, et al., The Controlled Reaction of Active Carbons with Air at 350℃-I : Reactivity and changes in surface area, Carbon, 17(6): p. 441-446 (1979).
    37.F. Rodriguez-Reinoso, A. Linares-Solano, J. M. Martin-Martinez and J. D. Lopez-Gonzaez, The controlled reaction of active carbons with air at 350°C-II. Evolution of microporosity, Carbon, 22(2): p. 123-130 (1984).
    38.M.C. Mittelmeijer-Hazeleger, and J.M. Martin-Martinez, Microporosity development by CO2 activation of an anthracite studied by physical adsorption of gases, mercury porosimetry, and scanning electron microscopy, Carbon, 30(4): p. 695-709 (1992).
    39.J. Parra, J. de Sousa, J. Pis, J. A. Pajares and R. C. Bansal, Effect of Gasfication on The Porous Characteristics of Activated Carbon From A Semiantheracite, Carbon, 33: p. 801-807 (1995).
    40.J. Alcaniz-Monge, D. Cazorla-Amoros, A. Linares-Solano, S. Yoshida and A. Oya, Effect of the activating gas on tensile strength and pore structure of pitch-based carbon fibres. Carbon, 32(7): p. 1277-1283 (1994).
    41.炭素材料學編,活性炭-基礎與應用,(講談社, 民國七十八年).
    42.K. Gergova, N. Petrov, and S. Eser, Adsorption properties and microstructure of activated carbons produced from agricultural by-products by steam pyrolysis. Carbon, 32(4): p. 693-702 (1994).
    43.R. Torregrosa,and J.M. Martin-Martinez, Activation of lignocellulosic materials: a comparison between chemical, physical and combined activation in terms of porous texture, Fuel, 70(10): p. 1173-1180 (1991).
    44.R. Nacco, and E. Aquarone, Preparation of active carbon from yeast, Carbon, 16(1): p. 31-34 (1978).
    45.J. de D. Lopez-Gonzalez, F. Martinez-Vilchez, and F. Rodriguez-Reinoso, Preparation and characterization of active carbons from olive stones, Carbon, 18(6): p. 413-418 (1980).
    46.F. Rodriguez-Reinoso, and M. Molina-Sabio, Activated carbons from lignocellulosic materials by chemical and/or physical activation: an overview. Carbon, 30(7): p. 1111-1118 (1992).
    47.真田雄三、鈴木基之、藤元薰,新版活性炭-基礎と应用-.(講談社,民國八十六年).
    48.賀福、王茂章,碳纖維及其複合材,(科學出版社,1995).
    49.A. IUPAC Mannal of symbol and terminology, pt1, Colloid and surface Chemistry, Pure Appl. Chem., pp.31, 578 (1921).
    50.U. Hofmann, and W.D. Z., Elektrochem, 42(504), (1936).
    51.K. Biastoch, and U. Hofmann, Rontgenuntersuchung von Koks. Angewandte Chemie, 53(29-30): p. 327-331 (1940).
    52.W. Watt and B.V. Perov, Strong Fibers, New York (1985).
    53.A.A. Konkin, Thermal-, Heat-Resistant and Uncombustible Fiber, (1978).
    54.J.C. Bokros, Chemistry and Physis of Carbon, ed. P.L.W. Jr. Vol. 2., New York: M. Dekker (1966).
    55.H. L. Riley., Quart, Revs, 1: p. 59 (1947).
    56.J. Leonard A, Reaction steps in gas sorption by impregnated carbon, Carbon, 16(2): p. 115-119 (1978).
    57.Suzuki, M., Adsorption Engineering, Kodansha. 35~37 (1989).
    58.S. Brunauer, L. S. Deming, W. E. Deming and E. Teller, On a theory of the van der Waals adsorption of gases, Journal of The American Chemical Society, 1940. 62(7): p. 1723-1732.
    59.C. Pierce, and R.N. Smith, Heats of adsorption. I, Journal of Physical and Colloid Chemistry, 52(7): p. 1111-1115 (1948).
    60.R.N. Smith, and C. Pierce, Heats of adsorption. II, Journal of Physical and Colloid Chemistry, 52(7): p. 1115-1128 (1948).
    61.C. Pierce, and R.N. Smith, Heats of adsorption. III: Methanol on carbonm, Journal of Physical and Colloid Chemistry, 54(3): p. 354-364 (1950).
    62.S. Lowell and J. E. Shields, Powder surface area and porosity. (Chapman and Hall, 1987)
    63.Carl H. Hamann, Andrew Hamnett, and W. Vielstich, Electrochemistry, 2nd, Completely Revised and Updated Edition, New York (2007).
    64.J. B. Allen, and L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd Edition, New York: John Wiley and Sons (2000).
    65.C.H, Wang., U.S. Patent, 5819350 (1998).
    66.袁國輝,電化學電容器,化學工業出版社,北京,PP.169-179 (206).
    67.R. Bacon, and M.M. Tang, Carbonization of cellulose fibers-II. Physical property study, Carbon, 2(3): p. 221-222,IN3-IN4,223-225 (1964).
    68.M. Harry, and R.-R. Francisco, Activated Carbon, London: Elsevier Science Ltd. 13-15 (2006).
    69.H. Marsh, and W.F.K. Wynne-Jones, The surface properties of carbon-I the effect of activated diffusion in the determination of surface area, Carbon, 1(3): p. 269-279(1964).
    70.H.E. Blayden, H.L. Riley, and A. Taylor, Crystallite Growth, during Carbonization, Journal of The American Chemical Society, 62(1): p. 180-186 (1940).
    71.H. Probstle, C. Schmitt, and J. Fricke, Button cell supercapacitors with monolithic carbon aerogels, Journal of Power Sources, 105(2): p. 189-194 (2002).
    72.V. Ruiz, C. Blanco, M. Granda, R. Menendez and R. Santamaria, Effect of the thermal treatment of carbon-based electrodes on the electrochemical performance of supercapacitors, Journal of Electroanalytical Chemistry, 618(1-2): p. 17-23 (2008).
    73.H. Probstle, C. Schmitt, and J. Fricke, Button cell supercapacitors with monolithic carbon aerogels, Journal of Power Sources, 105(2): p. 189-194 (2002).

    無法下載圖示 全文公開日期 2017/01/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE