簡易檢索 / 詳目顯示

研究生: Saba Naseem
Saba Naseem
論文名稱: 光熱性銣鎢青銅奈米棒/三醋酸纖維素電紡纖維膜於光致蒸發、汙水處理與海水淡化研究.
Study on Photothermally Activated Tungsten-bronze/ Recycled Cellulose Triacetate Porous Fiber Membranes for Light-Driven Water Evaporation, Sewage Treatment and Desalination
指導教授: 吳昌謀
Chang-Mou Wu
口試委員: 郭東昊
Dong-Hau Kuo
邱顯堂
Hsien-Tang Chiu
李貴琪
Kui-Chi Lee
鄭國彬
Kuo-Bin Cheng
鄭大偉
Ta-Wui Cheng
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 165
中文關鍵詞: 三醋酸纖維素二氧化鈦氧化石墨烯油水分離鎢青銅光熱轉化
外文關鍵詞: Cellulose triacetate, Tungsten bronze, Photothermal conversion, Electrospinning, Water evaporation, Purification and Desalination
相關次數: 點閱:302下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 太陽能是一種可再生能源,因為它具有廣泛的可用性和取之不盡,用之不竭的優勢。 太陽能的轉換和使用預期是解決全球能源和環境危機的主要解決方案之一。 在各種太陽能源轉換方式中,太陽能熱轉換是最簡單,最有效的。在過去的十年中,光熱材料的使用引起了新的科學興趣,並且由於其簡單的操作以及非常高的能量轉換效率,導致此材料一些應用利基。 在各種光熱材料中,半導體型金屬氧化物(例如氧化鎢基材料)是在光照明下將光能轉換為熱能的最有潛力的材料。本文重點介紹了具有光熱轉換性能的鎢青銅(MxWO3)材料,並探討於光驅動界面水蒸發以及全光譜太陽能光熱轉換以增強水氣蒸發。
    在第二項工作中,我們製備光熱響應性鎢青銅/回收三醋酸纖維素多孔纖維膜,並探討此複合纖維膜用於光驅動界面水氣蒸發效能之研究。太陽能驅動水蒸氣產生是製備蒸餾水和廢水處理常見之策略。而氧化鎢基複合材料由於其優異近紅外(NIR)光吸收及能將其轉化為熱量之特性,近來於水氣蒸發應用上備受關注。此氧化鎢基材料的強表面電漿共振和間隔電荷轉移導致在寬NIR光譜中具有高光吸收率。本研究藉由溶液靜電紡絲法製備銣鎢青銅/回收三醋酸纖維素(RbxWO3/rTAC) 多孔纖維膜,且此纖維模無需支撐層,所得RbxWO3/rTAC多孔纖維膜由於重量輕且疏水性好而可漂浮在水面上。將不同比例RbxWO3(0、5、10、15和20wt%) 摻入回收三醋酸纖維素(rTAC)基材中,並探討其光驅動水氣蒸發的效率,結果顯示rTAC明顯有助於潤濕性能,而其多孔結構則有利於太陽光能驅動水氣蒸發。結果表明,RbxWO3納米棒的重量百分比為15%時,RbxWO3/rTAC纖維膜的水氣蒸發效率可達最佳化,約為90.4±2.1%,此效率遠高於純rTAC纖維膜和純水的蒸發效率。此外,本研究藉由模擬光源照射,也證明了此材料優異之應用潛力,其水氣轉換效率約為73.6%。因此,RbxWO3/rTAC光熱纖維膜可應用於水質淨化,海水淡化和蒸汽發電等領域。
    論文的最後一章,以開發RbxWO3-Fe3O4混成材料,使之具有全光譜吸收功效的光熱轉換纖維膜為目的,而可有效地利用太陽能並驅動水氣蒸發。將太陽能有效利用並轉換為熱能是可再生能源研究的理想目標之一。因此,本研究開發了一混成奈米材料,而可從紫外線到可見光到近紅外光的全光譜能量範圍內進行高效率的水氣蒸發。使用廉價的Fe3O4奈米顆粒與銣鎢青銅納米棒進行混成,以使混成材料具備全光譜吸收功效並確保高水氣蒸發速率。光學結果證明,RbxWO3-Fe3O4奈米混成材料在全光譜範圍中表現出高吸收率,尤其是在可見光和近紅外區域有高效吸收表現。RbxWO3-Fe3O4奈米混成材料的光熱轉性能遠高於個別RbxWO3和Fe3O4奈米材料。本研究我們成功地通過化學沉澱法合成了不同比例之RbxWO3-Fe3O4奈米混成材料(摩爾比2:1,1:1,1:2, 1:4)。並使用靜電紡絲方法以控制纖維結構、孔隙率、取向和長度,配合RbxWO3-Fe3O4共混摻入rTAC基材中,直接進行電紡成多孔混成奈米纖維膜,配合界面加熱概念,將所形成的纖維膜用於光熱水氣蒸發研究。蒸發速率主要取決於新開發的自支撐雙層薄膜,其中上層為光熱轉換層而底部則為親水性支撐層,與前章所報導的銣鎢青銅/回收三醋酸纖維素多孔纖維膜之結果相比,具有親水性支撐層與高效全光譜吸收的RbxWO3-Fe3O4/rTAC光熱纖維膜顯示出較高的水氣蒸發效率。本研究實現利用太陽能於光熱水氣蒸發和脫鹽應用的巨大潛力。藉由本研究結過證明,RbxWO3-Fe3O4奈米混成光熱纖維膜是一種很有前途的光熱材料,可在全光譜太陽光照射下,顯著且有效升高其溫度。


    Solar energy is a kind of renewable energy source open to mankind because of its wide availability and inexhaustibility. The conversion and use of solar energy is one of the main solutions for addressing the global energy and environmental crisis expected. The solar thermal energy conversion is the simplest and most effective amongst the various solar energy conversion pathways. The use of photo-thermal materials has gained renewed scientific interest over the last decade and has resulted in some niche applications due to its simple operation and more importantly extremely high energy conversion efficiency. Among various photo-thermal materials, semiconductor type metal-oxides such as tungsten-oxides based materials are the most promising candidates for converting light to heat energy under optical illumination. Herein, the dissertation highlights tungsten bronze (MxWO3) materials for photothermal conversion properties, applications for light-driven interfacial water evaporation and full-spectrum solar to heat conversion for enhanced steam generation, water purification and desalination.
    In first section, we report photothermal-responsive tungsten bronze/recycled cellulose triacetate porous fiber membranes for efficient light-driven interfacial water evaporation. Solar-driven steam generation is a common strategy for clean water production and wastewater treatment. Tungsten-oxide-based composites have lately gained significant attention due to their capability of absorbing near-infrared (NIR) light and transforming it into heat for evaporating water. The strong surface plasma resonances and intervalence charge transfer of these composites result in high photoabsorption in a wide NIR spectrum. Here, we fabricate combined rubidium tungsten bronze and recycled triacetate cellulose (RbxWO3/rTAC) porous fiber membranes without any supporting components, via solution electrospinning. The as-prepared RbxWO3/rTAC porous fiber membranes float on the water surface because of their low weight and hydrophobicity. RbxWO3 (0, 5, 10, 15, and 20wt%) was incorporated into a recycled triacetate cellulose (rTAC) matrix, and its efficiency for light-driven water evaporation was calculated. The rTAC polymer, significantly contributes toward its desirable wetting properties and its porous structure, which are favorable for solar steam generation. The results showed that the evaporation efficiency of RbxWO3/rTAC fiber membranes with an optimized 15wt% of RbxWO3 nanorods reached 90.4±2.1%, which is considerably greater than that of pure rTAC fiber membranes and of pure water. A great potential has also been proved by simulating solar exposure, with a water conversion efficiency of approximately 73.6%. Thus, RbxWO3/rTAC photothermal fiber membranes can find applications in water purification, desalination, and steam power generation.
    The final part of the thesis presents solar interfacial water evaporation using nanostructured photothermal material is an effective pathway for seawater desalination and waste water treatment. The utilization of inexpensive Fe3O4 with tungsten bronze is a convenient approach for accelerating the full spectrum absorption while ensuring a high evaporation rate. Therefore, this works present efficiency of water evaporation in different photonic energy range, from UV-to-vis-to-NIR. The optical results proved that the RbxWO3-Fe3O4 nanocomposites exhibit a high absorbance in a wide spectrum, especially in the visible and NIR region. Photothermal conversion property of RbxWO3-Fe3O4 nanocomposites are higher than individual RbxWO3 and Fe3O4 nanomaterials. In order to fabricate janus membrane with controlled fiber structure, porosity, orientations and lengths, the interest in the manufacture of microfibers using electrospinning method. RbxWO3-Fe3O4 nano-structured embedded into the rTAC matrix to further electrospun into porous fiber membranes and the formed film was used as a photothermal membrane for water evaporation based on a concept of interfacial solar heating. The rate of evaporation depends mainly on double-layer thin film on the water surface, in which the top photothermal light to heat conversion layer and the bottom hydrophilic supporting layer for pumping water. In addition, janus membrane with a unique characteristic of high thermal stability and excellent thermal insulation property (0.028 W.m-1K-1). The calculated evaporation rate for optimized 10wt% janus membrane found to be 3.56 kg.m-2.h-1 after 35 mins irradiation which was 2.12 times higher than pure water (1.44 kg.m-2.h-1) under 0.250 W.cm-2 of irradiation. This scalable janus membrane strongly evident for synergic photocatalytic activity for heavy metal degradation which made it possible to treat wastewater and can be used to generate clean water from contaminants like heavy metal ion and organic dyes with nearly 99% rejection. Moreover, multifunctional janus membrane shows great potential for seawater desalination with a very high rejection rate of 99.9% for Na+ and below 99.7% for other ions that complies fully with drinking standards. Our work highlights the great potentials for implementing solar energy driven photothermal janus membrane for fresh water production.

    Table of Contents 中文摘要 IV ABSTRACT VII Keywords: ix ACKNOWLEDGEMENT X CHAPTER 1. INTRODUCTION 1 1.1 Membrane Technology 1 1.2 The emergence of solar energy utilization 2 1.3 Motivation and objectives of the study 6 REFERENCES 12 CHAPTER 2: BACKGROUND AND LITERATURE REVIEW 19 2.1 Electrospinning 19 2.2 Electrospinning parameters 22 2.1.1 Voltage supply 23 2.1.2. Needle diameter (nozzle) 23 2.1.3. Distance between tip and collector 24 2.1.4. Flow rate 24 2.1.5. Collector 24 2.1.6. Ambient parameters 25 2.2 Surface morphology of recycled cellulose tricetate fiber membranes 25 2.2.1 Surface modification of rTAC fiber membranes for oil-water separation 27 2.2.2. Contact angle analysis 29 2.2.3 Performance of modified rTAC fiber membranes for oil-water separation 31 2.3 Photothermal nanomaterials: 34 2.4. Photothermal Conversion Properties of Tungsten-Oxide-based Materials. 35 2.5. Preparation of Tungsten-Oxide-Based Materials 39 2.5.1. Mechanochemical method 39 2.5.2. Chemical vapor transport (CVT) 40 2.5.3. Solid-phase reaction 40 2.5.4. Inductively coupled thermal plasma method (ICTP) 41 2.5.5. Hydrothermal method 41 2.5.6. Solvothermal method 42 2.6 Factors affecting solar driven steam generation 44 2.6.1 Conversion efficiency 45 2.7. Photothermal Conversion Materials 51 2.7.1 Plasmonic metals 51 2.7.2. Carbon-based nanomaterials 53 2.7.3. Conducting polymers 54 2.7.4. Semiconductor based nanomaterials 55 2.8 Applications of Tungsten-oxide-based Materials 58 2.8.1. Heat generation 58 2.8.2. Photocatalysts 63 2.8.3. Energy-related applications 67 2.8.4. Gas sensors 70 REFERENCES 72 CHAPTER 3: PHOTOTHERMAL-RESPONSIVE TUNGSTEN BRONZE/RECYCLED CELLULOSE TRIACETATE POROUS FIBER MEMBRANES FOR EFFICIENT LIGHT-DRIVEN INTERFACIAL WATER EVAPORATION 96 3.1. INTRODUCTION 96 3.2 EXPERIMENT 100 3.2.1 Materials 100 3.2.2 Synthesis of RbxWO3 nanorods 100 3.2.3 Preparation of RbxWO3/rTAC fiber membranes 100 3.2.4 Measurement of Water evaporation 101 3.2.5 Characterization 101 3.3 RESULTS AND DISCUSSION 102 3.3.1 Characterization of the RbxWO3/rTAC porous fiber membranes 102 3.3.2 Optical and Photothermal Properties of RbxWO3/rTAC porous fiber membrane 104 3.3.3 Photothermal evaporation performance of RbxWO3/rTAC porous fiber membranes 108 3.4. SUMMARY 115 REFERENCES 117 CHAPTER 4. SOLAR THERMAL JANUS MEMBRANE PROMOTED SYNERGIC-PHOTOCATALYTIC PURIFICATION AND DESALINATION 123 4.1. INTRODUCTION 123 4.2 EXPERIMENT 126 4.2.1 Materials 126 4.2.2 Synthesis of RbxWO3-Fe3O4 nanocomposites 127 4.2.3 Preparation of the Janus membranes 127 4.2.4 Measurement of Solar-Enabled Water Evaporation Performance 128 4.2.5 Solar-enabled Water Purification, Desalination and Synergic Photocatalytic Membrane Performance 128 4.2.6 Characterization 130 4.3 RESULTS AND DISCUSSION 131 4.3.1 Characterization of the sample 131 4.3.2 Optical and Thermal Analysis 137 4.3.3 Fluid Transport and Thermal Insulation properties 141 4.3.4 Solar-to-Vapor Conversion Efficiency Measurement 143 4.3.5 Clean Water Generation with Synergic Photocatalysis 146 4.3.6 Solar Thermal Promoted Desalination 151 4.5. SUMMARY 154 REFERENCES 155 CHAPTER 5. CONCLUSION AND OUTLOOK 163 5.1 CONCLUSION 163 5.2 OUTLOOK 165 CURRICULUM VITAE 167 PROJECT UNDERTAKEN 168 PUBLICATIONS IN INTERNATIONAL JOURNALS 169 CONFERENCES/ORAL PRESENTATIONS 170

    REFERENCES
    1. Padaki, M.; Murali, R.S.; Abdullah, M.S.; Misdan, N.; Moslehyani, A.; Kassim, M.; Hilal, N.; Ismail, A. Membrane technology enhancement in oil–water separation. A review. Desalination 2015, 357, 197-207.
    2. Li, K.; Huang, T.; Qu, F.; Du, X.; Ding, A.; Li, G.; Liang, H. Performance of adsorption pretreatment in mitigating humic acid fouling of ultrafiltration membrane under environmentally relevant ionic conditions. Desalination 2016, 377, 91-98.
    3. Zhao, D.; Yu, Y.; Chen, J.P. Treatment of lead contaminated water by a pvdf membrane that is modified by zirconium, phosphate and pva. Water research 2016, 101, 564-573.
    4. Nqombolo, A.; Mpupa, A.; Moutloali, R.M.; Nomngongo, P.N. Wastewater treatment using membrane technology. Wastewater and Water Quality 2018, 29.
    5. Mohanty, A.K.; Misra, M.; Drzal, L.T. Sustainable bio-composites from renewable resources: Opportunities and challenges in the green materials world. Journal of Polymers and the Environment 2002, 10, 19-26.
    6. Gueymard, C.A. The sun’s total and spectral irradiance for solar energy applications and solar radiation models. Solar Energy 2004, 76, 423-453.
    7. Schiermeier, Q. Water risk as world warms. Nature News 2014, 505, 10.
    8. Song, C.; Li, T.; Guo, W.; Gao, Y.; Yang, C.; Zhang, Q.; An, D.; Huang, W.; Yan, M.; Guo, C. Hydrophobic Cu12Sb4S13-deposited photothermal film for interfacial water evaporation and thermal antibacterial activity. New Journal of Chemistry 2018, 42, 3175-3179.
    9. Mekhilef, S.; Saidur, R.; Safari, A. A review on solar energy use in industries. Renewable and sustainable energy reviews 2011, 15, 1777-1790.
    10. Deng, Z.; Zhou, J.; Miao, L.; Liu, C.; Peng, Y.; Sun, L.; Tanemura, S. The emergence of solar thermal utilization: Solar-driven steam generation. Journal of Materials Chemistry A 2017, 5, 7691-7709.
    11. Shi, L.; Wang, Y.; Zhang, L.; Wang, P. Rational design of a bi-layered reduced graphene oxide film on polystyrene foam for solar-driven interfacial water evaporation. Journal of Materials Chemistry A 2017, 5, 16212-16219.
    12. Hou, J.; Li, Y.; Mao, M.; Yue, Y.; Greaves, G.N.; Zhao, X. Full solar spectrum light driven thermocatalysis with extremely high efficiency on nanostructured ce ion substituted oms-2 catalyst for vocs purification. Nanoscale 2015, 7, 2633-2640.
    13. Dao, V.D.; Choi, H.S. Carbon‐based sunlight absorbers in solar‐driven steam generation devices. Global Challenges 2018, 2, 1700094.
    14. Chen, X.; Shen, S.; Guo, L.; Mao, S.S. Semiconductor-based photocatalytic hydrogen generation. Chemical Reviews 2010, 110, 6503-6570.
    15. Shang, M.; Li, N.; Zhang, S.; Zhao, T.; Zhang, C.; Liu, C.; Li, H.; Wang, Z. Full-spectrum solar-to-heat conversion membrane with interfacial plasmonic heating ability for high-efficiency desalination of seawater. ACS Applied Energy Materials 2017, 1, 56-61.
    16. Zhang, C.; Yan, C.; Xue, Z.; Yu, W.; Xie, Y.; Wang, T. Shape-controlled synthesis of high-quality Cu7S4 nanocrystals for efficient light-induced water evaporation. Small 2016, 12, 5320-5328.
    17. Grätzel, M. Photoelectrochemical cells. nature 2001, 414, 338.
    18. Shannon, M.A.; Bohn, P.W.; Elimelech, M.; Georgiadis, J.G.; Marinas, B.J.; Mayes, A.M. Science and technology for water purification in the coming decades. In Nanoscience and technology: A collection of reviews from nature journals, World Scientific: 2010; pp 337-346.
    19. Wang, Y.; Zhang, L.; Wang, P. Self-floating carbon nanotube membrane on macroporous silica substrate for highly efficient solar-driven interfacial water evaporation. ACS Sustainable Chemistry & Engineering 2016, 4, 1223-1230.
    20. Delyannis, E. Historic background of desalination and renewable energies. Solar energy 2003, 75, 357-366.
    21. Kabeel, A.; El-Agouz, S. Review of researches and developments on solar stills. Desalination 2011, 276, 1-12.
    22. Li, C.; Goswami, Y.; Stefanakos, E. Solar assisted sea water desalination: A review. Renewable and Sustainable Energy Reviews 2013, 19, 136-163.
    23. Ito, Y.; Tanabe, Y.; Han, J.; Fujita, T.; Tanigaki, K.; Chen, M. Multifunctional porous graphene for high‐efficiency steam generation by heat localization. Advanced Materials 2015, 27, 4302-4307.
    24. Ding, D.; Huang, W.; Song, C.; Yan, M.; Guo, C.; Liu, S. Non-stoichiometric MoO3− x quantum dots as a light-harvesting material for interfacial water evaporation. Chemical Communications 2017, 53, 6744-6747.
    25. Fang, J.; Liu, Q.; Zhang, W.; Gu, J.; Su, Y.; Su, H.; Guo, C.; Zhang, D. Ag/diatomite for highly efficient solar vapor generation under one-sun irradiation. Journal of Materials Chemistry A 2017, 5, 17817-17821.
    26. Latibari, S.T.; Sadrameli, S.M. Carbon based material included-shaped stabilized phase change materials for sunlight-driven energy conversion and storage: An extensive review. Solar Energy 2018, 170, 1130-1161.
    27. Chen, Q.; Pei, Z.; Xu, Y.; Li, Z.; Yang, Y.; Wei, Y.; Ji, Y. A durable monolithic polymer foam for efficient solar steam generation. Chemical science 2018, 9, 623-628.
    28. Wang, J.; Li, Y.; Deng, L.; Wei, N.; Weng, Y.; Dong, S.; Qi, D.; Qiu, J.; Chen, X.; Wu, T. High‐performance photothermal conversion of narrow‐bandgap Ti2O3 nanoparticles. Advanced Materials 2017, 29, 1603730.
    29. Chala, T.F.; Wu, C.-M.; Chou, M.-H.; Guo, Z.-L. Melt electrospun reduced tungsten oxide /polylactic acid fiber membranes as a photothermal material for light-driven interfacial water evaporation. ACS Applied Materials & Interfaces 2018, 10, 28955-28962.
    30. Ding, D.; Huang, W.; Song, C.; Yan, M.; Guo, C.; Liu, S. Non-stoichiometric MoO3−x quantum dots as a light-harvesting material for interfacial water evaporation. Chemical Communications 2017, 53, 6744-6747.
    31. Tao, F.; Zhang, Y.; Yin, K.; Cao, S.; Chang, X.; Lei, Y.; Wang, D.s.; Fan, R.; Dong, L.; Yin, Y. Copper sulfide-based plasmonic photothermal membrane for high-efficiency solar vapor generation. ACS applied materials & interfaces 2018, 10, 35154-35163.
    32. Yan, J.; Liu, P.; Ma, C.; Lin, Z.; Yang, G. Plasmonic near-touching titanium oxide nanoparticles to realize solar energy harvesting and effective local heating. Nanoscale 2016, 8, 8826-8838.
    33. Chen, Z.; Wang, Q.; Wang, H.; Zhang, L.; Song, G.; Song, L.; Hu, J.; Wang, H.; Liu, J.; Zhu, M. Ultrathin pegylated W18O49 nanowires as a new 980 nm‐laser‐driven photothermal agent for efficient ablation of cancer cells in vivo. Advanced materials 2013, 25, 2095-2100.
    34. Aioub, M.; Panikkanvalappil, S.R.; El-Sayed, M.A. Platinum-coated gold nanorods: Efficient reactive oxygen scavengers that prevent oxidative damage toward healthy, untreated cells during plasmonic photothermal therapy. ACS Nano 2017, 11, 579-586.
    35. Wu, X.; Chen, G.Y.; Owens, G.; Chu, D.; Xu, H. Photothermal materials: A key platform enabling highly efficient water evaporation driven by solar energy. Materials Today Energy 2019, 12, 277-296.
    36. Li, G.; Zhang, S.; Guo, C.; Liu, S. Absorption and electrochromic modulation of near-infrared light: Realized by tungsten suboxide. Nanoscale 2016, 8, 9861-9868.
    37. Kim, J.Y.; Jeong, S.Y.; Shin, G.J.; Lee, S.K.; Choi, K.H. In Near infrared cut-off characteristics of various perovskite-based composite films, Applied Mechanics and Materials, 2012; Trans Tech Publ: pp 2733-2736.
    38. Wu, C.-M.; Naseem, S.; Chou, M.-H.; Wang, J.-H.; Jian, Y.-Q. Recent advances in tungsten-oxide-based materials and their applications. Frontiers in Materials 2019, 6.
    39. Kumar, S.; T, S.; Kumar, B.; Baruah, A.; Shanker, V. Synthesis of magnetically separable and recyclable g-C3N4–Fe3O4 hybrid nanocomposites with enhanced photocatalytic performance under visible-light irradiation. The Journal of Physical Chemistry C 2013, 117, 26135-26143.
    40. Guo, C.; Yin, S.; Yan, M.; Kobayashi, M.; Kakihana, M.; Sato, T. Morphology-controlled synthesis of W18O49 nanostructures and their near-infrared absorption properties. Inorganic Chemistry 2012, 51, 4763-4771.
    41. Huang, W.; El-Sayed, M.A. Photothermally excited coherent lattice phonon oscillations in plasmonic nanoparticles. The European Physical Journal Special Topics 2008, 153, 325-333.
    42. Yan, M.; Gu, H.; Liu, Z.; Guo, C.; Liu, S. Effective near-infrared absorbent: Ammonium tungsten bronze nanocubes. RSC Advances 2015, 5, 967-973.
    43. Zeng, X.; Zhou, Y.; Ji, S.; Luo, H.; Yao, H.; Huang, X.; Jin, P. The preparation of a high performance near-infrared shielding CsxWO3/SiO2 composite resin coating and research on its optical stability under ultraviolet illumination. Journal of Materials Chemistry C 2015, 3, 8050-8060.
    44. Sun, L.; Li, Z.; Su, R.; Wang, Y.; Li, Z.; Du, B.; Sun, Y.; Guan, P.; Besenbacher, F.; Yu, M. Phase-transition induced conversion into a photothermal material: Quasi-metallic WO2.9 nanorods for solar water evaporation and anticancer photothermal therapy. Angewandte Chemie International Edition 2018, 57, 10666-10671.
    45. Chen, R.; Zhu, K.; Gan, Q.; Yu, Y.; Zhang, T.; Liu, X.; Ye, M.; Yin, Y. Interfacial solar heating by self-assembled Fe3O4@C film for steam generation. Materials Chemistry Frontiers 2017, 1, 2620-2626.
    46. Shi, L.; He, Y.; Huang, Y.; Jiang, B. Recyclable Fe3O4@CNT nanoparticles for high-efficiency solar vapor generation. Energy Conversion and Management 2017, 149, 401-408.
    47. Chen, R.; Wu, Z.; Zhang, T.; Yu, T.; Ye, M. Magnetically recyclable self-assembled thin films for highly efficient water evaporation by interfacial solar heating. RSC Advances 2017, 7, 19849-19855.
    48. Wu, J.; Liu, B.; Ren, Z.; Ni, M.; Li, C.; Gong, Y.; Qin, W.; Huang, Y.; Sun, C.Q.; Liu, X. CuS/rGO hybrid photocatalyst for full solar spectrum photoreduction from UV/vis to near-infrared light. Journal of colloid and interface science 2018, 517, 80-85.
    49. Chen, C.; Kuang, Y.; Hu, L. Challenges and opportunities for solar evaporation. Joule 2019.
    50. Gao, M.; Zhu, L.; Peh, C.K.; Ho, G.W. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy & Environmental Science 2018.
    REFERENCES

    1. Xue, J.; Wu, T.; Dai, Y.; Xia, Y. Electrospinning and electrospun nanofibers: Methods, materials, and applications. Chemical reviews 2019, 119, 5298-5415.
    2. Baji, A.; Abtahi, M.; Ramakrishna, S. Bio-inspired electrospun micro/nanofibers with special wettability. Journal of nanoscience and nanotechnology 2014, 14, 4781-4798.
    3. Su, X.; Ren, J.; Meng, X.; Ren, X.; Tang, F. A novel platform for enhanced biosensing based on the synergy effects of electrospun polymer nanofibers and graphene oxides. Analyst 2013, 138, 1459-1466.
    4. Gibson, P.; Schreuder-Gibson, H.; Rivin, D. Transport properties of porous membranes based on electrospun nanofibers. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2001, 187, 469-481.
    5. Guo, J.; Zhang, Q.; Cai, Z.; Zhao, K. Preparation and dye filtration property of electrospun Polyhydroxybutyrate–Calcium Alginate/Carbon Nanotubes composite nanofibrous filtration membrane. Separation and Purification Technology 2016, 161, 69-79.
    6. Chen, J.-Y.; Kuo, C.-C.; Lai, C.-S.; Chen, W.-C.; Chen, H.-L. Manipulation on the morphology and electrical properties of aligned electrospun nanofibers of Poly (3-Hexylthiophene) for field-effect transistor applications. Macromolecules 2011, 44, 2883-2892.
    7. Jose, M.V.; Marx, S.; Murata, H.; Koepsel, R.R.; Russell, A.J. Direct electron transfer in a mediator-free glucose oxidase-based Carbon Nanotube-Coated Biosensor. Carbon 2012, 50, 4010-4020.
    8. Dayal, P.; Liu, J.; Kumar, S.; Kyu, T. Experimental and theoretical investigations of porous structure formation in electrospun fibers. Macromolecules 2007, 40, 7689-7694.
    9. Bognitzki, M.; Czado, W.; Frese, T.; Schaper, A.; Hellwig, M.; Steinhart, M.; Greiner, A.; Wendorff, J.H. Nanostructured fibers via electrospinning. Advanced materials 2001, 13, 70-72.
    10. Yoon, Y.I.; Moon, H.S.; Lyoo, W.S.; Lee, T.S.; Park, W.H. Superhydrophobicity of Cellulose Triacetate fibrous mats produced by electrospinning and plasma treatment. Carbohydrate polymers 2009, 75, 246-250.
    11. Li, Y.; Lim, C.T.; Kotaki, M. Study on structural and mechanical properties of porous PLA nanofibers electrospun by channel-based electrospinning system. Polymer 2015, 56, 572-580.
    12. Nayani, K.; Katepalli, H.; Sharma, C.S.; Sharma, A.; Patil, S.; Venkataraghavan, R. Electrospinning combined with nonsolvent-induced phase separation to fabricate highly porous and hollow submicrometer polymer fibers. Industrial & Engineering Chemistry Research 2011, 51, 1761-1766.
    13. Mohanty, A.K.; Misra, M.; Drzal, L. Sustainable bio-composites from renewable resources: Opportunities and challenges in the green materials world. Journal of Polymers and the Environment 2002, 10, 19-26.
    14. Mohanty, A.K.; Misra, M.; Drzal, L.T. Sustainable bio-composites from renewable resources: Opportunities and challenges in the green materials world. Journal of Polymers and the Environment 2002, 10, 19-26.
    15. Megelski, S.; Stephens, J.S.; Chase, D.B.; Rabolt, J.F. Micro- and nanostructured surface morphology on electrospun polymer fibers. Macromolecules 2002, 35, 8456-8466.
    16. Fan, L.; Yan, J.; He, H.; Deng, N.; Zhao, Y.; Kang, W.; Cheng, B. Electro-blown spun PS/PAN fibrous membrane for highly efficient oil/water separation. Fibers and Polymers 2017, 18, 1988-1994.
    17. Wang, C.; Chien, H.-S.; Hsu, C.-H.; Wang, Y.-C.; Wang, C.-T.; Lu, H.-A. Electrospinning of Polyacrylonitrile solutions at elevated temperatures. Macromolecules 2007, 40, 7973-7983.
    18. Nayani, K.; Katepalli, H.; Sharma, C.S.; Sharma, A.; Patil, S.; Venkataraghavan, R. Electrospinning combined with nonsolvent-induced phase separation to fabricate highly porous and hollow submicrometer polymer fibers. Industrial & Engineering Chemistry Research 2012, 51, 1761-1766.
    19. Han, S.O.; Son, W.K.; Youk, J.H.; Lee, T.S.; Park, W.H. Ultrafine porous fibers electrospun from cellulose triacetate. Materials Letters 2005, 59, 2998-3001.
    20. Lin, T.; Wang, X. Controlling the morphologies of electrospun nanofibres. In Nanofibers and nanotechnology in textiles, Brown.P.J.Stevens .K ed.; Elsevier: 2007; pp 90-110.
    21. Pai, C.-L.; Boyce, M.C.; Rutledge, G.C. Morphology of porous and wrinkled fibers of Polystyrene electrospun from dimethylformamide. Macromolecules 2009, 42, 2102-2114.
    22. Lu, P.; Ding, B. Applications of electrospun fibers. Recent patents on nanotechnology 2008, 2, 169-182.
    23. Maleki, M.; Latifi, M.; Amani-Tehran, M. Optimizing electrospinning parameters for finest diameter of nano fibers. World Academy of Science, Engineering and Technology 2010, 64, 389-392.
    24. Li, Z.; Wang, C. One-dimensional nanostructures: Electrospinning technique and unique nanofibers. Springer: 2013.
    25. Thompson, C.; Chase, G.G.; Yarin, A.; Reneker, D. Effects of parameters on nanofiber diameter determined from electrospinning model. Polymer 2007, 48, 6913-6922.
    26. Subbiah, T.; Bhat, G.S.; Tock, R.W.; Parameswaran, S.; Ramkumar, S.S. Electrospinning of nanofibers. Journal of applied polymer science 2005, 96, 557-569.
    27. Anton, F. Method and apparatus for spinning. Google Patents: 1939.
    28. Pelipenko, J.; Kristl, J.; Janković, B.; Baumgartner, S.; Kocbek, P. The impact of relative humidity during electrospinning on the morphology and mechanical properties of nanofibers. International journal of pharmaceutics 2013, 456, 125-134.
    29. Demir, M.M.; Yilgor, I.; Yilgor, E.; Erman, B. Electrospinning of polyurethane fibers. Polymer 2002, 43, 3303-3309.
    30. Pham, Q.P.; Sharma, U.; Mikos, A.G. Electrospinning of polymeric nanofibers for tissue engineering applications: A review. Tissue engineering 2006, 12, 1197-1211.
    31. Luo, C.; Stoyanov, S.D.; Stride, E.; Pelan, E.; Edirisinghe, M. Electrospinning versus fibre production methods: From specifics to technological convergence. Chemical Society Reviews 2012, 41, 4708-4735.
    32. Zargham, S.; Bazgir, S.; Tavakoli, A.; Rashidi, A.S.; Damerchely, R. The effect of flow rate on morphology and deposition area of electrospun Nylon 6 nanofiber. Journal of Engineered Fibers and Fabrics 2012, 7, 155892501200700414.
    33. Baji, A.; Mai, Y.-W.; Wong, S.-C.; Abtahi, M.; Chen, P. Electrospinning of polymer nanofibers: Effects on oriented morphology, structures and tensile properties. Composites science and technology 2010, 70, 703-718.
    34. Mit‐uppatham, C.; Nithitanakul, M.; Supaphol, P. Ultrafine electrospun Polyamide‐6 fibers: Effect of solution conditions on morphology and average fiber diameter. Macromolecular Chemistry and Physics 2004, 205, 2327-2338.
    35. Nasouri, K.; Shoushtari, A.M.; Mojtahedi, M.R.M. Effects of polymer/solvent systems on electrospun Polyvinylpyrrolidone nanofiber morphology and diameter. Polymer Science Series A 2015, 57, 747-755.
    36. Naseem, S.; Wu, C.-M.; Xu, T.-Z.; Lai, C.-C.; Rwei, S.-P. Oil-water separation of electrospun cellulose triacetate nanofiber membranes modified by electrophoretically deposited TiO2/graphene oxide. Polymers 2018, 10, 746.
    37. Wu, Z.; Zhang, C.; Peng, K.; Wang, Q.; Wang, Z. Hydrophilic/underwater superoleophobic graphene oxide membrane intercalated by TiO2 nanotubes for oil/water separation. Frontiers of Environmental Science & Engineering 2018, 12, 15.
    38. Liu, Y.-Q.; Zhang, Y.-L.; Fu, X.-Y.; Sun, H.-B. Bioinspired underwater superoleophobic membrane based on a graphene oxide coated wire mesh for efficient oil/water separation. ACS Applied Materials & Interfaces 2015, 7, 20930-20936.
    39. Wolansky, G.; Marmur, A. The actual contact angle on a heterogeneous rough surface in three dimensions. Langmuir 1998, 14, 5292-5297.
    40. Sakai, N.; Fujishima, A.; Watanabe, T.; Hashimoto, K. Quantitative evaluation of the photoinduced hydrophilic conversion properties of TiO2 thin film surfaces by the reciprocal of contact angle. The Journal of Physical Chemistry B 2003, 107, 1028-1035.
    41. Shi, H.; He, Y.; Pan, Y.; Di, H.; Zeng, G.; Zhang, L.; Zhang, C. A modified mussel-inspired method to fabricate TiO2 decorated superhydrophilic PVDF membrane for oil/water separation. Journal of Membrane Science 2016, 506, 60-70.
    42. Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T. Light-induced amphiphilic surfaces. Nature 1997, 388, 431.
    43. Du, Y.; Li, Y.; Wu, T. A superhydrophilic and underwater superoleophobic chitosan-TiO2 composite membrane for fast oil-in-water emulsion separation. RSC Advances 2017, 7, 41838-41846.
    44. Wang, H.-q.; Hu, P.-f.; Zheng, Y.; Zhao, Z.; Zheng, B.; Chang, J.; Wang, H.-j.; Wang, J.-h. Construction of icg encapsulated W18O49@MSN as a fluorescence carrier for real-time tracked photothermal therapy. Materials Science and Engineering: C 2017, 80, 102-109.
    45. Wang, P. Emerging investigator series: The rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight. Environmental Science: Nano 2018, 5, 1078-1089.
    46. Wang, X.; Wang, F.; Sang, Y.; Liu, H. Full‐spectrum solar‐light‐activated photocatalysts for light–chemical energy conversion. Advanced Energy Materials 2017, 7, 1700473.
    47. Liao, C.-C.; Chen, F.-R.; Kai, J.-J. Electrochromic properties of nanocomposite wo3 films. Solar Energy Materials and Solar Cells 2007, 91, 1282-1288.
    48. Li, G.; Wu, G.; Guo, C.; Wang, B. Fabrication of one-dimensional W18O49 nanomaterial for the near infrared shielding. Materials Letters 2016, 169, 227-230.
    49. Liu, X.; Sheng, G.; Zhong, M.; Zhou, X. Dispersed and size-selected WO3 nanoparticles in carbon aerogel for supercapacitor applications. Materials & Design 2018, 141, 220-229.
    50. Chen, Z.; Wang, Q.; Wang, H.; Zhang, L.; Song, G.; Song, L.; Hu, J.; Wang, H.; Liu, J.; Zhu, M. Ultrathin pegylated W18O49 nanowires as a new 980 nm‐laser‐driven photothermal agent for efficient ablation of cancer cells in vivo. Advanced materials 2013, 25, 2095-2100.
    51. Yang, K.; Zhang, S.; Zhang, G.; Sun, X.; Lee, S.-T.; Liu, Z. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Letters 2010, 10, 3318-3323.
    52. Riley, R.S.; Day, E.S. Gold nanoparticle‐mediated photothermal therapy: Applications and opportunities for multimodal cancer treatment. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology 2017, 9, e1449.
    53. Zeng, W.; Suo, L.; Zhang, C.; Wu, D.; Zhu, H. AgI–Ag2S heterostructures for photothermal conversion and solar energy harvesting. Journal of the Taiwan Institute of Chemical Engineers 2018.
    54. Marques, M.P.M. Platinum and palladium polyamine complexes as anticancer agents: The structural factor. ISRN Spectroscopy 2013, 2013, 29.
    55. Wang, Y.; Zhang, L.; Wang, P. Self-floating carbon nanotube membrane on macroporous silica substrate for highly efficient solar-driven interfacial water evaporation. ACS Sustainable Chemistry & Engineering 2016, 4, 1223-1230.
    56. Wang, X.; Ou, G.; Wang, N.; Wu, H. Graphene-based recyclable photo-absorbers for high-efficiency seawater desalination. ACS applied materials & interfaces 2016, 8, 9194-9199.
    57. Zhang, L.; Tang, B.; Wu, J.; Li, R.; Wang, P. Hydrophobic light‐to‐heat conversion membranes with self‐healing ability for interfacial solar heating. Advanced Materials 2015, 27, 4889-4894.
    58. Xu, X.-Q.; Wang, Z.; Li, R.; He, Y.; Wang, Y. A degradable and recyclable photothermal conversion polymer. Chemistry–A European Journal 2018.
    59. Chen, Q.; Pei, Z.; Xu, Y.; Li, Z.; Yang, Y.; Wei, Y.; Ji, Y. A durable monolithic polymer foam for efficient solar steam generation. Chemical science 2018, 9, 623-628.
    60. Lee, K.; Seo, W.S.; Park, J.T. Synthesis and optical properties of colloidal tungsten oxide nanorods. Journal of the American Chemical Society 2003, 125, 3408-3409.
    61. Zhenzhen, G.; Xin, M.; Gang, W.; Baofei, H.; Xinghang, L.; Tao, M.; Jinhua, L.; Jianying, W.; Xianbao, W. Super-hydrophilic copper sulfide films as light absorbers for efficient solar steam generation under one sun illumination. Semiconductor Science and Technology 2018, 33, 025008.
    62. Wang, J.; Li, Y.; Deng, L.; Wei, N.; Weng, Y.; Dong, S.; Qi, D.; Qiu, J.; Chen, X.; Wu, T. High‐performance photothermal conversion of narrow‐bandgap Ti2O3 nanoparticles. Advanced Materials 2017, 29, 1603730.
    63. Ding, D.; Huang, W.; Song, C.; Yan, M.; Guo, C.; Liu, S. Non-stoichiometric MoO3−x quantum dots as a light-harvesting material for interfacial water evaporation. Chemical Communications 2017, 53, 6744-6747.
    64. Guo, C.; Yin, S.; Huang, Y.; Dong, Q.; Sato, T. Synthesis of W18O49 nanorod via ammonium tungsten oxide and its interesting optical properties. Langmuir 2011, 27, 12172-12178.
    65. Hu, X.-S.; Shen, Y.; Xu, L.-H.; Wang, L.-M.; Lu, L.-s.; Zhang, Y.-t. Preparation of flower-like CuS by solvothermal method for photocatalytic, UV protection and emi shielding applications. Applied Surface Science 2016, 385, 162-170.
    66. Yan, J.; Liu, P.; Ma, C.; Lin, Z.; Yang, G. Plasmonic near-touching Titanium Oxide nanoparticles to realize solar energy harvesting and effective local heating. Nanoscale 2016, 8, 8826-8838.
    67. Li, G.; Zhang, S.; Guo, C.; Liu, S. Absorption and electrochromic modulation of near-infrared light: Realized by tungsten suboxide. Nanoscale 2016, 8, 9861-9868.
    68. Kim, J.Y.; Jeong, S.Y.; Shin, G.J.; Lee, S.K.; Choi, K.H. In Near infrared cut-off characteristics of various perovskite-based composite films, Applied Mechanics and Materials, 2012; Trans Tech Publ: pp 2733-2736.
    69. Yan, J.; Wang, T.; Wu, G.; Dai, W.; Guan, N.; Li, L.; Gong, J. Tungsten oxide single crystal nanosheets for enhanced multichannel solar light harvesting. Advanced Materials 2015, 27, 1580-1586.
    70. Zheng, J.Y.; Haider, Z.; Van, T.K.; Pawar, A.U.; Kang, M.J.; Kim, C.W.; Kang, Y.S. Tuning of the crystal engineering and photoelectrochemical properties of crystalline tungsten oxide for optoelectronic device applications. CrystEngComm 2015, 17, 6070-6093.
    71. Huang, W.; El-Sayed, M.A. Photothermally excited coherent lattice phonon oscillations in plasmonic nanoparticles. The European Physical Journal Special Topics 2008, 153, 325-333.
    72. Chala, T.F.; Wu, C.-M.; Chou, M.-H.; Gebeyehu, M.B.; Cheng, K.-B. Highly efficient near infrared photothermal conversion properties of reduced tungsten oxide/polyurethane nanocomposites. Nanomaterials 2017, 7, 191.
    73. Xu, W.; Meng, Z.; Yu, N.; Chen, Z.; Sun, B.; Jiang, X.; Zhu, M. Pegylated CsxWO3 nanorods as an efficient and stable 915 nm-laser-driven photothermal agent against cancer cells. RSC Advances 2015, 5, 7074-7082.
    74. Chala, T.F., Wu, C. -M., and Motora, K. G. . RbxWO3/Ag3VO4 nanocomposites towards efficient full-spectrum (UV, visible, and near infrared) photocatalysis. (Taiwan Institute of Chemical Engineers) 2019.
    75. Guo, C.; Yin, S.; Dong, Q.; Sato, T. Simple route to (NH4)xWO3 nanorods for near infrared absorption. Nanoscale 2012, 4, 3394-3398.
    76. Guo, C.; Yin, S.; Zhang, P.; Yan, M.; Adachi, K.; Chonan, T.; Sato, T. Novel synthesis of homogenous CsxWO3 nanorods with excellent nir shielding properties by a water controlled-release solvothermal process. Journal of Materials Chemistry 2010, 20, 8227-8229.
    77. Guo, J.; Dong, C.; Yang, L.; Fu, G.; Chen, H. Crystal structure and electrical properties of new tungsten bronzes: BxWO3 (0.01≤ x≤ 0.08). Materials research bulletin 2007, 42, 1384-1389.
    78. Kasl, C.; Hoch, M. Properties of trivalent-ion doped tungsten bronzes. Journal of Materials Science 2013, 48, 3003-3012.
    79. Barkay, Z.; Grunbaum, E.; Leitus, G.; Reich, S. Study of the superconducting Cs-doped WO3 crystal surface by electron backscattered diffraction. Journal of Superconductivity and Novel Magnetism 2008, 21, 145-150.
    80. Chen, C.-J.; Chen, D.-H. Preparation and near-infrared photothermal conversion property of Cesium Tungsten Oxide nanoparticles. Nanoscale Research Letters 2013, 8, 57.
    81. Wang, J.; Liu, G.; Du, Y. Mechanochemical synthesis of Sodium Tungsten Bronze nanocrystalline powders. Materials Letters 2003, 57, 3648-3652.
    82. Schmidt, P.; Binnewies, M.; Glaum, R.; Schmidt, M. Chemical vapor transport reactions–methods, materials, modeling. In Advanced topics on crystal growth, InTech: 2013.
    83. Hussain, A.; Gruehn, R.; Rüscher, C.H. Crystal growth of alkali metal tungsten brozes MxWO3 (M=K, Rb, Cs), and their optical properties. Journal of Alloys and Compounds 1997, 246, 51-61.
    84. Lee, S.Y.; Kim, J.Y.; Lee, J.Y.; Song, H.J.; Lee, S.; Choi, K.H.; Shin, G. Facile fabrication of high-efficiency near-infrared absorption film with tungsten bronze nanoparticle dense layer. Nanoscale Research Letters 2014, 9, 294.
    85. Takeda, H.; Adachi, K. Near infrared absorption of Tungsten Oxide nanoparticle dispersions. Journal of the American Ceramic Society 2007, 90, 4059-4061.
    86. Moon, K.; Cho, J.-J.; Lee, Y.-B.; Yoo, P.J.; Bark, C.W.; Park, J. Near infrared shielding properties of quaternary tungsten bronze nanoparticle Na0.11Cs 0.22WO3. Bulletin of the Korean Chemical Society 2013, 34, 731-734.
    87. Mamak, M.; Choi, S.Y.; Stadler, U.; Dolbec, R.; Boulos, M.; Petrov, S. Thermal plasma synthesis of tungsten bronze nanoparticles for near infra-red absorption applications. Journal of Materials Chemistry 2010, 20, 9855-9857.
    88. Okusako, T.; Tokuyama, T.; Mikami, K.; Nogami, Y.; Hanasaki, N. Thermoelectric effect in hexagonal tungsten oxides. Journal of the Physical Society of Japan 2012, 81, SB028.
    89. Wu, X.; Wang, J.; Zhang, G.; Katsumata, K.-i.; Yanagisawa, K.; Sato, T.; Yin, S. Series of MxWO3/ZnO (M= K, Rb, NH4) nanocomposites: Combination of energy saving and environmental decontamination functions. Applied Catalysis B: Environmental 2017, 201, 128-136.
    90. Liu, G.; Wang, S.; Nie, Y.; Sun, X.; Zhang, Y.; Tang, Y. Electrostatic-induced synthesis of tungsten bronze nanostructures with excellent photo-to-thermal conversion behavior. Journal of Materials Chemistry A 2013, 1, 10120-10129.
    91. Zhu, Y.T.; Manthiram, A. New route for the synthesis of tungsten oxide bronzes. Journal of Solid State Chemistry 1994, 110, 187-189.
    92. Yang, X.-g.; Li, C.; Mo, M.-S.; Zhan, J.-h.; Yu, W.-c.; Yan, Y.; Qian, Y.-t. Growth of K0.4WO3 whiskers via a pressure-relief-assisted hydrothermal process. Journal of Crystal Growth 2003, 249, 594-599.
    93. Liu, J.-X.; Ando, Y.; Dong, X.-L.; Shi, F.; Yin, S.; Adachi, K.; Chonan, T.; Tanaka, A.; Sato, T. Microstructure and electrical–optical properties of cesium tungsten oxides synthesized by solvothermal reaction followed by ammonia annealing. Journal of Solid State Chemistry 2010, 183, 2456-2460.
    94. Yao, Y.; Zhang, L.; Chen, Z.; Cao, C.; Gao, Y.; Luo, H. Synthesis of CsxWO3 nanoparticles and their nir shielding properties. Ceramics International 2018, 44, 13469-13475.
    95. Guo, C.; Yin, S.; Zhang, P.; Yan, M.; Adachi, K.; Chonan, T.; Sato, T. Novel synthesis of homogenous CsxWO3 nanorods with excellent nir shielding properties by a water controlled-release solvothermal process. Journal of Materials Chemistry 2010, 20, 8227-8229.
    96. Wu, X.; Wang, J.; Zhang, G.; Katsumata, K.-i.; Yanagisawa, K.; Sato, T.; Yin, S. Series of MxWO3/zno (M=K, Rb, NH4) nanocomposites: Combination of energy saving and environmental decontamination functions. Applied Catalysis B: Environmental 2017, 201, 128-136.
    97. Guo, C.; Yin, S.; Huang, L.; Sato, T. Synthesis of one-dimensional potassium tungsten bronze with excellent near-infrared absorption property. ACS Applied Materials & Interfaces 2011, 3, 2794-2799.
    98. Moon, K.; Cho, J.-J.; Lee, Y.-B.; Yoo, P.J.; Bark, C.W.; Park, J. Near infrared shielding properties of quaternary tungsten bronze nanoparticle na0.11cs0.22wo3. 2013; Vol. 34.
    99. Okusako, T.; Tokuyama, T.; Mikami, K.; Nogami, Y.; Hanasaki, N. Thermoelectric effect in hexagonal tungsten oxides. Journal of the Physical Society of Japan 2012, 81, SB028.
    100. Deng, Z.; Zhou, J.; Miao, L.; Liu, C.; Peng, Y.; Sun, L.; Tanemura, S. The emergence of solar thermal utilization: Solar-driven steam generation. Journal of Materials Chemistry A 2017, 5, 7691-7709.
    101. Wang, Z.; Horseman, T.; Straub, A.P.; Yip, N.Y.; Li, D.; Elimelech, M.; Lin, S. Pathways and challenges for efficient solar-thermal desalination. Science Advances 2019, 5, eaax0763.
    102. Zhu, L.; Gao, M.; Peh, C.K.N.; Ho, G.W. Solar-driven photothermal nanostructured materials designs and prerequisites for evaporation and catalysis applications. Materials Horizons 2018, 5, 323-343.
    103. Gong, F.; Li, H.; Wang, W.; Huang, J.; Xia, D.; Liao, J.; Wu, M.; Papavassiliou, D.V. Scalable, eco-friendly and ultrafast solar steam generators based on one-step melamine-derived carbon sponges toward water purification. Nano Energy 2019, 58, 322-330.
    104. Jiang, F.; Liu, H.; Li, Y.; Kuang, Y.; Xu, X.; Chen, C.; Huang, H.; Jia, C.; Zhao, X.; Hitz, E., et al. Lightweight, mesoporous, and highly absorptive all-nanofiber aerogel for efficient solar steam generation. ACS Applied Materials & Interfaces 2018, 10, 1104-1112.
    105. Gao, X.; Ren, H.; Zhou, J.; Du, R.; Yin, C.; Liu, R.; Peng, H.; Tong, L.; Liu, Z.; Zhang, J. Synthesis of hierarchical graphdiyne-based architecture for efficient solar steam generation. Chemistry of Materials 2017, 29, 5777-5781.
    106. Tao, P.; Ni, G.; Song, C.; Shang, W.; Wu, J.; Zhu, J.; Chen, G.; Deng, T. Solar-driven interfacial evaporation. Nature energy 2018, 3, 1031-1041.
    107. Gao, M.; Zhu, L.; Peh, C.K.; Ho, G.W. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy & Environmental Science 2018.
    108. Zhang, P.; Liao, Q.; Yao, H.; Huang, Y.; Cheng, H.; Qu, L. Direct solar steam generation system for clean water production. Energy Storage Materials 2019, 18, 429-446.
    109. Cao, S.; Jiang, Q.; Wu, X.; Ghim, D.; Gholami Derami, H.; Chou, P.-I.; Jun, Y.-S.; Singamaneni, S. Advances in solar evaporator materials for freshwater generation. Journal of Materials Chemistry A 2019, 7, 24092-24123.
    110. Ghasemi, H.; Ni, G.; Marconnet, A.M.; Loomis, J.; Yerci, S.; Miljkovic, N.; Chen, G. Solar steam generation by heat localization. Nature Communications 2014, 5, 4449.
    111. Yang, Y.; Zhao, R.; Zhang, T.; Zhao, K.; Xiao, P.; Ma, Y.; Ajayan, P.M.; Shi, G.; Chen, Y. Graphene-based standalone solar energy converter for water desalination and purification. ACS Nano 2018, 12, 829-835.
    112. Guo, A.; Ming, X.; Fu, Y.; Wang, G.; Wang, X. Fiber-based, double-sided, reduced graphene oxide films for efficient solar vapor generation. ACS Applied Materials & Interfaces 2017, 9, 29958-29964.
    113. Wang, X.; He, Y.; Liu, X.; Cheng, G.; Zhu, J. Solar steam generation through bio-inspired interface heating of broadband-absorbing plasmonic membranes. Applied Energy 2017, 195, 414-425.
    114. Liu, Y.; Yu, S.; Feng, R.; Bernard, A.; Liu, Y.; Zhang, Y.; Duan, H.; Shang, W.; Tao, P.; Song, C. A bioinspired, reusable, paper-based system for high-performance large-scale evaporation. Adv. Mater. 2015, 27, 2768.
    115. Liu, Y.; Chen, J.; Guo, D.; Cao, M.; Jiang, L. Floatable, self-cleaning, and carbon-black-based superhydrophobic gauze for the solar evaporation enhancement at the air–water interface. ACS applied materials & interfaces 2015, 7, 13645-13652.
    116. Liu, Y.; Yu, S.; Feng, R.; Bernard, A.; Liu, Y.; Zhang, Y.; Duan, H.; Shang, W.; Tao, P.; Song, C. A bioinspired, reusable, paper‐based system for high‐performance large‐scale evaporation. Advanced Materials 2015, 27, 2768-2774.
    117. Yu, S.; Zhang, Y.; Duan, H.; Liu, Y.; Quan, X.; Tao, P.; Shang, W.; Wu, J.; Song, C.; Deng, T. The impact of surface chemistry on the performance of localized solar-driven evaporation system. Scientific Reports 2015, 5, 13600.
    118. Huang, X.; El-Sayed, M.A. Gold nanoparticles: Optical properties and implementations in cancer diagnosis and photothermal therapy. Journal of Advanced Research 2010, 1, 13-28.
    119. Wu, T.; Li, H.; Xie, M.; Shen, S.; Wang, W.; Zhao, M.; Mo, X.; Xia, Y. Incorporation of gold nanocages into electrospun nanofibers for efficient water evaporation through photothermal heating. Materials Today Energy 2019, 12, 129-135.
    120. Chen, J.; Wang, D.; Xi, J.; Au, L.; Siekkinen, A.; Warsen, A.; Li, Z.-Y.; Zhang, H.; Xia, Y.; Li, X. Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells. Nano letters 2007, 7, 1318-1322.
    121. Bai, X.; Xu, S.; Hu, G.; Wang, L. Surface plasmon resonance-enhanced photothermal nanosensor for sensitive and selective visual detection of 2,4,6-trinitrotoluene. Sensors and Actuators B: Chemical 2016, 237, 224-229.
    122. Huang, J.; He, Y.; Chen, M.; Jiang, B.; Huang, Y. Solar evaporation enhancement by a compound film based on Au@ TiO2 core–shell nanoparticles. Solar Energy 2017, 155, 1225-1232.
    123. Tian, L.; Chen, E.; Gandra, N.; Abbas, A.; Singamaneni, S. Gold nanorods as plasmonic nanotransducers: Distance-dependent refractive index sensitivity. Langmuir 2012, 28, 17435-17442.
    124. Zhu, M.; Li, Y.; Chen, F.; Zhu, X.; Dai, J.; Li, Y.; Yang, Z.; Yan, X.; Song, J.; Wang, Y. Plasmonic wood for high‐efficiency solar steam generation. Advanced Energy Materials 2018, 8, 1701028.
    125. Garnett, E.C.; Cai, W.; Cha, J.J.; Mahmood, F.; Connor, S.T.; Christoforo, M.G.; Cui, Y.; McGehee, M.D.; Brongersma, M.L. Self-limited plasmonic welding of silver nanowire junctions. Nature materials 2012, 11, 241.
    126. Gao, M.; Connor, P.K.N.; Ho, G.W. Plasmonic photothermic directed broadband sunlight harnessing for seawater catalysis and desalination. Energy & Environmental Science 2016, 9, 3151-3160.
    127. Fang, Z.; Zhen, Y.-R.; Neumann, O.; Polman, A.; García de Abajo, F.J.; Nordlander, P.; Halas, N.J. Evolution of light-induced vapor generation at a liquid-immersed metallic nanoparticle. Nano Letters 2013, 13, 1736-1742.
    128. Wang, Z.; Liu, Y.; Tao, P.; Shen, Q.; Yi, N.; Zhang, F.; Liu, Q.; Song, C.; Zhang, D.; Shang, W. Bio‐inspired evaporation through plasmonic film of nanoparticles at the air–water interface. Small 2014, 10, 3234-3239.
    129. Tian, L.; Luan, J.; Liu, K.-K.; Jiang, Q.; Tadepalli, S.; Gupta, M.K.; Naik, R.R.; Singamaneni, S. Plasmonic biofoam: A versatile optically active material. Nano Letters 2016, 16, 609-616.
    130. Hu, X.; Xu, W.; Zhou, L.; Tan, Y.; Wang, Y.; Zhu, S.; Zhu, J. Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun. Advanced Materials 2017, 29, 1604031.
    131. Hashishin, T.; Tamaki, J. Conductivity-type sensor based on CNT-WO3 composite for NO2 detection. Journal of nanomaterials 2008, 2008, 31.
    132. Son, K.H.; Hong, J.H.; Lee, J.W. Carbon nanotubes as cancer therapeutic carriers and mediators. International journal of nanomedicine 2016, 11, 5163-5185.
    133. Lou, J.; Liu, Y.; Wang, Z.; Zhao, D.; Song, C.; Wu, J.; Dasgupta, N.; Zhang, W.; Zhang, D.; Tao, P. Bioinspired multifunctional paper-based rGO composites for solar-driven clean water generation. ACS applied materials & interfaces 2016, 8, 14628-14636.
    134. Yu, Z.; Cheng, S.; Li, C.; Sun, Y.; Li, B. Enhancing efficiency of carbonized wood based solar steam generator for wastewater treatment by optimizing the thickness. Solar Energy 2019, 193, 434-441.
    135. Kou, H.; Liu, Z.; Zhu, B.; Macharia, D.K.; Ahmed, S.; Wu, B.; Zhu, M.; Liu, X.; Chen, Z. Recyclable CNT-coupled cotton fabrics for low-cost and efficient desalination of seawater under sunlight. Desalination 2019, 462, 29-38.
    136. Su, H.; Zhou, J.; Miao, L.; Shi, J.; Gu, Y.; Wang, P.; Tian, Y.; Mu, X.; Wei, A.; Huang, L. A hybrid hydrogel with protonated g-C3N4 and graphene oxide as an efficient absorber for solar steam evaporation. Sustainable Materials and Technologies 2019, 20, e00095.
    137. Jiang, Q.; Gholami Derami, H.; Ghim, D.; Cao, S.; Jun, Y.-S.; Singamaneni, S. Polydopamine-filled bacterial nanocellulose as a biodegradable interfacial photothermal evaporator for highly efficient solar steam generation. Journal of Materials Chemistry A 2017, 5, 18397-18402.
    138. Huang, S.; He, Q.; Xu, S.; Wang, L. Polyaniline-based photothermal paper sensor for sensitive and selective detection of 2,4,6-trinitrotoluene. Analytical Chemistry 2015, 87, 5451-5456.
    139. Song, C.; Li, T.; Guo, W.; Gao, Y.; Yang, C.; Zhang, Q.; An, D.; Huang, W.; Yan, M.; Guo, C. Hydrophobic Cu12Sb4S13-deposited photothermal film for interfacial water evaporation and thermal antibacterial activity. New Journal of Chemistry 2018, 42, 3175-3179.
    140. Wang, Y.; Wang, C.; Song, X.; Huang, M.; Megarajan, S.K.; Shaukat, S.F.; Jiang, H. Improved light-harvesting and thermal management for efficient solar-driven water evaporation using 3d photothermal cones. Journal of Materials Chemistry A 2018, 6, 9874-9881.
    141. Yan, C.; Tian, Q.; Yang, S. Recent advances in the rational design of copper chalcogenide to enhance the photothermal conversion efficiency for the photothermal ablation of cancer cells. RSC Advances 2017, 7, 37887-37897.
    142. Lin, H.; Wang, X.; Yu, L.; Chen, Y.; Shi, J. Two-dimensional ultrathin mxene ceramic nanosheets for photothermal conversion. Nano Letters 2017, 17, 384-391.
    143. Guo, C.; Yin, S.; Sato, T. Tungsten oxide-based nanomaterials: Morphological-control, properties, and novel applications. Reviews in Advanced Sciences and Engineering 2012, 1, 235-263.
    144. Tian, Q.; Tang, M.; Sun, Y.; Zou, R.; Chen, Z.; Zhu, M.; Yang, S.; Wang, J.; Wang, J.; Hu, J. Hydrophilic flower-like CuS superstructures as an efficient 980 nm laser-driven photothermal agent for ablation of cancer cells. Advanced Materials 2011, 23, 3542-3547.
    145. Song, G.; Wang, Q.; Wang, Y.; Lv, G.; Li, C.; Zou, R.; Chen, Z.; Qin, Z.; Huo, K.; Hu, R., et al. A low-toxic multifunctional nanoplatform based on Cu9S5@mSiO2 core-shell nanocomposites: Combining photothermal- and chemotherapies with infrared thermal imaging for cancer treatment. Advanced Functional Materials 2013, 23, 4281-4292.
    146. Song, G.; Han, L.; Zou, W.; Xiao, Z.; Huang, X.; Qin, Z.; Zou, R.; Hu, J. A novel photothermal nanocrystals of Cu7S4 hollow structure for efficient ablation of cancer cells. Nano-Micro Letters 2014, 6, 169-177.
    147. Zhou, M.; Zhang, R.; Huang, M.; Lu, W.; Song, S.; Melancon, M.P.; Tian, M.; Liang, D.; Li, C.A chelator-free multifunctional [64Cu]CuS nanoparticle platform for simultaneous micro-PET/CT imaging and photothermal ablation therapy. Journal of the American Chemical Society 2010, 132, 15351-15358.
    148. Hua, Z.; Li, B.; Li, L.; Yin, X.; Chen, K.; Wang, W. Designing a novel photothermal material of hierarchical microstructured copper phosphate for solar evaporation enhancement. The Journal of Physical Chemistry C 2017, 121, 60-69.
    149. Ye, M.; Jia, J.; Wu, Z.; Qian, C.; Chen, R.; O'Brien, P.G.; Sun, W.; Dong, Y.; Ozin, G.A. Synthesis of black tiox nanoparticles by mg reduction of TiO2 nanocrystals and their application for solar water evaporation. Advanced Energy Materials 2017, 7, 1601811.
    150. Li, R.; Zhang, L.; Shi, L.; Wang, P. Mxene ti3c2: An effective 2D light-to-heat conversion material. ACS Nano 2017, 11, 3752-3759.
    151. Ming, X.; Guo, A.; Wang, G.; Wang, X. Two-dimensional defective tungsten oxide nanosheets as high performance photo-absorbers for efficient solar steam generation. Solar Energy Materials and Solar Cells 2018, 185, 333-341.
    152. Wu, C.-M.; Chou, M.-H.; Chala, T.F. Pyroelectricity of electrospun polyvinylidene fluoride/tungsten oxide nanofibrous membranes. In 22nd International Conference on Advanced Materials and Nanotechnology, Osaka, Japan, 2017, 2017.
    153. Awad, F.S.; Kiriarachchi, H.D.; AbouZeid, K.M.; Özgür, Ü.; El-Shall, M.S. Plasmonic graphene polyurethane nanocomposites for efficient solar water desalination. ACS Applied Energy Materials 2018, 1, 976-985.
    154. Kim, K.; Yu, S.; An, C.; Kim, S.-W.; Jang, J.-H. Mesoporous three-dimensional graphene networks for highly efficient solar desalination under 1 sun illumination. ACS applied materials & interfaces 2018, 10, 15602-15608.
    155. Shang, M.; Li, N.; Zhang, S.; Zhao, T.; Zhang, C.; Liu, C.; Li, H.; Wang, Z. Full-spectrum solar-to-heat conversion membrane with interfacial plasmonic heating ability for high-efficiency desalination of seawater. ACS Applied Energy Materials 2017, 1, 56-61.
    156. Wang, Z.; Ye, Q.; Liang, X.; Xu, J.; Chang, C.; Song, C.; Shang, W.; Wu, J.; Tao, P.; Deng, T. Based membranes on silicone floaters for efficient and fast solar-driven interfacial evaporation under one sun. Journal of Materials Chemistry A 2017, 5, 16359-16368.
    157. Chala, T.F.; Wu, C.-M.; Chou, M.-H.; Guo, Z.-L. Melt electrospun reduced tungsten oxide /polylactic acid fiber membranes as a photothermal material for light-driven interfacial water evaporation. ACS Applied Materials & Interfaces 2018, 10, 28955-28962.
    158. Li, Z.; Zheng, M.; Wei, N.; Lin, Y.; Chu, W.; Xu, R.; Wang, H.; Tian, J.; Cui, H. Broadband-absorbing WO3-x nanorod-decorated wood evaporator for highly efficient solar-driven interfacial steam generation. Solar Energy Materials and Solar Cells 2020, 205, 110254.
    159. Zeng, X.; Zhou, Y.; Ji, S.; Luo, H.; Yao, H.; Huang, X.; Jin, P. The preparation of a high performance near-infrared shielding CsxWO3/SiO2 composite resin coating and research on its optical stability under ultraviolet illumination. Journal of Materials Chemistry C 2015, 3, 8050-8060.
    160. Huiyuan, L.; Hua, L.; Yujie, C.; Hezhou, L. A facile hydrothermal method to synthesize ammonium tungsten bronze nanoplatelets for nir absorption. IOP Conference Series: Materials Science and Engineering 2018, 382, 022062.
    161. Guo, C.; Yin, S.; Yan, M.; Kobayashi, M.; Kakihana, M.; Sato, T. Morphology-controlled synthesis of W18O49 nanostructures and their near-infrared absorption properties. Inorganic Chemistry 2012, 51, 4763-4771.
    162. Wu, X.; Yin, S.; Xue, D.; Komarneni, S.; Sato, T. A CsxWO3/ZnO nanocomposite as a smart coating for photocatalytic environmental cleanup and heat insulation. Nanoscale 2015, 7, 17048-17054.
    163. Wang, G.; Ling, Y.; Wang, H.; Yang, X.; Wang, C.; Zhang, J.Z.; Li, Y. Hydrogen-treated WO3 nanoflakes show enhanced photostability. Energy & Environmental Science 2012, 5, 6180-6187.
    164. Xi, G.; Ouyang, S.; Li, P.; Ye, J.; Ma, Q.; Su, N.; Bai, H.; Wang, C. Ultrathin W18O49 nanowires with diameters below 1 nm: Synthesis, near‐infrared absorption, photoluminescence, and photochemical reduction of carbon dioxide. Angewandte Chemie 2012, 124, 2445-2449.
    165. Pihosh, Y.; Turkevych, I.; Mawatari, K.; Uemura, J.; Kazoe, Y.; Kosar, S.; Makita, K.; Sugaya, T.; Matsui, T.; Fujita, D., et al. Photocatalytic generation of hydrogen by core-shell WO3/BiVO4 nanorods with ultimate water splitting efficiency. Scientific Reports 2015, 5, 11141.
    166. Zhang, Z.; Jiang, X.; Liu, B.; Guo, L.; Lu, N.; Wang, L.; Huang, J.; Liu, K.; Dong, B. Ir-driven ultrafast transfer of plasmonic hot electrons in nonmetallic branched heterostructures for enhanced H2 generation. Advanced Materials 2018, 30, 1705221.
    167. Song, K.; Xiao, F.; Zhang, L.; Yue, F.; Liang, X.; Wang, J.; Su, X. W18O49 nanowires grown on g-C3N4 sheets with enhanced photocatalytic hydrogen evolution activity under visible light. Journal of Molecular Catalysis A: Chemical 2016, 418, 95-102.
    168. Bhuyan, B.; Paul, B.; Dhar, S.S.; Vadivel, S. Facile hydrothermal synthesis of ultrasmall W18O49 nanoparticles and studies of their photocatalytic activity towards degradation of methylene blue. Materials Chemistry and Physics 2017, 188, 1-7.
    169. Chala, T.F.; Wu, C.-M.; Motora, K.G. RbxWO3/Ag3VO4 nanocomposites as efficient full-spectrum (UV, visible, and near-infrared) photocatalysis. Journal of the Taiwan Institute of Chemical Engineers 2019, 102, 465-474.
    170. Bai, H.; Su, N.; Li, W.; Zhang, X.; Yan, Y.; Li, P.; Ouyang, S.; Ye, J.; Xi, G. W18O49 nanowire networks for catalyzed dehydration of isopropyl alcohol to propylene under visible light. Journal of Materials Chemistry A 2013, 1, 6125-6129.
    171. Yoon, S.; Kang, E.; Kim, J.K.; Lee, C.W.; Lee, J. Development of high-performance supercapacitor electrodes using novel ordered mesoporous tungsten oxide materials with high electrical conductivity. Chemical Communications 2011, 47, 1021-1023.
    172. Zhou, Y.; Ko, S.; Lee, C.W.; Pyo, S.G.; Kim, S.-K.; Yoon, S. Enhanced charge storage by optimization of pore structure in nanocomposite between ordered mesoporous carbon and nanosized WO3− x. Journal of Power Sources 2013, 244, 777-782.
    173. Tian, Y.; Cong, S.; Su, W.; Chen, H.; Li, Q.; Geng, F.; Zhao, Z. Synergy of W18O49 and polyaniline for smart supercapacitor electrode integrated with energy level indicating functionality. Nano Letters 2014, 14, 2150-2156.
    174. Huang, X.; Zhang, Z.; Li, H.; Wang, H.; Ma, T. In-situ growth of nanowire WO2.72 on carbon cloth as a binder-free electrode for flexible asymmetric supercapacitors with high performance. Journal of Energy Chemistry 2019, 29, 58-64.
    175. Jung, J.; Kim, D.H. W18O49 nanowires assembled on carbon felt for application to supercapacitors. Applied Surface Science 2018, 433, 750-755.
    176. Li, G.; Gao, L.; Li, L.; Guo, L. An electrochromic and self-healing multi-functional supercapacitor based on PANI/nw-WO2.7/Au nps electrode and hydrogel electrolyte. Journal of Alloys and Compounds 2019.
    177. Yoon, S.; Jo, C.; Noh, S.Y.; Lee, C.W.; Song, J.H.; Lee, J. Development of a high-performance anode for lithium ion batteries using novel ordered mesoporous tungsten oxide materials with high electrical conductivity. Physical Chemistry Chemical Physics 2011, 13, 11060-11066.
    178. Lee, J.; Jo, C.; Park, B.; Hwang, W.; Lee, H.I.; Yoon, S.; Lee, J. Simple fabrication of flexible electrodes with high metal-oxide content: Electrospun reduced tungsten oxide/carbon nanofibers for lithium ion battery applications. Nanoscale 2014, 6, 10147-10155.
    179. Li, Y.; Chang, K.; Tang, H.; Li, B.; Qin, Y.; Hou, Y.; Chang, Z. Preparation of oxygen-deficient WO3-x nanosheets and their characterization as anode materials for high-performance li-ion batteries. Electrochimica Acta 2019, 298, 640-649.
    180. Yue, L.; Tang, J.; Li, F.; Xu, N.; Zhang, F.; Zhang, Q.; Guan, R.; Hong, J.; Zhang, W. Enhanced reversible lithium storage in ultrathin W18O49 nanowires entwined si composite anode. Materials Letters 2017, 187, 118-122.
    181. Zhang, W.; Yue, L.; Zhang, F.; Zhang, Q.; Gui, X.; Guan, R.; Hou, G.; Xu, N. One-step in situ synthesis of ultrathin tungsten oxide@ carbon nanowire webs as an anode material for high performance. Journal of Materials Chemistry A 2015, 3, 6102-6109.
    182. Liu, J.; Zhang, Z.; Wang, Z.; Tang, M.; Li, J.; Yi, J.; Zuo, T.; Wu, Y.; Ma, Q. Flower-like WO3/CoWO4/Co nanostructures as high performance anode for lithium ion batteries. Journal of Alloys and Compounds 2017, 727, 107-113.
    183. Lu, Y.; Jiang, Y.; Gao, X.; Wang, X.; Chen, W. Strongly coupled Pd nanotetrahedron/tungsten oxide nanosheet hybrids with enhanced catalytic activity and stability as oxygen reduction electrocatalysts. Journal of the American Chemical Society 2014, 136, 11687-11697.
    184. Kang, E.; An, S.; Yoon, S.; Kim, J.K.; Lee, J. Ordered mesoporous WO3−x possessing electronically conductive framework comparable to carbon framework toward long-term stable cathode supports for fuel cells. Journal of Materials Chemistry 2010, 20, 7416-7421.
    185. Kim, Y.S.; Ha, S.-C.; Kim, K.; Yang, H.; Choi, S.-Y.; Kim, Y.T.; Park, J.T.; Lee, C.H.; Choi, J.; Paek, J., et al. Room-temperature semiconductor gas sensor based on nonstoichiometric tungsten oxide nanorod film. Applied Physics Letters 2005, 86, 213105.
    186. Qin, Y.; Li, X.; Wang, F.; Hu, M. Solvothermally synthesized tungsten oxide nanowires/nanorods for NO2 gas sensor applications. Journal of Alloys and Compounds 2011, 509, 8401-8406.
    187. Boudiba, A.; Zhang, C.; Navio, C.; Bittencourt, C.; Snyders, R.; Debliquy, M. Preparation of highly selective, sensitive and stable hydrogen sensors based on Pd-doped tungsten trioxide. Procedia Engineering 2010, 5, 180-183.
    188. Rout, C.S.; Hegde, M.; Rao, C.N.R. H2s sensors based on tungsten oxide nanostructures. Sensors and Actuators B: Chemical 2008, 128, 488-493.
    189. Godbole, R.; Godbole, V.P.; Bhagwat, S. Surface morphology dependent tungsten oxide thin films as toxic gas sensor. Materials Science in Semiconductor Processing 2017, 63, 212-219.
    190. Stankova, M.; Vilanova, X.; Llobet, E.; Calderer, J.; Bittencourt, C.; Pireaux, J.; Correig, X. Influence of the annealing and operating temperatures on the gas-sensing properties of rf sputtered WO3 thin-film sensors. Sensors and Actuators B: Chemical 2005, 105, 271-277.
    191. Vallejos, S.; Gràcia, I.; Bravo, J.; Figueras, E.; Hubálek, J.; Cané, C. Detection of volatile organic compounds using flexible gas sensing devices based on tungsten oxide nanostructures functionalized with au and pt nanoparticles. Talanta 2015, 139, 27-34.
    192. Wang, T.; Hao, J.; Zheng, S.; Sun, Q.; Zhang, D.; Wang, Y. Highly sensitive and rapidly responding room-temperature NO2 gas sensors based on WO3 nanorods/sulfonated graphene nanocomposites. Nano Research 2018, 11, 791-803.
    REFERENCES

    1. Schiermeier, Q. Water risk as world warms. Nature News 2014, 505, 10.
    2. Song, C.; Li, T.; Guo, W.; Gao, Y.; Yang, C.; Zhang, Q.; An, D.; Huang, W.; Yan, M.; Guo, C. Hydrophobic Cu12Sb4S13-deposited photothermal film for interfacial water evaporation and thermal antibacterial activity. New Journal of Chemistry 2018, 42, 3175-3179.
    3. Chen, X.; Shen, S.; Guo, L.; Mao, S.S. Semiconductor-based photocatalytic hydrogen generation. Chemical Reviews 2010, 110, 6503-6570.
    4. Shang, M.; Li, N.; Zhang, S.; Zhao, T.; Zhang, C.; Liu, C.; Li, H.; Wang, Z. Full-spectrum solar-to-heat conversion membrane with interfacial plasmonic heating ability for high-efficiency desalination of seawater. ACS Applied Energy Materials 2017, 1, 56-61.
    5. Zhang, C.; Yan, C.; Xue, Z.; Yu, W.; Xie, Y.; Wang, T. Shape-controlled synthesis of high-quality Cu7S4 nanocrystals for efficient light-induced water evaporation. Small 2016, 12, 5320-5328.
    6. Grätzel, M. Photoelectrochemical cells. nature 2001, 414, 338.
    7. Shannon, M.A.; Bohn, P.W.; Elimelech, M.; Georgiadis, J.G.; Marinas, B.J.; Mayes, A.M. Science and technology for water purification in the coming decades. In Nanoscience and technology: A collection of reviews from nature journals, World Scientific: 2010; pp 337-346.
    8. Wang, Y.; Zhang, L.; Wang, P. Self-floating carbon nanotube membrane on macroporous silica substrate for highly efficient solar-driven interfacial water evaporation. ACS Sustainable Chemistry & Engineering 2016, 4, 1223-1230.
    9. Fang, J.; Liu, Q.; Zhang, W.; Gu, J.; Su, Y.; Su, H.; Guo, C.; Zhang, D. Ag/diatomite for highly efficient solar vapor generation under one-sun irradiation. Journal of Materials Chemistry A 2017, 5, 17817-17821.
    10. Latibari, S.T.; Sadrameli, S.M. Carbon based material included-shaped stabilized phase change materials for sunlight-driven energy conversion and storage: An extensive review. Solar Energy 2018, 170, 1130-1161.
    11. Chen, Q.; Pei, Z.; Xu, Y.; Li, Z.; Yang, Y.; Wei, Y.; Ji, Y. A durable monolithic polymer foam for efficient solar steam generation. Chemical science 2018, 9, 623-628.
    12. Wang, J.; Li, Y.; Deng, L.; Wei, N.; Weng, Y.; Dong, S.; Qi, D.; Qiu, J.; Chen, X.; Wu, T. High‐performance photothermal conversion of narrow‐bandgap Ti2O3 nanoparticles. Advanced Materials 2017, 29, 1603730.
    13. Chala, T.F.; Wu, C.-M.; Chou, M.-H.; Guo, Z.-L. Melt electrospun reduced tungsten oxide /polylactic acid fiber membranes as a photothermal material for light-driven interfacial water evaporation. ACS Applied Materials & Interfaces 2018, 10, 28955-28962.
    14. Ding, D.; Huang, W.; Song, C.; Yan, M.; Guo, C.; Liu, S. Non-stoichiometric MoO3−x quantum dots as a light-harvesting material for interfacial water evaporation. Chemical Communications 2017, 53, 6744-6747.
    15. Tao, F.; Zhang, Y.; Yin, K.; Cao, S.; Chang, X.; Lei, Y.; Wang, D.s.; Fan, R.; Dong, L.; Yin, Y. Copper sulfide-based plasmonic photothermal membrane for high-efficiency solar vapor generation. ACS applied materials & interfaces 2018, 10, 35154-35163.
    16. Yan, J.; Liu, P.; Ma, C.; Lin, Z.; Yang, G. Plasmonic near-touching titanium oxide nanoparticles to realize solar energy harvesting and effective local heating. Nanoscale 2016, 8, 8826-8838.
    17. Guo, C.; Yin, S.; Huang, L.; Sato, T. Synthesis of one-dimensional potassium tungsten bronze with excellent near-infrared absorption property. ACS Applied Materials & Interfaces 2011, 3, 2794-2799.
    18. Huang, W.; El-Sayed, M.A. Photothermally excited coherent lattice phonon oscillations in plasmonic nanoparticles. The European Physical Journal Special Topics 2008, 153, 325-333.
    19. Zeng, X.; Zhou, Y.; Ji, S.; Luo, H.; Yao, H.; Huang, X.; Jin, P. The preparation of a high performance near-infrared shielding CsxWO3/SiO2 composite resin coating and research on its optical stability under ultraviolet illumination. Journal of Materials Chemistry C 2015, 3, 8050-8060.
    20. Sun, L.; Li, Z.; Su, R.; Wang, Y.; Li, Z.; Du, B.; Sun, Y.; Guan, P.; Besenbacher, F.; Yu, M. Phase-transition induced conversion into a photothermal material: Quasi-metallic WO2.9 nanorods for solar water evaporation and anticancer photothermal therapy. Angewandte Chemie International Edition 2018, 57, 10666-10671.
    21. Wu, C.-M.; Naseem, S.; Chou, M.-H.; Wang, J.-H.; Jian, Y.-Q. Recent advances in tungsten-oxide-based materials and their applications. Frontiers in Materials 2019, 6.
    22. Shi, L.; Wang, Y.; Zhang, L.; Wang, P. Rational design of a bi-layered reduced graphene oxide film on polystyrene foam for solar-driven interfacial water evaporation. Journal of Materials Chemistry A 2017, 5, 16212-16219.
    23. Zhang, F.; Zhang, Z.; Zhou, T.; Liu, Y.; Leng, J. Shape memory polymer nanofibers and their composites: Electrospinning, structure, performance, and applications. Frontiers in Materials 2015, 2, 62.
    24. Merlini, C.; Barra, G.; Araujo, T.M.; Pegoretti, A. Electrically pressure sensitive poly (vinylidene fluoride)/polypyrrole electrospun mats. RSC Advances 2014, 4, 15749-15758.
    25. Mahant, Y.P.; Kondawar, S.B.; Nandanwar, D.V.; Koinkar, P. Poly (methyl methacrylate) reinforced poly (vinylidene fluoride) composites electrospun nanofibrous polymer electrolytes as potential separator for lithium ion batteries. Materials for Renewable and Sustainable Energy 2018, 7, 5.
    26. Li, J.; Gao, F.; Liu, L.; Zhang, Z. Needleless electro-spun nanofibers used for filtration of small particles. Express Polymer Letters 2013, 7.
    27. Rolandi, M.; Rolandi, R. Self-assembled chitin nanofibers and applications. Advances in Colloid and Interface Science 2014, 207, 216-222.
    28. Ma, P.X.; Zhang, R. Synthetic nano-scale fibrous extracellular matrix. Journal of Biomedical Materials Research 1999, 46, 60-72.
    29. Naseem, S.; Wu, C.-M.; Xu, T.-Z.; Lai, C.-C.; Rwei, S.-P. Oil-water separation of electrospun cellulose triacetate nanofiber membranes modified by electrophoretically deposited TiO2/graphene oxide. Polymers 2018, 10, 746.
    30. Bhardwaj, N.; Kundu, S.C. Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances 2010, 28, 325-347.
    31. Wang, P. Emerging investigator series: The rise of nano-enabled photothermal materials for water evaporation and clean water production by sunlight. Environmental Science: Nano 2018, 5, 1078-1089.
    32. Hutmacher, D.W.; Dalton, P.D. Melt electrospinning. Chemistry – An Asian Journal 2011, 6, 44-56.
    33. Wu, X.; Wang, J.; Zhang, G.; Katsumata, K.-i.; Yanagisawa, K.; Sato, T.; Yin, S. Series of MxWO3/ZnO (M= K, Rb, NH4) nanocomposites: Combination of energy saving and environmental decontamination functions. Applied Catalysis B: Environmental 2017, 201, 128-136.
    34. Wu, X.; Yin, S.; Xue, D.; Komarneni, S.; Sato, T. A CsxWO3/ZnO nanocomposite as a smart coating for photocatalytic environmental cleanup and heat insulation. Nanoscale 2015, 7, 17048-17054.
    35. Hua, Z.; Li, B.; Li, L.; Yin, X.; Chen, K.; Wang, W. Designing a novel photothermal material of hierarchical microstructured copper phosphate for solar evaporation enhancement. The Journal of Physical Chemistry C 2017, 121, 60-69.
    36. Guo, C.; Yin, S.; Dong, Q.; Sato, T. Near-infrared absorption properties of RbxWO3 nanoparticles. CrystEngComm 2012, 14, 7727-7732.
    37. Wen, R.; Ma, X.; Lee, Y.-C.; Yang, R. Liquid-vapor phase-change heat transfer on functionalized nanowired surfaces and beyond. Joule 2018, 2, 2307-2347.
    38. Gao, M.; Zhu, L.; Peh, C.K.; Ho, G.W. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy & Environmental Science 2018.
    39. Wang, Y.; Wang, C.; Song, X.; Megarajan, S.K.; Jiang, H. A facile nanocomposite strategy to fabricate a rGO–MWCNT photothermal layer for efficient water evaporation. Journal of Materials Chemistry A 2018, 6, 963-971.
    40. Yang, Y.; Zhao, R.; Zhang, T.; Zhao, K.; Xiao, P.; Ma, Y.; Ajayan, P.M.; Shi, G.; Chen, Y. Graphene-based standalone solar energy converter for water desalination and purification. ACS Nano 2018, 12, 829-835.
    41. Yi, L.; Qi, D.; Shao, P.; Lei, C.; Hou, Y.; Cai, P.; Wang, G.; Chen, X.; Wen, Z. Hollow black TiAlOx nanocomposites for solar thermal desalination. Nanoscale 2019, 11, 9958-9968.
    42. Jiang, F.; Liu, H.; Li, Y.; Kuang, Y.; Xu, X.; Chen, C.; Huang, H.; Jia, C.; Zhao, X.; Hitz, E., et al. Lightweight, mesoporous, and highly absorptive all-nanofiber aerogel for efficient solar steam generation. ACS Applied Materials & Interfaces 2018, 10, 1104-1112.
    43. Zhao, L.; Yang, Q.; Guo, W.; Liu, H.; Ma, T.; Qu, F. Co2.67S4-based photothermal membrane with high mechanical properties for efficient solar water evaporation and photothermal antibacterial applications. ACS Applied Materials & Interfaces 2019, 11, 20820-20827.
    44. Ming, X.; Guo, A.; Wang, G.; Wang, X. Two-dimensional defective tungsten oxide nanosheets as high performance photo-absorbers for efficient solar steam generation. Solar Energy Materials and Solar Cells 2018, 185, 333-341.
    45. Chang, Y.; Wang, Z.; Shi, Y.-e.; Ma, X.; Ma, L.; Zhang, Y.; Zhan, J. Hydrophobic W18O49 mesocrystal on hydrophilic ptfe membrane as an efficient solar steam generation device under one sun. Journal of Materials Chemistry A 2018, 6, 10939-10946.

    REFERENCES

    1. Jury, W.A.; Vaux Jr, H.J. The emerging global water crisis: Managing scarcity and conflict between water users. Advances in agronomy 2007, 95, 1-76.
    2. Schiermeier, Q. Water risk as world warms. Nature 2014, 505, 10-11.
    3. Rosenzweig, C.; Elliott, J.; Deryng, D.; Ruane, A.C.; Müller, C.; Arneth, A.; Boote, K.J.; Folberth, C.; Glotter, M.; Khabarov, N., et al. Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proceedings of the National Academy of Sciences 2014, 111, 3268-3273.
    4. Prudhomme, C.; Giuntoli, I.; Robinson, E.L.; Clark, D.B.; Arnell, N.W.; Dankers, R.; Fekete, B.M.; Franssen, W.; Gerten, D.; Gosling, S.N., et al. Hydrological droughts in the 21st century, hotspots and uncertainties from a global multimodel ensemble experiment. Proceedings of the National Academy of Sciences 2014, 111, 3262-3267.
    5. Dankers, R.; Arnell, N.W.; Clark, D.B.; Falloon, P.D.; Fekete, B.M.; Gosling, S.N.; Heinke, J.; Kim, H.; Masaki, Y.; Satoh, Y., et al. First look at changes in flood hazard in the inter-sectoral impact model intercomparison project ensemble. Proceedings of the National Academy of Sciences 2014, 111, 3257-3261.
    6. Oki, T.; Kanae, S. Global hydrological cycles and world water resources. Science 2006, 313, 1068-1072.
    7. Zhang, L.; Tang, B.; Wu, J.; Li, R.; Wang, P. Hydrophobic light-to-heat conversion membranes with self-healing ability for interfacial solar heating. Adv. Mater. 2015, 27, 4889.
    8. Song, C.; Li, T.; Guo, W.; Gao, Y.; Yang, C.; Zhang, Q.; An, D.; Huang, W.; Yan, M.; Guo, C. Hydrophobic Cu12Sb4S13-deposited photothermal film for interfacial water evaporation and thermal antibacterial activity. New Journal of Chemistry 2018, 42, 3175-3179.
    9. Zahedi, A. Solar photovoltaic (pv) energy; latest developments in the building integrated and hybrid pv systems. Renewable Energy 2006, 31, 711-718.
    10. Olsen, M.L.; Warren, E.L.; Parilla, P.A.; Toberer, E.S.; Kennedy, C.E.; Snyder, G.J.; Firdosy, S.A.; Nesmith, B.; Zakutayev, A.; Goodrich, A., et al. A high-temperature, high-efficiency solar thermoelectric generator prototype. Energy Procedia 2014, 49, 1460-1469.
    11. Chala, T.F.; Wu, C.-M.; Motora, K.G. RbxWO3/Ag3VO4 nanocomposites as efficient full-spectrum (UV, visible, and near-infrared) photocatalysis. Journal of the Taiwan Institute of Chemical Engineers 2019, 102, 465-474.
    12. Dini, D. Hydrogen production through solar energy water electrolysis. International Journal of Hydrogen Energy 1983, 8, 897-903.
    13. Li, J.; Wu, N. Semiconductor-based photocatalysts and photoelectrochemical cells for solar fuel generation: A review. Catalysis Science & Technology 2015, 5, 1360-1384.
    14. Fu, Y.; Wang, G.; Mei, T.; Li, J.; Wang, J.; Wang, X. Accessible graphene aerogel for efficiently harvesting solar energy. ACS Sustainable Chemistry & Engineering 2017, 5, 4665-4671.
    15. Huang, Z.-F.; Song, J.; Pan, L.; Zhang, X.; Wang, L.; Zou, J.-J. Tungsten oxides for photocatalysis, electrochemistry, and phototherapy. Advanced Materials 2015, 27, 5309-5327.
    16. Zhenzhen, G.; Xin, M.; Gang, W.; Baofei, H.; Xinghang, L.; Tao, M.; Jinhua, L.; Jianying, W.; Xianbao, W. Super-hydrophilic copper sulfide films as light absorbers for efficient solar steam generation under one sun illumination. Semiconductor Science and Technology 2018, 33, 025008.
    17. Gao, M.; Zhu, L.; Peh, C.K.; Ho, G.W. Solar absorber material and system designs for photothermal water vaporization towards clean water and energy production. Energy & Environmental Science 2018.
    18. Hu, X.; Xu, W.; Zhou, L.; Tan, Y.; Wang, Y.; Zhu, S.; Zhu, J. Tailoring graphene oxide-based aerogels for efficient solar steam generation under one sun. Advanced Materials 2017, 29, 1604031.
    19. Kou, H.; Liu, Z.; Zhu, B.; Macharia, D.K.; Ahmed, S.; Wu, B.; Zhu, M.; Liu, X.; Chen, Z. Recyclable CNT-coupled cotton fabrics for low-cost and efficient desalination of seawater under sunlight. Desalination 2019, 462, 29-38.
    20. Lou, J.; Liu, Y.; Wang, Z.; Zhao, D.; Song, C.; Wu, J.; Dasgupta, N.; Zhang, W.; Zhang, D.; Tao, P. Bioinspired multifunctional paper-based rGO composites for solar-driven clean water generation. ACS applied materials & interfaces 2016, 8, 14628-14636.
    21. Huang, J.; He, Y.; Chen, M.; Jiang, B.; Huang, Y. Solar evaporation enhancement by a compound film based on au@ TiO2 core–shell nanoparticles. Solar Energy 2017, 155, 1225-1232.
    22. Huang, J.; Ma, D.; Chen, F.; Chen, D.; Bai, M.; Xu, K.; Zhao, Y. Green in situ synthesis of clean 3D chestnutlike Ag/WO3–x nanostructures for highly efficient, recyclable and sensitive sers sensing. ACS Applied Materials & Interfaces 2017, 9, 7436-7446.
    23. Wang, Z.; Liu, Y.; Tao, P.; Shen, Q.; Yi, N.; Zhang, F.; Liu, Q.; Song, C.; Zhang, D.; Shang, W. Bio‐inspired evaporation through plasmonic film of nanoparticles at the air–water interface. Small 2014, 10, 3234-3239.
    24. Zeng, W.; Suo, L.; Zhang, C.; Wu, D.; Zhu, H. AgI–Ag2S heterostructures for photothermal conversion and solar energy harvesting. Journal of the Taiwan Institute of Chemical Engineers 2018.
    25. Zhang, C.; Yan, C.; Xue, Z.; Yu, W.; Xie, Y.; Wang, T. Shape-controlled synthesis of high-quality Cu7S4 nanocrystals for efficient light-induced water evaporation. Small 2016, 12, 5320-5328.
    26. Zhao, L.; Yang, Q.; Guo, W.; Liu, H.; Ma, T.; Qu, F. Co2.67S4-based photothermal membrane with high mechanical properties for efficient solar water evaporation and photothermal antibacterial applications. ACS Applied Materials & Interfaces 2019, 11, 20820-20827.
    27. Shi, Y.; Li, R.; Shi, L.; Ahmed, E.; Jin, Y.; Wang, P. A robust CuCr2O4/SiO2 composite photothermal material with underwater black property and extremely high thermal stability for solar‐driven water evaporation. Advanced Sustainable Systems 2018, 2, 1700145.
    28. Jiang, Q.; Tian, L.; Liu, K.K.; Tadepalli, S.; Raliya, R.; Biswas, P.; Naik, R.R.; Singamaneni, S. Bilayered biofoam for highly efficient solar steam generation. Adv. Mater. 2016, 28, 9400.
    29. Jiang, Q.; Gholami Derami, H.; Ghim, D.; Cao, S.; Jun, Y.-S.; Singamaneni, S. Polydopamine-filled bacterial nanocellulose as a biodegradable interfacial photothermal evaporator for highly efficient solar steam generation. Journal of Materials Chemistry A 2017, 5, 18397-18402.
    30. Chen, Q.; Pei, Z.; Xu, Y.; Li, Z.; Yang, Y.; Wei, Y.; Ji, Y. A durable monolithic polymer foam for efficient solar steam generation. Chemical science 2018, 9, 623-628.
    31. Chala, T.F.; Wu, C.-M.; Chou, M.-H.; Guo, Z.-L. Melt electrospun reduced tungsten oxide /polylactic acid fiber membranes as a photothermal material for light-driven interfacial water evaporation. ACS Applied Materials & Interfaces 2018, 10, 28955-28962.
    32. Ding, D.; Huang, W.; Song, C.; Yan, M.; Guo, C.; Liu, S. Non-stoichiometric MoO3−x quantum dots as a light-harvesting material for interfacial water evaporation. Chemical Communications 2017, 53, 6744-6747.
    33. Tao, F.; Zhang, Y.; Yin, K.; Cao, S.; Chang, X.; Lei, Y.; Wang, D.s.; Fan, R.; Dong, L.; Yin, Y. Copper sulfide-based plasmonic photothermal membrane for high-efficiency solar vapor generation. ACS applied materials & interfaces 2018, 10, 35154-35163.
    34. Yan, J.; Liu, P.; Ma, C.; Lin, Z.; Yang, G. Plasmonic near-touching titanium oxide nanoparticles to realize solar energy harvesting and effective local heating. Nanoscale 2016, 8, 8826-8838.
    35. Chen, R.; Zhu, K.; Gan, Q.; Yu, Y.; Zhang, T.; Liu, X.; Ye, M.; Yin, Y. Interfacial solar heating by self-assembled Fe3O4@C film for steam generation. Materials Chemistry Frontiers 2017, 1, 2620-2626.
    36. Yang, X.; Yang, Y.; Fu, L.; Zou, M.; Li, Z.; Cao, A.; Yuan, Q. An ultrathin flexible 2D membrane based on single-walled nanotube–MoS2 hybrid film for high-performance solar steam generation. Advanced Functional Materials 2018, 28, 1704505.
    37. Zhu, L.; Sun, L.; Zhang, H.; Yu, D.; Aslan, H.; Zhao, J.; Li, Z.; Yu, M.; Besenbacher, F.; Sun, Y. Dual-phase molybdenum nitride nanorambutans for solar steam generation under one sun illumination. Nano Energy 2019, 57, 842-850.
    38. Chala, T.F.; Wu, C.-M.; Chou, M.-H.; Gebeyehu, M.B.; Cheng, K.-B. Highly efficient near infrared photothermal conversion properties of reduced tungsten oxide/polyurethane nanocomposites. Nanomaterials 2017, 7, 191.
    39. Naseem, S.; Wu, C.-M.; Chala, T.F. Photothermal-responsive tungsten bronze/recycled cellulose triacetate porous fiber membranes for efficient light-driven interfacial water evaporation. Solar Energy 2019, 194, 391-399.
    40. Zeng, X.; Zhou, Y.; Ji, S.; Luo, H.; Yao, H.; Huang, X.; Jin, P. The preparation of a high performance near-infrared shielding CsxWO3/SiO2 composite resin coating and research on its optical stability under ultraviolet illumination. Journal of Materials Chemistry C 2015, 3, 8050-8060.
    41. Zhou, L.; Tan, Y.; Wang, J.; Xu, W.; Yuan, Y.; Cai, W.; Zhu, S.; Zhu, J. 3d self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination. Nature Photonics 2016, 10, 393-398.
    42. Zhang, F.; Li, Y.; Bai, X.; Wang, S.; Liang, B.; Fu, G.; Wu, Z.-S. Synthesis of mesoporous Fe3Si aerogel as a photo-thermal material for highly efficient and stable corrosive-water evaporation. Journal of Materials Chemistry A 2018, 6, 23263-23269.
    43. Shi, L.; He, Y.; Huang, Y.; Jiang, B. Recyclable Fe3O4@CNT nanoparticles for high-efficiency solar vapor generation. Energy Conversion and Management 2017, 149, 401-408.
    44. Naseem, S.; Wu, C.-M.; Xu, T.-Z.; Lai, C.-C.; Rwei, S.-P. Oil-water separation of electrospun cellulose triacetate nanofiber membranes modified by electrophoretically deposited TiO2/graphene oxide. Polymers 2018, 10, 746.
    45. Wu, X.; Wang, J.; Zhang, G.; Katsumata, K.-i.; Yanagisawa, K.; Sato, T.; Yin, S. Series of MxWO3/ZnO (M= K, Rb, NH4) nanocomposites: Combination of energy saving and environmental decontamination functions. Applied Catalysis B: Environmental 2017, 201, 128-136.
    46. Wu, X.; Yin, S.; Xue, D.; Komarneni, S.; Sato, T. A CsxWO3/ZnO nanocomposite as a smart coating for photocatalytic environmental cleanup and heat insulation. Nanoscale 2015, 7, 17048-17054.
    47. Hua, Z.; Li, B.; Li, L.; Yin, X.; Chen, K.; Wang, W. Designing a novel photothermal material of hierarchical microstructured copper phosphate for solar evaporation enhancement. The Journal of Physical Chemistry C 2017, 121, 60-69.
    48. Guo, C.; Yin, S.; Dong, Q.; Sato, T. Near-infrared absorption properties of RbxWO3 nanoparticles. CrystEngComm 2012, 14, 7727-7732.
    49. Chen, R.; Wu, Z.; Zhang, T.; Yu, T.; Ye, M. Magnetically recyclable self-assembled thin films for highly efficient water evaporation by interfacial solar heating. RSC Advances 2017, 7, 19849-19855.
    50. Shang, M.; Li, N.; Zhang, S.; Zhao, T.; Zhang, C.; Liu, C.; Li, H.; Wang, Z. Full-spectrum solar-to-heat conversion membrane with interfacial plasmonic heating ability for high-efficiency desalination of seawater. ACS Applied Energy Materials 2017, 1, 56-61.
    51. Tao, P.; Ni, G.; Song, C.; Shang, W.; Wu, J.; Zhu, J.; Chen, G.; Deng, T. Solar-driven interfacial evaporation. Nature energy 2018, 3, 1031-1041.
    52. Zhou, H.; Guo, Z. Superwetting janus membranes: Focusing on unidirectional transport behaviors and multiple applications. Journal of Materials Chemistry A 2019, 7, 12921-12950.
    53. Yu, S.; Zhang, Y.; Duan, H.; Liu, Y.; Quan, X.; Tao, P.; Shang, W.; Wu, J.; Song, C.; Deng, T. The impact of surface chemistry on the performance of localized solar-driven evaporation system. Scientific Reports 2015, 5, 13600.
    54. Chen, Y.; An, D.; Sun, S.; Gao, J.; Qian, L. Reduction and removal of chromium VI in water by powdered activated carbon. Materials (Basel) 2018, 11, 269.
    55. Jahan, K.; Kumar, N.; Verma, V. Removal of hexavalent chromium from potable drinking using a polyaniline-coated bacterial cellulose mat. Environmental Science: Water Research & Technology 2018, 4, 1589-1603.
    56. Al-Karaghouli, A.; Kazmerski, L.L. Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes. Renewable and Sustainable Energy Reviews 2013, 24, 343-356.

    無法下載圖示 全文公開日期 2025/07/16 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE