簡易檢索 / 詳目顯示

研究生: 陳奕廷
I-Ting Chen
論文名稱: 以熔融靜電紡絲法製備微奈米纖維膜於過濾特性之研究
The Study of Melting Electrospun Fibrous Membrane for Air Filtration
指導教授: 吳昌謀
Chang-Mou Wu
口試委員: 邱智瑋
Chih-Wei Chiu
黃博雄
Po-Hsiung Huang
黃旭曄
Hsu-Yeh Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 67
中文關鍵詞: 熔融靜電紡絲聚乳酸孔隙率表面電位過濾效能
外文關鍵詞: melting electrospinning, PLA, porosity, surface potential, filtration efficiency
相關次數: 點閱:305下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用自行組裝熔融型靜電紡絲設備開發聚乳酸(PLA)靜電紡絲纖維膜,探討不同纖維膜的基重對過濾效能的影響,並應用於空氣過濾。
    實驗第1部份為探討不同紡絲參數對纖維的影響,利用不同的工作電壓進行測試,找出最佳電紡參數,操作工作電壓為30 kV、35 kV、40 kV,纖維直徑為14.71 μm、11.97 μm、7.48 μm,再來靜電紡絲成纖維膜,進行孔隙率、孔徑分佈、表面電位的分析,最後進行過濾效能的檢測,探討不同的纖維基重對過濾效能的影響。另一方面,結合熔融型靜電紡絲與溶液型靜電紡絲,將熔融靜電紡絲纖維膜複合溶液型靜電紡絲奈米纖維為微奈米靜電紡絲複合纖維膜,進行孔徑分佈以及過濾效能分析,並與相關文獻相互探討其過濾效能的影響。
    由結果顯示,熔融靜電紡絲纖維膜的孔隙率高達92 %,孔徑分佈最終為90 μm,表面電位在穩定後為2 kV,過濾效能為70 %,壓損係數為0.2 mmH2O;微奈米複合纖維膜的孔徑分佈為11 μm,過濾效能為96 %,壓損係數為6.5 mmH2O。


    In this study, Polylactic acid (PLA)-based membranes were manufactured by the technique of melting electrospinning to explore the effect of filtration efficiency for different basis weight of fiber membrane, and applied to air filtration.
    The fiber diameter range of PLA fiber membranes approached 7.48 μm to 14.71 μm as the applied voltage reached corresponding optimum parameter. The porosity, pore size distribution, surface potential, and filtration efficiency were tested for fiber membranes. On the other hand, combining melting type electrospinning and solution type electrospinning to micro-nano electrospinning fiber membranes to explore the effect of filtration efficiency.
    The results show that, porosity was 92 %, pore size was 90 μm, surface potential was 2 kV after stabilization, filtration efficiency was 70 %, and pressure drop was 0.2 mmH2O for melting electrospinning fiber membranes. For micro-nano electrospinning fiber membranes, pore size was 11 μm, filtration efficiency was 96 %, and pressure drop was 6.5 mmH2O.

    摘 要 I ABSTRACT II 目 錄 III 圖 目 錄 VI 表 目 錄 IX 第一章、前言 10 1.1 研究背景 10 1.2研究目的 12 第二章、文獻回顧 13 2.1 靜電紡絲 13 2.2溶液型靜電紡絲裝置 15 2.3熔融型靜電紡絲裝置 18 2.4 纖維不織布於空氣過濾之研究 21 2.5 空氣微粒過濾原理與機制 28 第三章、實驗 30 3.1 實驗材料與儀器 30 3.2 實驗流程 31 第1部分 31 第2部分 32 3.3實驗步驟 33 3.3.1 材料流變性質測定 33 3.3.2 PLA線材製備 33 3.3.3 熔融靜電紡絲設備裝置 34 3.3.4 熔噴不織布與駐極熔噴不織布製備 36 3.3.5 溶液靜電紡絲纖維製備 37 3.3.6 SES纖維膜製備 37 3.3.5 纖維膜分析 38 3.3.6 靜電紡絲纖維膜之表面電位量測 39 3.3.7 孔隙率量測 39 3.3.8 孔徑分析 39 3.3.9 基重 40 3.3.10 拉伸測試 41 3.3.11 空氣微粒過濾效能評估 41 3.3.12 效能指標 (Quality factors,Qf)計算 42 第四章、結果與討論 43 4.1 熔融靜電紡絲纖維(MES)特性 43 4.1.1 纖維形貌 43 4.1.2 纖維膜基重 44 4.1.3 纖維膜拉伸測試 44 4.1.4 纖維膜孔隙率分析 45 4.1.5 纖維膜孔徑特性分析 45 4.1.6 纖維膜表面電位分析 46 4.1.7 小結 47 4.2 不同纖維濾材之過濾效能 49 4.2.1 纖維形貌 49 4.2.2 孔隙率分析 50 4.2.3 孔徑分析 52 4.2.4 過濾效能的檢測 53 4.2.5 纖維濾材的評估 56 4.2.6 小結 60 第五章、結論 61 參考文獻 62

    [1] 詹煜銘,奈米微粒於薄膜過濾下之負載特性之研究,國立臺灣大學碩士學位論文,2006。
    [2] P. Chen, X. Bi, J. Zhang, J. Wu, Y. Feng. Assessment of heavy metal pollution characteristics and human health risk of exposure to ambient PM2.5 in Tianjin, China. Particuology. 2015;20:104-109.
    [3] L. A. McGuinn, C. K. W. Caviness, L. M. Neas AS, D. D. Sanchez, W. E. Cascio, W. E. Kraus, E. Hauser, E. Dowdy, C. Haynes, A. Chudnovsky, P. Koutrakis , R. B. Devlin. Association betweensatellite-based estimates of long-term PM2.5 exposure and coronary artery disease. EnvironmentalResearch. 2016;145:9-17.
    [4] W. Huang, J. Cao, Y. Tao, L. Dai, S. E. Lu, B. Hou, Z. Wang, T. Zhu. Seasonal Variation of Chemical Species Associated With Short-Term Mortality Effects of PM2.5 in Xi'an, a Central City in China. Epidemiology. 2012;175:556-566.
    [5] 程裕祥,空氣過濾器材料特性與過濾機制,化工技術,2004;12:133-147。
    [6] 吳大誠,杜仲良,高緒珊,奈米纖維,五南圖書出版。
    [7] J. S. Kim, D. H. Reneker. Mechanical properties of composites using ultrafine electrospun fibers. Polymer Composites. Polymer Composites. 1999;20:124-131.
    [8] J. D. Stitzel, K. J. Pawloski, G. E. Wnek, D. G. Simpson, G. L. Bowlin. Arterial smooth muscle cell proliferation on a novel biomimicking, biodegradable vascular graft scaffold. Journal of biomaterials applications. 2001;16:22-33.
    [9] P. Gibson, H. S. Gibson, D. Rivin. Transport properties of porous membranes based on electrospun nanofibers. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2001;187-188:469-481.
    [10] A. Pedicini, R. J. Farris. Thermally induced color change in electrospun fiber mats. Journal of Polymer Science Part B: Polymer Physics. 2004;42:752-757.
    [11] D. A. Saville. Stability of Electrically Charged Viscous Cylinders. Physics of Fluids. 1971;14:1096-1099.
    [12] K. M. Nampoothiri, N. R. Nair, R. P. John. An overview of the recent developments in polylactide (PLA) research. Bioresource Technology. 2010;101:8493-8501.
    [13] C. Wang, H. S. Chien, C. H. Hsu, Y. C. Wang, C. T. Wang, H. A. Lu. Electrospinning of Polyacrylonitrile Solutions at Elevated Temperatures. Macromolecules. 2007;40:7973-7983.
    [14] D. H Reneker, I. Chun. Nanometre diameter fibres of polymer, produced by electrospinning. Nanotechnology. 1996;7:216.
    [15] G. C. Rutledge, S. V. Fridrikh. Formation of fibers by electrospinning. Advanced Drug Delivery Reviews. 2007;59:1384-1391.
    [16] F. E. Ahmed, B. S. Lalia, N. Hilal, R. Hashaikeh. Underwater superoleophobic cellulose/electrospun PVDF–HFP membranes for efficient oil/water separation. Desalination. 2014;344:48-54.
    [17] S. Lingaiah, K. Shivakumar. Electrospun high temperature polyimide nanopaper. European Polymer Journal. 2013;49:2101-2108.
    [18] C. M. Wu, H. G. Chiou, S. L. Lin, J. M. Lin. Effects of Electrostatic Polarity and the Types of Electrical Charging on Electrospinning Behavior. Journal of Applied Polymer Science. 2012;126:E87-E97.
    [19] L. Wu, X. Yuan, J. Sheng. Immobilization of cellulase in nanofibrous PVA membranes by electrospinning. Journal of Membrane Science. 2005;250:167-173.
    [20] E. Smia, U. Büttner, R. D. Sanderson. Continuous yarns from electrospun fibers. Polymer. 2005;46:2419-2423.
    [21] A. L. Yarin, E. Zussman. Upward needleless electrospinning of multiple nanofibers. Polymer. 2004;45:2977-2980.
    [22] Z. Sun, E. Zussman, A. L. Yarin, J. H. Wendorff, A. Greiner. Compound Core–Shell Po1lymer Nanofibers by Co-Electrospinning. Advanced Materials. 2003;15:1929-1932.
    [23] H. L. S. Gibson, P. Gibson, P. Tsai, P. Gupta, G. Wilkes. Cooperative charging effects of fibers from electrospinning of electrically dissimilar polymers. 2005.
    [24] L. Larrondo, R. S. J. Manley. Electrostatic fiber spinning from polymer melts. I. Experimental observations on fiber formation and properties. Journal of Polymer Science: Polymer Physics Edition. 1981;19:909-920.
    [25] L. Larrondo, R. S. J. Manley. Electrostatic fiber spinning from polymer melts. II. Examination of the flow field in an electrically driven jet. Journal of Polymer Science: Polymer Physics Edition. 1981;19:921-932.
    [26] L. Larrondo, R. S. J. Manley. Electrostatic fiber spinning from polymer melts. III. Electrostatic deformation of a pendant drop of polymer melt. Journal of Polymer Science: Polymer Physics Edition. 1981;19:933-940.
    [27] J. Lyons, C. Li, F. Ko. Melt-electrospinning part I-processing parameters and geometric properties. Polymer. 2004;45:7597-7603.
    [28] H. Zhou, T. B. Green, Y. L. Joo. The thermal effects on electrospinning of polylactic acid melts. polymer. 2006;47:7497-7505.
    [29] N. Ogata, S. Yamaguchi, N. Shimada, G. Lu, T. Iwata, K. Nakane, T. Ogihara. Poly (lactide) nanofibers produced by a melt‐electrospinning system with a laser melting device. Journal of Applied Polymer Science. 2007;104:1640-1645.
    [30] Y. Lee, L. C. Wadsworth. Structure and Filtration Properties of Melt Blown Polypropylene Webs. Polymer Engineering & Science. 1990;30(20):1413-1419.
    [31] A. Brochocka, K. Majchrzycka. Technology for the Production of Bioactive Melt-Blown Filtration Materials Applied to Respiratory Protective Devices. Fibres & Textiles in Eastern Europe. 2009;17(5):92-98.
    [32] B. Yu, J. Han, X. He, G. Xu, X. Ding. Effects of Tourmaline Particles on Structure and Properties of Polypropylene Filtration Melt-Blown Nonwoven Electrets. Journal of Macromolecular Science, Part B: Physics. 2012;51(4):619-629.
    [33] M. A. Hassan, B. Y. Yeom, A. Wilkie, B. Pourdeyhimi, S. A. Khan. Fabrication of nanofiber meltblown membranes and their filtration properties. Journal of Membrane Science. 2013;427:336-344.
    [34] H. Xiao, Y. Song, G. Chen. Correlation between charge decay and solvent effect for melt-blown polypropylene electret filter fabrics. Journal of Electrostatics. 2014;72:311-314.
    [35] H. S. Park, Y. O. Park. Filtration properties of electrospun ultrafine fiber webs. Korean Journal of Chemical Engineering. 2005;22:165-172.
    [36] A. Podgórski, A. Bałazy, L. Gradoń. Application of nanofibers to improve the filtration efficiency of the most penetrating aerosol particles in fibrous filters. Chemical Engineering Science. 2006;61(20):6804-6815.
    [37] K. M. Yun, J. C. J. Hogan, Y. Matsubayashi, M. Kawabe, F. Iskandar, K. Okuyama. Nanoparticle filtration by electrospun polymer fibers. Chemical Engineering Science. 2007;62:4751-4759.
    [38] K. Kim, C. Lee, I. W. Kim, J. Kim. Performance Modification of a Melt-blown Filter Medium via an Additional Nano-web Layer Prepared by Electrospinning. Fibers and Polymers. 2009;10:60-64.
    [39] S. Zhang, W. S. Shim, J. Kim. Design of ultra-fine nonwovens via electrospinning of Nylon 6-Spinning parameters and filtration efficiency. Materials and Design. 2009;30:3659-3666.
    [40] K. Desai, K. Kit, J. Li, P. Michael Davidson, S. Zivanovic, H. Meyer. Nanofibrous chitosan non-wovens for filtration applications. Polymer. 2009;50(15):3661-3669.
    [41] Z. Wang, Z. Pan. Preparation of hierarchical structured nano-sized porous poly(lactic acid) composite fibrous membranes for air filtration. Applied Surface Science. 2015;356:1168-1179.
    [42] 黃盛修,陳春萬,張振平,陳志傑,纖維性濾材與小型靜電集塵器之過濾特性探討,化工技術,2008;16:151-169。
    [43] 柯尚亨,熔融靜電紡絲行為及性能之研究,逢甲大學碩士學位論文, 2012。
    [44] 高子豪,以靜電紡絲法製備高效能奈米纖維濾膜,國立台灣科技大學碩士學位論文,2010。
    [45] Z. Ma, M. Kotaki, T. Yong, W. He, S. Ramakrishna. Surface engineering of electrospun polyethylene terephthalate (PET) nanofibers towards development of a new material for blood vessel engineering. Biomaterials. 2005;26:2527-2736.
    [46] J. Wang, S. C. Kim, D. Y. H. Pui. Investigation of the figure of merit for filters with a single nanofiber layer on a substrate. Journal of Aerosol Science. 2008;39(4):323-334.
    [47] M. Ignatova, T. Yovcheva, A. Viraneva , G. Mekishev, N. Manolova, I. Rashkov. Study of charge storage in the nanofibrous poly(ethylene terephthalate) electrets prepared by electrospinning or by corona discharge method. European Polymer Journal. 2008;44:1962-1967.

    無法下載圖示 全文公開日期 2021/07/15 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE