簡易檢索 / 詳目顯示

研究生: 戴辰軒
Chen-Hsuan Tai
論文名稱: 聚乳酸與生物玻璃微球之生物相容性複合材料於射出成形之機械性質與生物醫療應用
Study on Biocompatible Poly(lactic acid) Composites with Bioglass Microspheres for Mechanical Properties and Biomedical Application by Injection Molding
指導教授: 陳炤彰
Chao-Chang Chen
口試委員: 楊申語
Sen-YeuYang
葉力森
Lih-Seng Yeh
周育任
Yu-Jen Chou
莊程媐
Cheng-Hsi Chuang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 177
中文關鍵詞: 聚乳酸複合材料58S生物玻璃微型射出成形微型拉伸試片生物活性
外文關鍵詞: PLA Composites, 58S Bioglass, Micro Injection Molding, Micro Tensile Rod, Bioactivity
相關次數: 點閱:187下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究研發聚乳酸(Polylactic Acid, PLA)添加58S生物玻璃微球(58S Bioglass Microsphere, 58S BG)複合材料改善微型生物骨支架之力學性質,並依據德國德勒斯登聚合物研究中心(IPF)所設計之新型微型拉伸試片進行模具設計開發,以三因子兩水準的實驗設計(DoE)探討射出成形參數對微觀型態的力學性質。根據實驗設計對熔融溫度(Tmelt) 、射出速度(Vinj)、保壓壓力(Ppack)的參數變異分析,單流向與具縫合線的微型拉伸試片中,由於較低熔融溫度所生成較厚實的凝固表皮層,有助於提升材料整體的機械性質;而添加5-10wt% BG顆粒的PLA複合材料,楊氏模數從13.7 GPa提升至14.0 GPa,但拉伸強度與斷裂伸長量則大幅下降,取決於PLA高分子聚合物與BG顆粒增強材料的界面結合性不足,形成界面不連續複合材料,導致材料受應力的傳遞失效,以及兩相的分離造成孔洞的應力集中,促使材料於缺陷處的提前斷裂,因此在考慮材料機械性質的平衡下,預估3.9wt%BG含量為最佳的混煉比。針對生物醫療應用的評估,模擬人體體液(SBF)被用於測試PLA/BG複合材料的生物活性,並於浸泡7日後,試片表面覆蓋約92.8%的氫氧基磷灰石沉澱物。本研究另透過射出成形成功製備新型PLA/58S BG生物複合材料之生醫產品應用-微型骨螺釘/骨板,並改善PLA基材的力學性質,以及促進與骨組織相互結合之生物活性能力。


    The study focuses on developing poly(lactic acid) (PLA) composites with 58S bioglass spheres (58S BG) for improving the mechanical properties of bone tissue engineering scaffolds by injection molding process. The collaboratory research institution, Leibniz Institute of Polymer Research Dresden (IPF), provides a design of new-type microinjection molded tensile rod with and without weld line which can be used to observe the micro features of mechanical properties on PLA composites. The influences of injection molding parameters have been optimized for the mechanical properties according to design of experiment (DoE) with varying injection velocity, melt temperature, and packing pressure. The mechanical behavior of sample with and without weld line have been improved by lowering the melt temperature to obtain in a thicker skin layer. The Young’s modulus of an injected samples increased from 13.7 GPa to 14.0 GPa for adding 5-10wt% 58S BG powder in PLA matrix. However, the tensile strength and elongation at fracture of samples are rapidly falling and convert it to brittle behavior due to the lower bonding properties between polymer and inorganic particle reinforced material bioglass. Therefore, considering the balance of mechanical properties, it is predicted that 3.9wt% BG content is the best mixing ratio. For the biomedical application, the in-vitro bioactivity has been precisely reproduced by apatite-forming ability of biomaterials within 7 days in simulated body fluid (SBF), which the coverage ratio of HA is 98.2% in PLA10wt%BG composites. Thus, novel PLA/58S BG composites have been successfully fabricated into a biomedical product of micro bone screws and plates by microinjection molding, which improves the mechanical properties and the bioactivity for further medical applications.

    摘要 I ABSTRACT II 誌謝 III 目錄 VI 圖目錄 XI 表目錄 XVII 第一章 導論 1 1.1 研究背景 1 1.2 研究目的 5 1.3 研究方法 6 1.4 論文架構 7 第二章 文獻回顧 9 2.1 PLA/BG生物複合材料之原理介紹與相關文獻 9 2.1.1 生物醫學複合材料 9 2.1.2 顆粒增強複合材料 10 2.1.3 PLA/BG 生物複合材料相關文獻 13 2.2 生物活性玻璃(BG)介紹與製程相關文獻 18 2.2.1 生物活性玻璃介紹 18 2.2.2 生物玻璃製程相關文獻 19 2.3 生物活性機制介紹與相關文獻 24 2.3.1 生物活性機制 24 2.3.2 生物活性相關文獻 26 2.4 實驗室歷屆生物複合材料研究成果 33 2.5 文獻回顧總結 42 第三章 PLA/58S BG生物複合材料製備 44 3.1 實驗材料物性 44 3.1.1 聚乳酸 44 3.1.2 58S生物玻璃微球 46 3.2 複合材料製程設備 49 3.3 複合材料量測儀器 50 3.3.1 材料特徵 50 3.3.2 熱性質 50 3.4 微型混煉製程與參數規劃 52 3.5 複合材料特徵分析 54 3.6 複合材料熱性質分析 56 3.6.1 熱重損失分析儀分析結果 56 3.6.2 熱示差分析儀分析結果 58 第四章 微型拉伸試片與骨螺釘/骨板之射出成形 61 4.1 射出成形製程設備與量測儀器 61 4.1.1 射出成形製程設備 61 4.1.2 射出成形量測儀器 62 4.2單澆口(REF)微型拉伸試片射出成形 63 4.2.1 產品概念與模具設計 63 4.2.2 射出成形製程參數規劃 65 4.2.3 Moldex3D模流分析 66 4.2.4 材料力學強度分析 72 4.2.5 拉伸斷面表面特徵 81 4.3雙澆口(WL)微型拉伸試片射出成形 87 4.3.1 產品概念與模具分析 87 4.3.2 射出成形製程參數規劃 88 4.3.3 Moldex3D模流分析 89 4.3.4 材料力學強度分析 94 4.3.5 拉伸斷面表面特徵 98 4.4 微型骨螺釘與骨板射出成形 102 4.4.1 產品概念與模具設計 102 4.4.2 射出成形製程參數規劃 105 4.4.3 Moldex3D模流分析 106 4.4.4 微型骨螺釘/骨板射出成形產品 110 第五章 生物體外活性實驗 111 5.1 模擬人體體液 (SIMULATED BODY FLUID, SBF) 111 5.2 體外浸泡實驗配置 112 5.3 生物活性之表面特徵分析 115 5.4 綜合討論 123 第六章 結論與未來展望 126 6.1 結論 126 6.2 未來展望 128 參考文獻 130 附錄A PLA 3001D物性表 138 附錄B MOLDEX3D 材料資料庫之特性表 139 附錄C 材料熱性質分析 110 附錄D 射出成形機規格 142 附錄E 微型拉伸試片產品圖 143 附錄F 微型拉伸試片模具設計圖 144 附錄G 微型骨螺釘/骨板產品圖 146 附錄H 微型骨螺釘/骨板模具設計圖 147 附錄I 拉伸強度理論[86] 149 附錄J 變異數分析與迴歸分析 153

    [1] Q. Chen, G.A. Thouas, "Metallic implant biomaterials", Mater. Sci. Eng. R Rep., 2015. 87: 1-57
    [2] J. Russias, et al., "Fabrication and mechanical properties of PLA/HA composites: A study of in vitro degradation", Mater. Sci. Eng. C, 2006. 26: 1289-1295
    [3] A.R.S. Jr, "Bioresorbable polymers for tissue engineering", Tissue Engineering, 2010.
    [4] A.El-Ghannam, P.Ducheyne, "Bioactive Ceramics", Comprehensive Biomaterials, 2011. 1: 157-179
    [5] L.L. Hench, "(ii) The challenge of orthopaedic materials", Current Orthopaedics, 2000. 14: 7-15
    [6] S. Joughehdoust, S. Manafi, "Synthesis and In Vitro Investigation of Sol-Gel Derived Bioglass-58S Nanopowders", Materials Science-Poland, 2012. 30(1): 45-52
    [7] M. Alksne, et al., "In vitro comparison of 3D printed polylactic acid/hydroxyapatite and polylactic acid/bioglass composite scaffolds: Insights into materials for bone regeneration", J MECH BEHAV BIOMED Mater 104, 2020.
    [8] J.A. Roether, et al., "Novel bioresorbable and bioactive composites based on bioactive glass and polylactide foams for bone tissue engineering", j mater sci Mater Med 13, 2002. 1207-1214
    [9] M. Hafezi, et al., "Polyurethane/58S bioglass nanofibers: Synthesis, characterization, and in vitro evaluation", RSC Adv., 2016.
    [10] P.Palmero, "Ceramic–polymer nanocomposites for bone-tissue regeneration", Nanocomposites for Musculoskeletal Tissue Regeneration, 2016. 331-367
    [11] Z. Fereshteh, et al., "Mechanical properties and drug release behavior of PCL/zein coated 45S5 bioactive glass scaffolds for bone tissue engineering application", Data in Brief, 2015. 4: 524-528
    [12] W. Lu, et al., "Bone tissue engineering by using a combination of polymer/Bioglass composites with human adipose-derived stem cells", Cell Tissue Res, 2014. 356: 97-107
    [13] S.-A. Oh, et al., "Composite membranes of poly(lactic acid) with zinc-added bioactive glass as a guiding matrix for osteogenic differentiation of bone marrow mesenchymal stem cells", J. Biomater. Appl, 2011. 27(4): 413-422
    [14] G. Vergnol, et al., "In vitro and in vivo evaluation of a polylactic acid-bioactive glass composite for bone fixation devices", J Biomed Mater Res Part B, 2016. 180-191
    [15] B.A. Tilocca, "Structural models of bioactive glasses from molecular dynamics simulations", Proc. R. Soc. A, 2009. 465: 1003-1027
    [16] H.D. Kim, R.F. Valentini, "Retention and activity of BMP-2 in hyaluronic acid-based scaffolds in vitro", J Biomed Mater Res, 2002. 59(3): 573-584
    [17] L.M. Mathieu, et al., "Processing of homogeneous ceramic/polymer blends for bioresorbable composites", Compos Sci Technol, 2006. 66: 1606-1614
    [18] T. Kokubo, H. Takadama, "How useful is SBF in predicting in vivo bone bioactivity?", Biomaterials, 2006. 27: 2907-2915
    [19] T. Kokubo, "Bioactive glass ceramics: properties and applications", Biomaterials, 1991. 12
    [20] 郭家興, "生物可降解複合材料之分子配向性對機械強度之影響研究", 碩士論文, 機械工程研究所, 國立台灣科技大學, 台北市, 2012
    [21] S. Ramakrishna, Z.-M. Huang, "Reference Module in Materials Science and Materials Engineering", Elsevier, 2016.
    [22] W.F. Hosford, "Mechanical Behavior of Materials (2nd edition)", University of Michigan, Ann Arbor, 2009. 363-384
    [23] Guigenzhang, et al., "Biomaterials Science (Fourth Edition)", An Introduction to Materials in Medicine, 2020. 415-429
    [24] J.J. Blaker, et al., "Mechanical properties of highly porous PDLLA/Bioglass composite foams as scaffolds for bone tissue engineering", Acta Biomaterialia, 2005. 1: 643-652
    [25] A.M. El-Kady, et al., "Development, characterization, and in vitro bioactivity studies of sol–gel bioactive glass/poly(L-lactide) nanocomposite scaffolds", Mater. Sci. Eng. C, 2010. 30: 120-131
    [26] A.Z. Kharazi, et al., "Nonmetallic textile composite bone plate with desired mechanical properties", J Compos Mater, 2012. 46(21): 2753-2761
    [27] G. Vergnol, et al., "In vitro and in vivo evaluation of a polylactic acid-bioactive glass composite for bone fixation devices", J Biomed Mater Res B Appl Biomater, 2016. 104(1): 180-191
    [28] D. Canales, et al., "Effect of bioglass nanoparticles on the properties and bioactivity of poly(lactic acid) films", J Biomed Mater Res A, 2019. 108(10)
    [29] V.-V. Välimäki, H.T. Aro, "MOLECULAR BASIS FOR ACTION OF BIOACTIVE GLASSES AS BONE GRAFT SUBSTITUTE", Scand J Surg, 2006. 95(2): 95-102
    [30] L.L. Hench, "The story of Bioglass ", Mater Sci: Mater Med, 2006. 17: 967-978
    [31] R. Li, et al., "An Investigation of Bioactive Glass Powders by Sol-Gel Processing", J. Appl. Biomed, 1991. 2: 231-239
    [32] S.-J. Shih, et al., "One-step synthesis of bioactive glass by spray pyrolysis", J Nanopart Res, 2012. 14: 1299
    [33] Y.-J. Chou, et al., "Preparation and in Vitro Bioactivity of Micron-sized Bioactive Glass Particles Using Spray Drying Method", Applied Sciences, 2018. 9(1): 19
    [34] A.R. El-Ghannam, "Advanced bioceramic composite for bone tissue engineering: Design principles and structure–bioactivity relationship", J Biomed Mater Res A, 2004. 69(3): 490-501
    [35] M.R. Filgueiras, et al., "Solution effects on the surface reactions of a bioactive glass", J Biomed Mater Res, 1993. 27: 445-453
    [36] Q.-Q. Qiu, et al., "New bioactive, degradable composite microspheres as tissue engineering substrates", J Biomed Mater Res., 2000. 52(1): 66-76
    [37] X. Han, et al., "One-pot synthesis ofmacro-mesoporous bioactive glasses/polylactic acid for bone tissue engineering", Mater. Sci. Eng. C, 2014. 43: 367-374
    [38] S.a.M. Estrada, et al., "Evaluation of in Vitro Bioactivity of 45S5 Bioactive Glass/Poly Lactic Acid Scaffolds Produced by 3D Printing", J Compos Mater, 2017. 7(5): 144-149
    [39] N.K.D. Moura, et al., "Synergistic effect of adding bioglass and carbon nanotubes on poly (lactic acid) porous membranes for guided bone regeneration", Mater. Sci. Eng. C, 2020. 117
    [40] A. Majchrowicz, et al., "In vitro evaluation of degradable electrospun polylactic acid/bioactive calcium phosphate ormoglass scaffolds", Arch. Civ. Mech. Eng., 2020. 20:50
    [41] 李禧俊, "聚乳酸添加奈米蒙脫土複合材料之射出成形對機械性質影響", 碩士論文, 機械工程研究所, 國立台灣科技大學, 台北市, 2014
    [42] 葉惠珠, "射出成形抗水解聚乳酸複合材料之製備與特性分析", 碩士論文, 機械工程研究所, 國立台灣科技大學, 台北市, 2017
    [43] 譚裎諺, "利用噴霧乾燥法合成58S生物玻璃微球及其性質鑑定之研究", 碩士論文, 機械工程研究所, 國立台灣科技大學, 台北市, 2019
    [44] 黃志鴻, "混料式射出成形螺桿對聚乳酸添加有機蒙脫土複合材料機械性質影響之研究", 碩士論文, 機械工程研究所, 國立台灣科技大學, 台北市, 2017
    [45] 李嘉誠, "紙漿複合材料之射出模造成形與機械性質分析研究", 碩士論文, 機械工程研究所, 國立台灣科技大學, 台北市, 2018
    [46] 陳彥均, "聚乳酸白蠟複材之性能改善與射出成形降解特性研究", 碩士論文, 機械工程研究所, 國立台灣科技大學, 台北市, 2019
    [47] R.E. Drumright, et al., "Polylactic Acid Technology", Adv. Mater, 2000. 12
    [48] J.A. Santos, "Bioresorbable polymers for tissue engineering", TISSUE Eng., 2010.
    [49] M. Sakaguchi, S. Kobayashi, "Effects of initial crystallinity and molecular orientation on hydrolysis and mechanical properties of self-reinforced poly(lactic acid) screws", JSME, 2016. 3
    [50] C.L. Simoes, et al., "Mechanical Properties of Poly(e-caprolactone) and Poly(lactic acid) Blends", Wiley InterScience, 2009. 112: 345-352
    [51] J.F.T. Ii, et al., "CHARACTERIZATION OF DRAWN AND UNDRAWN POLY-L-LACTIDE FILMS BY DIFFERENTIAL SCANNING CALORIMETRY", J. Therm. Anal. Calorim., 2004. 75: 257-268
    [52] J. Chakravarty, et al., "Mechanical and biological properties of chitin/polylactide (PLA)/hydroxyapatite (HAP) composites cast using ionic liquid solutions", Int. J. Biol. Macromol., 2019.
    [53] X.V. Bui, T.H. Dang, "Bioactive glass 58S prepared using an innovation sol-gel process", Process. Appl. Ceram. 13, 2019. 1: 98-103
    [54] D. Canales, et al., "Effect of bioglass nanoparticles on the properties and bioactivity of poly(lactic acid) films", J Biomed Mater Res., 2020. 108: 2032-2043
    [55] M. Hafezi, et al., "Polyurethane/58S bioglass nanofibers: Synthesis, characterization, and in vitro evaluation", RSC Advances, 2016.
    [56] B.W. Chieng, et al., "Poly(lactic acid)/Poly(ethylene glycol) Polymer Nanocomposites:
    Effects of Graphene Nanoplatelets", Polymers, 2014. 6: 93-104
    [57] T. Distler, et al., "Polymer-Bioactive Glass Composite Filaments for 3D Scaffold Manufacturing by Fused Deposition Modelling: Fabrication and Characterization", Front. Bioeng. Biotechnol. , 2020. 8:552
    [58] X. Ma, et al., "Compatibility Characterization of Poly(lactic acid)/ Poly(propylene carbonate) Blends", J Polym Sci B Polym Phys, 2006. 44: 94-101
    [59] N. Ignjatovic, et al., "Evaluation of Hot-Pressed Hydroxyapatite/Poly-L-lactide Composite Biomaterial Characteristics", J Biomed Mater Res B Appl Biomater, 2004. 71(2): 284-294
    [60] S. Rakmae, et al., "Effects of Mixing Technique and Filler Content on Physical Properties of Bovine Bone-Based CHA/PLA Composites", J. Appl. Polym. Sci., 2011. 122(4): 2433-2441
    [61] S. Rakmae, et al., "Effects of Mixing Technique and Filler Content on Physical Properties of Bovine Bone-Based CHA/PLA Composites", J. Appl. Polym. Sci., 2011. 122: 2433-2441
    [62] E.H. Backes, et al., "Analysis of the Degradation During Melt Processing of PLA/Biosilicate® Composites", J. Compos. Sci., 2019. 3(52)
    [63] F. Baldi, et al., "Process–Property–Structure Relationship in Miniaturized Injection Moulded Polyoxymethylene Samples", Polym. Eng. Sci., 2014. 54: 512-521
    [64] M. Fischera, et al., "Morphology and mechanical properties of micro injection molded polyoxymethylene tensile rods", Polym. Test, 2019. 80: 106078
    [65] I.-H. Peng, D.C. Hsu Next generation three-dimensional injection molding simulation, CoreTech System Co.,Ld.
    [66] J. Chien, et al. Mesh Generation Technology of CAE Mold Filling Analysis, CoreTech System Co.,Ld.
    [67] E.R. Aarøe, et al., "Examining the influence of injection speed and mould temperature on the tensile strength of polypropylene and ABS", Technical University of Denmark, 2009.
    [68] J. Jiang, et al., "Effect of injection velocity on the structure and mechanical properties of micro injection molded polycarbonate/poly(ethylene terephthalate) blends", Jmade, 2017.
    [69] C.C. Cansever, "EFFECTS OF INJECTION MOLDING CONDITIONS ON THE MECHANICAL PROPERTIES OF POLYAMIDE / GLASS FIBER COMPOSITES", A THESIS SUBMITTED TO THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES OF MIDDLE EAST TECHNICAL UNIVERSITY, 2007.
    [70] E. Farotti, M. Natalini, "Injection molding. Influence of process parameters on mechanical properties of polypropylene polymer. A first study.", Procedia Structural Integrity 8, 2018. 256-264
    [71] C.C. Lee, C.C. Chen, "Injection Molding of Polylactic Acid Composites with Organic Montmorilloniteand Analysis on Mechanical Properties", National Taiwan University of Science and Technology, Mechanical engineering thesis, 2014.
    [72] H. Xu, C.T. Bellehumeur, "Thermal Residual Stress Development for Semi-Crystalline Polymers in Rotational Molding", Polymer Eng Sci, 2008.
    [73] R. Zhang, et al., "Homogeneously dispersed composites of hydroxyapatite nanorods and poly(lactic acid) and their mechanical properties and crystallization behavior", Composites: Part A, 2019.
    [74] K.-C. Chang, B.S., "ANALYSIS OF MINIMUM “SAFE CYCLE TIME” IN INJECTION MOLDING: SELECTION OF FROZEN LAYER THICKNESS", THESIS, Industrial and Systems Engineering, The Ohio State University, 2008.
    [75] S.C. Malguarnera, "Weld Lines in Polymer Processing", Polym Plast Technol Eng, 1982. 18(1): 1-45
    [76] S.-G. Kim, N.P. Suh, "Performance Prediction of Weld line Structure in Amorphous Polymers", Polym. Eng. Sci. POLYM ENG SCI, 1986. 26(17): 1200-1207
    [77] K. Yamada, K. Tomari, "Fracture toughness evaluation of adjacent flow weld line in polystyrene by the SENB method", Polym. Eng. Sci., 2005. 45(8): 1059-1066
    [78] Y. Shikinami, M. Okuno, "Bioresorbable devices made of forged composites of hydroxyapatite (HA) particles and poly l-lactide (PLLA). Part II: practical properties of miniscrews and miniplates", Biomaterials, 2001. 22: 3197-3211
    [79] M. Kolafova, et al., "In Vitro Bioactivity Test of Real Dental Implants According to ISO 23317", Int J Oral Maxillofac Implants, 2017. 32: 1221-1230
    [80] C. Ohtsuki, et al., "Apatite formation on the surface of Ceravital-type glass-ceramic in the body", J Biomed Mater Res, 1991. 25: 1363-1370
    [81] L.J.A. M.Uller, et al., "Hydroxyapatite formation on alkali-treated titanium with different content of Na+in the surface layer", Biomaterials, 2002. 23: 3095-3101
    [82] T. Kokubo, et al., "Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W", J Biomed Mater Res., 1990. 24(6): 721-734
    [83] R. Zhang, P.X. Ma, "Porous poly(L-lactic acid)/apatite composites created by biomimetic process", J. Biomed. Mater. Res., 1998.
    [84] S. Salmasi, et al., "Nanohydroxyapatite Effect on the Degradation, Osteoconduction and Mechanical Properties of Polymeric Bone Tissue Engineered Scaffolds", Open Orthop J, 2016. 10: 900-919
    [85] M. Ansari, et al., "SYNTHESIS AND CHARACTERIZATION OF HYDROXYAPATITECALCIUM HYDROXIDE FOR DENTAL COMPOSITES", Ceramics – Silikáty 55, 2011. 2: 123-126
    [86] J.C. Middleton, A.J. Tipton, "Synthetic biodegradable polymers as orthopedic devices", Biomaterials, 2000. 21: 2335-2346
    [87] 蔡州永, "玄武岩纖維增強聚丙烯複合材料力學及熱性質研究", 碩士論文, 有機高分子研究所, 國立台北科技大學, 台北市, 2012.

    無法下載圖示 全文公開日期 2024/07/08 (校內網路)
    全文公開日期 2024/07/08 (校外網路)
    全文公開日期 2024/07/08 (國家圖書館:臺灣博碩士論文系統)
    QR CODE