簡易檢索 / 詳目顯示

研究生: 黃偉倫
Wei-Lun Huang
論文名稱: 界面活性劑與無碳造孔劑濃度對噴霧乾燥生物活性玻璃微球性質影響之研究
An investigation on the effect of surfactant and carbon free porous agent concentration of spray-dried bioactive glass microspheres
指導教授: 周育任
Yu-Jen Chou
口試委員: 施劭儒
游進陽
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 118
中文關鍵詞: 介孔生物活性玻璃噴霧乾燥製程無炭造孔劑界面活性劑
外文關鍵詞: mesoporous bioactive glass, spray drying process, carbonless porogenic agent, surfactant
相關次數: 點閱:220下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 使用噴霧乾燥法成功合成出介孔生物活性玻璃,通過調節P123界面活性劑與H2O2的濃度來觀察晶相結構、表面形貌、比表面積、孔徑、生物活性及細胞活性等性質。在本次研究中,利用變異數分析找出製程參數對BG表面形貌之影響(SD-18A噴霧乾燥機中,空氣流速>進給速率),並且成功製備出MBG,發現P123界面活性劑的添加量在3.2vol%能夠獲得最高比表面積(160.60±34.49 m2/g),H2O2則是在濃度達到30vol%時(109.74±7.21 m2/g)。觀察到所有樣品皆具備生物活性,並且研究證實比表面積與生物活性具有一定的關連性。除了在SEM下清晰可見HA生成,XRD與FTIR的結果也表現出該MBG具備更高的生物活性I1/I2 (58S16P為0.42、58S30H為0.56)。同時所有樣品在細胞毒性中也有良好的表現(25%濃度下58S16P為110.7%、58S30H為97.6%)。最後也探討P123與H2O2兩者間MBG的差異性,由於P123具有碳殘留的缺陷,雖與生物活性無明顯關聯,但卻直接降低細胞存活率,這證實殘碳量對細胞的危害(58S20P為95.8%、58S20P-C為79.1%)。


    The mesoporous bioactive glass was successfully synthesized by spray drying method, and the properties of crystalline structure, surface morphology, specific surface area, pore size, bioactivity and cellular activity were observed by adjusting the concentration of P123 surfactant and H2O2. In this study, the effect of process parameters on the surface morphology of BG (SD-18A (109.74±7.21 m2/g) at 30 vol%. All samples were observed to be biologically active, and it was confirmed that there was a correlation between specific surface area and biological activity. In addition to HA production clearly visible under SEM, XRD and FTIR results also showed higher bioactivity I1/I2 (0.42 for 58S16P and 0.56 for 58S30H). Also, all samples showed good cytotoxicity (110.7% for 58S16P and 97.6% for 58S30H at 25% concentration). Finally, the difference in MBG between P123 and H2O2 was also investigated. Since P123 has the defect of carbon residue, although not significantly related to biological activity, it directly reduces cell survival, which confirms the harmful effect of carbon residue on cells (95.8% for 58S20P and 79.1% for 58S20P-C).

    摘要 I Abstract II 目錄 III 圖目錄 VII 表目錄 XI 第1章 研究介紹 1 第2章 文獻回顧 4 2.1 生醫陶瓷 5 2.1.1 生物惰性材料 6 2.1.2 可吸收性材料 7 2.1.3 生物活性材料 7 2.2 生物活性材料 8 2.2.1 β-三鈣磷酸鹽 9 2.2.2 氫氧基磷灰石 9 2.2.3 生物活性玻璃 10 2.3 生物活性玻璃 11 2.3.1 生物活性生成機制 13 2.3.2 生物活性玻璃組成 15 2.3.3 生物活性測定方式 19 2.4 生物活性玻璃製程種類 20 2.4.1 傳統玻璃熔融製程法 20 2.4.2 溶膠-凝膠法 21 2.4.3 噴霧熱裂解法 23 2.4.4 噴霧乾燥法 24 2.5 噴霧乾燥製程及原理 26 2.6 介孔材料 28 2.6.1 介孔生物活性玻璃 29 2.6.2 非離子型界面活性劑 31 2.6.3 無碳造孔劑 33 第3章 實驗方法 34 3.1 實驗設計與流程圖 34 3.2 樣品製備流程 37 3.3 實驗儀器 39 3.3.1 噴霧乾燥機 40 3.4 樣品性質及分析方法 42 3.4.1 熱重分析儀 42 3.4.2 X光繞射儀 43 3.4.3 場發射/掃描式電子顯微鏡 44 3.4.4 能量散射X射線分析 45 3.4.5 傅立葉轉換紅外線光譜儀 46 3.4.6 氮氣吸脫附分析儀 47 3.4.7 穿透式電子顯微鏡 48 3.4.8 體外生物活性試驗 49 第4章 實驗結果 50 4.1 SD-18A 噴霧乾燥機之參數 51 4.2 添加P123界面活性劑之介孔生物活性玻璃 55 4.2.1 熱重分析 56 4.2.2 X光繞射分析 57 4.2.3 場發射/掃描式電子顯微鏡分析 58 4.2.4 氮氣吸脫附分析 60 4.2.5 穿透式電子顯微鏡分析 61 4.2.6 體外生物活性試驗 62 4.2.7 細胞存活率分析 70 4.3 添加H2O2之介孔生物活性玻璃 71 4.3.1 X光繞射分析 72 4.3.2 場發射/掃描式電子顯微鏡分析 73 4.3.3 氮氣吸脫附分析 75 4.3.4 穿透式電子顯微鏡分析 76 4.3.5 體外生物活性試驗 77 4.3.6 細胞存活率分析 83 第5章 實驗討論 84 5.1 SD-18A 噴霧乾燥機製程參數探討 84 5.1.1 進給速率對形貌的影響 84 5.1.2 空氣流速對形貌的影響 85 5.2 生物活性玻璃性質探討 86 5.2.1 晶相結構與比表面積 87 5.2.2 細胞存活率與比表面積 87 5.3 造孔劑種類對介孔生物活性玻璃性質之影響(P123 vs H2O2) 88 5.3.1 表面形貌之影響 88 5.3.2 晶相結構之影響 90 5.3.3 碳殘留之影響 90 第6章 結論 92 第7章 未來工作 93 第8章 參考文獻 94 第9章 附件 104

    [1] Anon World Population Prospects - Population Division - United Nations
    [2] Wright N C, Looker A C, Saag K G, Curtis J R, Delzell E S, Randall S and Dawson-Hughes B 2014 The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine J Bone Miner Res 29 2520–6
    [3] Klibanski A, Adams-Campbell L, Bassford T, Blair S N, Boden S D, Dickersin K, Gifford D R, Glasse L, Goldring S R, Hruska K, Johnson S R, McCauley L K and Russell W E 2001 Osteoporosis prevention, diagnosis, and therapy Journal of the American Medical Association 285 785–95
    [4] Kaplan M 1994 Analysis of Some Long-Standing Controversies concerning the Pectoral Girdle of Atelopus (Bufonidae) Using Ontogenetic Studies Journal of Herpetology 28 128–31
    [5] Langer R and Vacanti J P 1993 Tissue engineering Science 260 920–6
    [6] Jones J R and Hench L L 2003 Regeneration of trabecular bone using porous ceramics Current Opinion in Solid State and Materials Science 7 301–7
    [7] Marks S C and Odgren P R 2002 Chapter 1 - Structure and Development of the Skeleton Principles of Bone Biology (Second Edition) ed J P Bilezikian, L G Raisz and G A Rodan (San Diego: Academic Press) pp 3–15
    [8] Hench L L 1991 Bioceramics: From Concept to Clinic Journal of the American Ceramic Society 74 1487–510
    [9] Berry D J, Harmsen W S, Cabanela M E and Morrey B F 2002 Twenty-five-Year Survivorship of Two Thousand Consecutive Primary Charnley Total Hip Replacements : Factors Affecting Survivorship of Acetabular and Femoral Components JBJS 84
    [10] Vert M, Li S M, Spenlehauer G and Guerin P 1992 Bioresorbability and biocompatibility of aliphatic polyesters Journal of Materials Science: Materials in Medicine 3 432–46
    [11] Hutmacher D W 2000 Scaffolds in tissue engineering bone and cartilage Biomaterials 21 2529–43
    [12] Zhao X 2011 1 - Introduction to bioactive materials in medicine Bioactive Materials in Medicine ed X Zhao, J M Courtney and H Qian (Woodhead Publishing) pp 1–13
    [13] Liu B and Lun D X 2012 Current application of β-tricalcium phosphate composites in orthopaedics. Orthopaedic surgery 4 139–44
    [14] Wongwitwichot P, Kaewsrichan J FAU - Chua K H, Chua KH FAU - Ruszymah B H I, and Ruszymah BH Comparison of TCP and TCP/HA Hybrid Scaffolds for Osteoconductive Activity.
    [15] Carlisle E M 1970 Silicon: A possible factor in bone calcification Science 167 279–80
    [16] Detsch R, Mayr H and Ziegler G 2008 Formation of osteoclast-like cells on HA and TCP ceramics Acta Biomaterialia 4 139–48
    [17] Cüneyt Taş A, Korkusuz F, Timuçin M and Akkaş N 1997 An investigation of the chemical synthesis and high-temperature sintering behaviour of calcium hydroxyapatite (HA) and tricalcium phosphate (TCP) bioceramics Journal of Materials Science: Materials in Medicine 8 91–6
    [18] Rao R R, Roopa H N and Kannan T S 1997 Solid state synthesis and thermal stability of HAP and HAP - β-TCP composite ceramic powders Journal of Materials Science: Materials in Medicine 8 511–8
    [19] Liu H S, Chin T S, Lai L S, Chiu S Y, Chung K H, Chang C S and Lui M T 1997 Hydroxyapatite synthesized by a simplified hydrothermal method Ceramics International 23 19–25
    [20] Layrolle P, Ito A and Tateishi T 1998 Sol-Gel Synthesis of Amorphous Calcium Phosphate and Sintering into Microporous Hydroxyapatite Bioceramics Journal of the American Ceramic Society 81 1421–8
    [21] Hoppe A, Güldal N S and Boccaccini A R 2011 A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics Biomaterials 32 2757–74
    [22] Dzondo-Gadet M, Mayap-Nzietchueng R, Hess K, Nabet P, Belleville F and Dousset B 2002 Action of boron at the molecular level Biological Trace Element Research 85 23–33
    [23] Cannio M, Bellucci D, Roether J A, Boccaccini D N and Cannillo V 2021 Bioactive glass applications: A literature review of human clinical trials Materials 14
    [24] Hench L L 2006 The story of Bioglass® Journal of Materials Science: Materials in Medicine 17 967–78
    [25] Saravanapavan P, Jones J R, Pryce R S and Hench L L 2003 Bioactivity of gel–glass powders in the CaO-SiO2 system: A comparison with ternary (CaO-P2P5-SiO2) and quaternary glasses (SiO2-CaO-P2O5-Na2O) Journal of Biomedical Materials Research Part A 66A 110–9
    [26] Hench L L, Splinter R J, Allen W C and Greenlee T K 1971 Bonding mechanisms at the interface of ceramic prosthetic materials Journal of Biomedical Materials Research 5 117–41
    [27] Arcos D, Greenspan D C and Vallet-Regí M 2003 A new quantitative method to evaluate the in vitro bioactivity of melt and sol-gel-derived silicate glasses Journal of Biomedical Materials Research Part A 65A 344–51
    [28] Ducheyne P and Qiu Q 1999 Bioactive ceramics: The effect of surface reactivity on bone formation and bone cell function Biomaterials 20 2287–303
    [29] Anon Investigation of the physico-chemical reactivity of a mesoporous bioactive SiO2–CaO–P2O5 glass in simulated body fluid | Elsevier Enhanced Reader
    [30] Damen J J M and Ten Cate J M 1992 Silica-induced Precipitation of Calcium Phosphate in the Presence of Inhibitors of Hydroxyapatite Formation J Dent Res 71 453–7
    [31] Reffitt D M, Ogston N, Jugdaohsingh R, Cheung H F J, Evans B A J, Thompson R P H, Powell J J and Hampson G N 2003 Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro Bone 32 127–35
    [32] Hench L L 2009 Genetic design of bioactive glass Journal of the European Ceramic Society 29 1257–65
    [33] Day D E, White J E, Brown R F and McMenamin K D 2003 Transformation of borate glasses into biologically useful materials Glass Technology 44 75–81
    [34] Han X and Day D E 2007 Reaction of sodium calcium borate glasses to form hydroxyapatite Journal of Materials Science: Materials in Medicine 18 1837–47
    [35] Uo M, Mizuno M, Kuboki Y, Makishima A and Watari F 1998 Properties and cytotoxicity of water soluble Na2O–CaO–P2O5 glasses Biomaterials 19 2277–84
    [36] Ahmed I, Lewis M, Olsen I and Knowles J C 2004 Phosphate glasses for tissue engineering: Part 1. Processing and characterisation of a ternary-based P2O5–CaO–Na2O glass system Biomaterials 25 491–9
    [37] Elgayar I, Aliev A E, Boccaccini A R and Hill R G 2005 Structural analysis of bioactive glasses Journal of Non-Crystalline Solids 351 173–83
    [38] Marion N W, Liang W, Liang W, Reilly G C, Day D E, Rahaman M N and Mao J J 2005 Borate Glass Supports the In Vitro Osteogenic Differentiation of Human Mesenchymal Stem Cells null 12 239–46
    [39] Jung S B, Day D E, Day T, Stoecker W and Taylor P 2011 Treatment of non-healing diabetic venous stasis ulcers with bioactive glass nanofibers Wound Repair and Regeneration vol 19 (WILEY-BLACKWELL COMMERCE PLACE, 350 MAIN ST, MALDEN 02148, MA USA) pp A30–A30
    [40] Maeno S, Niki Y, Matsumoto H, Morioka H, Yatabe T, Funayama A, Toyama Y, Taguchi T and Tanaka J 2005 The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture Biomaterials 26 4847–55
    [41] Zayzafoon M 2006 Calcium/calmodulin signaling controls osteoblast growth and differentiation Journal of Cellular Biochemistry 97 56–70
    [42] Julien M, Khoshniat S, Lacreusette A, Gatius M, Bozec A, Wagner E F, Wittrant Y, Masson M, Weiss P, Beck L, Magne D and Guicheux J 2009 Phosphate-Dependent Regulation of MGP in Osteoblasts: Role of ERK1/2 and Fra-1 Journal of Bone and Mineral Research 24 1856–68
    [43] Moonga B S and Dempster D W 1995 Zinc is a potent inhibitor of osteoclastic bone resorption in vitro Journal of Bone and Mineral Research 10 453–7
    [44] Yamaguchi M 2010 Role of nutritional zinc in the prevention of osteoporosis Molecular and Cellular Biochemistry 338 241–54
    [45] Yamaguchi M 1998 Role of zinc in bone formation and bone resorption Journal of Trace Elements in Experimental Medicine 11 119–35
    [46] Zreiqat H, Howlett C R, Zannettino A, Evans P, Schulze-Tanzil G, Knabe C and Shakibaei M 2002 Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants Journal of Biomedical Materials Research 62 175–84
    [47] Yamasaki Y, Yoshida Y, Okazaki M, Shimazu A, Uchida T, Kubo T, Akagawa Y, Hamada Y, Takahashi J and Matsuura N 2002 Synthesis of functionally graded MgCO3 apatite accelerating osteoblast adhesion Journal of Biomedical Materials Research 62 99–105
    [48] Moghanian A, Firoozi S and Tahriri M 2017 Characterization, in vitro bioactivity and biological studies of sol-gel synthesized SrO substituted 58S bioactive glass Ceramics International 43 14880–90
    [49] Marie P J, Ammann P, Boivin G and Rey C 2001 Mechanisms of Action and TherapeuticPotential of Strontium in Bone Calcified Tissue International 69 121–9
    [50] Marie P J 2006 Strontium ranelate: A physiological approach for optimizing bone formation and resorption Bone 38 10–4
    [51] Xie H and Kang J Y 2009 Role of Copper in Angiogenesis and Its Medicinal Implications Current Medicinal Chemistry 16 1304–14
    [52] Balamurugan A, Balossier G, Laurent-Maquin D, Pina S, Rebelo A H S, Faure J and Ferreira J M F 2008 An in vitro biological and anti-bacterial study on a sol–gel derived silver-incorporated bioglass system Dental Materials 24 1343–51
    [53] Shih S-J, Tzeng W-L, Jatnika R, Shih C-J and Borisenko K B 2015 Control of Ag nanoparticle distribution influencing bioactive and antibacterial properties of Ag-doped mesoporous bioactive glass particles prepared by spray pyrolysis Journal of Biomedical Materials Research - Part B Applied Biomaterials 103 899–907
    [54] Makoukji J, Belle M, Meffre D, Stassart R, Grenier J, Shackleford G, Fledrich R, Fonte C, Branchu J, Goulard M, De Waele C, Charbonnier F, Sereda M W, Baulieu E-E, Schumacher M, Bernard S and Massaad C 2012 Lithium enhances remyelination of peripheral nerves Proceedings of the National Academy of Sciences of the United States of America 109 3973–8
    [55] Clément-Lacroix P, Ai M, Morvan F, Roman-Roman S, Vayssière B, Belleville C, Estrera K, Warman M L, Baron R and Rawadi G 2005 Lrp5-independent activation of Wnt signaling by lithium chloride increases bone formation and bone mass in mice Proceedings of the National Academy of Sciences of the United States of America 102 17406–11
    [56] Fan W, Crawford R and Xiao Y 2010 Enhancing in vivo vascularized bone formation by cobalt chloride-treated bone marrow stromal cells in a tissue engineered periosteum model Biomaterials 31 3580–9
    [57] Tanaka T, Kojima I, Ohse T, Ingelfinger J R, Adler S, Fujita T and Nangaku M 2005 Cobalt promotes angiogenesis via hypoxia-inducible factor and protects tubulointerstitium in the remnant kidney model Laboratory Investigation 85 1292–307
    [58] Li R, Clark A E and Hench L L 1991 An investigation of bioactive glass powders by sol-gel processing Journal of Applied Biomaterials 2 231–9
    [59] Rahaman M N, Day D E, Sonny Bal B, Fu Q, Jung S B, Bonewald L F and Tomsia A P 2011 Bioactive glass in tissue engineering Acta Biomaterialia 7 2355–73
    [60] Aguiar H, Serra J, González P and León B 2009 Structural study of sol–gel silicate glasses by IR and Raman spectroscopies Journal of Non-Crystalline Solids 355 475–80
    [61] Anand A, Kundu B, Balla V K and Nandi S K 2018 Synthesis and Physico-Chemical Characterization of Different Mesoporous Bioactive Glass Nanopowders: in-vitro SBF Activity and Cytotoxicity Transactions of the Indian Ceramic Society 77 106–17
    [62] Kay M I, Young R A and Posner A S 1964 Crystal Structure of Hydroxyapatite Nature 204 1050–2
    [63] Shih S-J, Chou Y-J and Chien I-C 2012 One-step synthesis of bioactive glass by spray pyrolysis Journal of Nanoparticle Research 14 1299
    [64] Franks K, Abrahams I, Georgiou G and Knowles J C 2001 Investigation of thermal parameters and crytallisation in a ternary CaO-Na2O-P2O5-based glass system Biomaterials 22 497–501
    [65] Martin R A, Yue S, Hanna J V, Lee P D, Newport R J, Smith M E and Jones J R 2012 Characterizing the hierarchical structures of bioactive sol-gel silicate glass and hybrid scaffolds for bone regeneration Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 370 1422–43
    [66] Lin S, Ionescu C, Pike K J, Smith M E and Jones J R 2009 Nanostructure evolution and calcium distribution in sol–gel derived bioactive glass J. Mater. Chem. 19 1276–82
    [67] Furlan R G, Correr W R, Russi A F C, da Costa Iemma M R, Trovatti E and Pecoraro É 2018 Preparation and characterization of boron-based bioglass by sol−gel process Journal of Sol-Gel Science and Technology 88 181–91
    [68] Bahniuk M S, Pirayesh H, Singh H D, Nychka J A and Unsworth L D 2012 Bioactive glass 45S5 powders: Effect of synthesis route and resultant surface chemistry and crystallinity on protein adsorption from human plasma Biointerphases 7 1–15
    [69] Jones J R 2013 Review of bioactive glass: From Hench to hybrids Acta Biomaterialia 9 4457–86
    [70] Leng J, Wang Z, Wang J, Wu H-H, Yan G, Li X, Guo H, Liu Y, Zhang Q and Guo Z 2019 Advances in nanostructures fabricated: Via spray pyrolysis and their applications in energy storage and conversion Chemical Society Reviews 48 3015–72
    [71] Gurav A, Kodas T, Pluym T and Xiong Y 1993 Aerosol Processing of Materials null 19 411–52
    [72] Sosnik A and Seremeta K P 2015 Advantages and challenges of the spray-drying technology for the production of pure drug particles and drug-loaded polymeric carriers Advances in Colloid and Interface Science 223 40–54
    [73] Corrigan O I 1995 Thermal analysis of spray dried products Thermochimica Acta 248 245–58
    [74] Fleming R S 1921 The Spray Process of Drying. J. Ind. Eng. Chem. 13 447–9
    [75] Gharsallaoui A, Roudaut G, Chambin O, Voilley A and Saurel R 2007 Applications of spray-drying in microencapsulation of food ingredients: An overview Food Research International 40 1107–21
    [76] Chou Y-J, Hong B-J, Lin Y-C, Wang C-Y and Shih S-J 2017 The Correlation of pore size and bioactivity of spray-pyrolyzed mesoporous bioactive glasses Materials 10
    [77] Vehring R 2008 Pharmaceutical particle engineering via spray drying Pharmaceutical Research 25 999–1022
    [78] Maa Y-F, Nguyen P-A, Sit K and Hsu C C 1998 Spray-drying performance of a bench-top spray dryer for protein aerosol powder preparation Biotechnology and Bioengineering 60 301–9
    [79] Yan X, Yu C, Zhou X, Tang J and Zhao D 2004 Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities Angewandte Chemie - International Edition 43 5980–4
    [80] Hong Y, Chen X, Jing X, Fan H, Guo B, Gu Z and Zhang X 2010 Preparation, Bioactivity, and Drug Release of Hierarchical Nanoporous Bioactive Glass Ultrathin Fibers Advanced Materials 22 754–8
    [81] Wu C, Zhang Y, Ke X, Xie Y, Zhu H, Crawford R and Xiao Y 2010 Bioactive mesopore-glass microspheres with controllable protein-delivery properties by biomimetic surface modification Journal of Biomedical Materials Research - Part A 95 A 476–85
    [82] Wu C, Zhou Y, Fan W, Han P, Chang J, Yuen J, Zhang M and Xiao Y 2012 Hypoxia-mimicking mesoporous bioactive glass scaffolds with controllable cobalt ion release for bone tissue engineering Biomaterials 33 2076–85
    [83] Karageorgiou V and Kaplan D 2005 Porosity of 3D biomaterial scaffolds and osteogenesis Biomaterials 26 5474–91
    [84] Anon Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores | Science
    [85] Vallet-Regí M, Ruiz-González L, Izquierdo-Barba I and González-Calbet J M 2006 Revisiting silica based ordered mesoporous materials: medical applications J. Mater. Chem. 16 26–31
    [86] Zhao L, Yan X, Zhou X, Zhou L, Wang H, Tang J and Yu C 2008 Mesoporous bioactive glasses for controlled drug release Microporous and Mesoporous Materials 109 210–5
    [87] Brinker C J, Lu Y, Sellinger A and Fan H 1999 Evaporation-Induced Self-Assembly: Nanostructures Made Easy Advanced Materials 11 579–85
    [88] Patel D, Gawali S L, Kuperkar K, Hassan P A and Bahadur P 2023 Co-micellization conduct and structural dynamics of block copolymers in water and salt solution environment for drug solubilization enhancement Colloid Polym Sci
    [89] Wu C and Chang J 2012 Mesoporous bioactive glasses: Structure characteristics, drug/growth factor delivery and bone regeneration application Interface Focus 2 292–306
    [90] Hong B-J and Shih S-J 2017 Novel pore-forming agent to prepare of mesoporous bioactive glass using one-step spray pyrolysis Ceramics International 43 S771–5
    [91] Malavasi G and Lusvardi G 2020 Composition and morphology effects on catalase mimetic activity of potential bioactive glasses Ceramics International 46 25854–64
    [92] Plewinski M, Schickle K, Lindner M, Kirsten A, Weber M and Fischer H 2013 The effect of crystallization of bioactive bioglass 45S5 on apatite formation and degradation Dental Materials 29 1256–64
    [93] Lin H-P, Mou C-Y and Liu S-B 2000 Formation of Mesoporous Silica Nanotubes Advanced Materials 12 103–6
    [94] Zhang W-M, Hu J-S, Guo Y-G, Zheng S-F, Zhong L-S, Song W-G and Wan L-J 2008 Tin-Nanoparticles Encapsulated in Elastic Hollow Carbon Spheres for High-Performance Anode Material in Lithium-Ion Batteries Advanced Materials 20 1160–5
    [95] Hu Q, Hampsey J E, Jiang N, Li C and Lu Y 2005 Surfactant-templated organic functionalized mesoporous silica with phosphino ligands Chemistry of Materials 17 1561–9
    [96] von Wilmowsky C, Vairaktaris E, Pohle D, Rechtenwald T, Lutz R, Münstedt H, Koller G, Schmidt M, Neukam F W, Schlegel K A and Nkenke E 2008 Effects of bioactive glass and β-TCP containing three-dimensional laser sintered polyetheretherketone composites on osteoblasts in vitro Journal of Biomedical Materials Research Part A 87A 896–902

    無法下載圖示 全文公開日期 2033/07/14 (校內網路)
    全文公開日期 2033/07/14 (校外網路)
    全文公開日期 2033/07/14 (國家圖書館:臺灣博碩士論文系統)
    QR CODE