簡易檢索 / 詳目顯示

研究生: 林偉成
Peter Richardo Lewi
論文名稱: Sr摻雜對於Ag添加於介孔生醫玻璃之生物活性抗菌性及細胞毒性特質之研究
The bioactivity, antibacterial properties and cell-viability effects of Sr on Ag-containing mesoporous bioactive glass
指導教授: 施劭儒
Shao-Ju Shih
口試委員: 王丞浩
Chen-Hao Wang
鄭詠馨
Yung-Hsin Cheng
周育任
Yu-Jen Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 75
中文關鍵詞: 介孔生物活性玻璃(MBG)銀(Ag)鍶(Sr)噴霧熱裂解(SP)抗菌測試
外文關鍵詞: Mesoporous bioactive glass (MBG), silver (Ag), strontium (Sr), spray pyrolysis (SP), antibacterial activity
相關次數: 點閱:244下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 骨質疏鬆症是一種與年齡相關的常見疾病,它會使骨骼的質量密度降低,而其造成的原因可能為更年期或是身體吸收的能力下降,由於此種疾病不易在發病初期發現,因此唯一的治癒方法即是外科手術,然而,外科手術後可能會會引發一種稱為手術部位感染 (SSI)的細菌感染,此外,當骨骼中的鍶 (Sr) 含量減少時,也會引發骨質疏鬆症,因為鍶具有透過抑制破骨細胞來促進程骨細胞生長的能力,故一種具有抵抗細菌活性,且能夠促進成骨細胞再生的生物材料是現今所必須的。
    本研究利用噴霧熱裂解法製備含有1.64mol%銀 (Ag) 和1、5及10mol% 鍶 (Sr) 的介孔生物活性玻璃 (MBG),所獲得之樣品將會利用X光繞射儀 (X-ray diffractometer, XRD)、掃描式電子顯微鏡 (Scanning Electron Microscope, SEM)、比表面積與孔隙度分析儀 (Specific Surface Area and Porosity Analyzer, BET)、抗菌測試、細胞存活性測試 (MTT assays) 、鹼性磷酸酯活性 (Alkaline Phosphatase, ALP) 和生物活性測試,做性質分析。
    實驗結果顯示,在含銀的介孔生物活性玻璃中添加鍶可以增強抗菌能力、細胞存活率和氫氧基磷灰石的生成速率,儘管在含鍶介孔生物活性玻璃的實驗中,添加10mol%鍶的介孔生物活性玻璃粉末浸泡在SBG中24h,會稍微延遲氫氧機磷灰石的生成,不過多項研究已經證明,在含銀介孔生物活性玻璃中,添加適量的鍶可以增強其抗骨質疏鬆的能力,並降低術後手術部位受感染的可能性。


    Osteoporosis is a well-known age-related disease that happens when the bone loses its mass density, it could be from menopause or when our body absorption ability is decreased. Due to difficulties to detect this disease in the early phase, the only way to cure is bone surgery. However, there are several cases of bacterial infection after surgery which called surgical site infection (SSI). Also, osteoporosis happens when the amount of Sr in our bone is decreasing. Sr has the ability to promotes osteoblast cells by inhibiting the osteoclast. Thus, a biomaterial with ability against bacterial activity and able to promote osteoblast cells for bone regeneration is needed.
    In this study, the spray pyrolysis (SP) method was used to prepare mesoporous bioactive glass (MBG) contained with 1.64 mol% silver (Ag) and 1, 5, and 10 mol% strontium (Sr) concentrations. Then, samples were characterized by using x-ray diffraction (XRD), scanning electron microscope (SEM), nitrogen adsorption/desorption (BET), antibacterial test, cell viability test (MTT assays), alkaline phosphate (ALP) activity and in-vitro bioactivity test.
    The results show that the addition of Sr on Ag-containing MBG powders enhanced the antibacterial test, cell viability, and hydroxylapatite formation rate. Although, in the Sr-MBG case, the addition of 10 mol% slightly retarding the hydroxylapatite formation after powders immersed into SBG for 24 h. Nonetheless, in the appropriate amount of addition, Sr has proven to enhance the ability Ag-containing MBG powders to be a promising material for anti-osteoporosis and reducing the probability of surgical site infection.

    摘要 iv Abstract v Acknowledgments vi Contents viii List of figures x List of tables xii Chapter 1. Introduction 1 1. 1. Background 1 1. 2. Purpose and motivation 3 Chapter 2. Literature review 4 2. 1. Bone graft materials 4 2. 2. Synthetic bone graft materials 6 2. 2. 1. Bioactive glass 7 2. 2. 2. Mesoporous bioactive glass 8 2. 3. Bioactive glass bone-bonding mechanism 9 2. 3. 1. Roles of important ions in human bone metabolisms 10 2. 4. Silver for antibacterial activity 11 2. 4. 1. Silver-doped/containing bioactive glass 12 2. 4. 2. Mechanisms of silver as antibacterial agents 13 2. 5. Strontium as anti-osteoporosis 15 2. 5. 1. Strontium-doped/containing bioactive glass 16 2. 5. 2. Osteoblast mechanisms 17 2. 6. Synthesis method 24 2. 6. 1. Conventional glass method 24 2. 6. 2. Sol-gel method 24 2. 6. 3. Spray pyrolysis 24 Chapter 3. Experimental procedure 27 3. 1. Experimental design and purposes 27 3. 2. Synthesis 28 3. 2. 1. Preparation of MBG precursor solution 28 3. 2. 2. Preparation of Ag- and Sr-containing MBG precursors solution 28 3. 2. 3. Preparation of SrAg-containing MBG precursors solution 29 3. 3. Materials and instruments 31 3. 4. Characterization 34 3. 4. 1. X-ray diffraction 34 3. 4. 2. Focused ion beam scanning electron microscope 35 3. 4. 3. Nitrogen adsorption/desorption isotherm nitrogen 36 3. 4. 4. Antibacterial test 37 3. 4. 5. Cell viability – MTT assays 38 3. 4. 6. In-vitro bioactivity test 39 Chapter 4. Results 40 4. 1. X-ray diffraction 40 4. 2. Focused ion beam-scanning electron microscope 44 4. 3. Nitrogen adsorption/desorption isotherm analysis 47 4. 4. Antibacterial test 48 4. 5. Cell viability test - MTT assays 50 4. 6. In-vitro bioactivity test 51 4. 7. 1. Summary of in-vitro bioactivity test 60 Chapter 5. Discussion 61 5. 1. Precipitation of AgCl 61 5. 2. Hydroxylapatite formation 63 5. 2. 1. Enhancement of the hydroxylapatite formation 64 5. 2. 2. Retardation of the hydroxylapatite formation 65 Chapter 6. Conclusions 66 Chapter 7. Future Works 67 References 68

    [1] W. Xia, J. Chang, Well-ordered mesoporous bioactive glasses (MBG): a promising bioactive drug delivery system, Journal of Controlled Release, 110 (2006) 522-530.
    [2] D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky, Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores, Science, 279 (1998) 23.
    [3] X. Yan, C. Yu, X. Zhou, J. Tang, D. Zhao, Highly ordered mesoporous bioactive glasses with superior in vitro bone‐forming bioactivities, Angewandte Chemie - International Edition, 43 (2004) 5980-5984.
    [4] J. Isaac, J. Nohra, J. Lao, E. Jallot, J.M. Nedelec, A. Berdal, J.M. Sautier, Effects of strontium-doped bioactive glass on the differentiation of cultured osteogenic cells, European Cells and Materials, 21 (2011) 130-143.
    [5] A. Unnanuntana, B.P. Gladnick, E. Donnelly, J.M. Lane, The assessment of fracture risk, Journal of Bone and Joint Surgery - Series A, 92 (2010) 743.
    [6] P. Vestergaard, L. Rejnmark, L. Mosekilde, Osteoporosis is markedly underdiagnosed: a nationwide study from Denmark, Osteoporosis International, 16 (2005) 134-141.
    [7] A.G. Gristina, Biomaterial-centered infection: microbial adhesion versus tissue integration, Science, 237 (1987) 1588-1595.
    [8] A.M. El-Kady, A.F. Ali, R.A. Rizk, M.M. Ahmed, Synthesis, characterization and microbiological response of silver doped bioactive glass nanoparticles, Ceramics International, 38 (2012) 177-188.
    [9] M. Kamitakahara, C. Ohtsuki, H. Inada, M. Tanihara, T. Miyazaki, Effect of ZnO addition on bioactive CaO–SiO2–P2O5–CaF2 glass–ceramics containing apatite and wollastonite, Acta Biomaterialia, 2 (2006) 467-471.
    [10] H. Palza, B. Escobar, J. Bejarano, D. Bravo, M. Diaz-Dosque, J. Perez, Designing antimicrobial bioactive glass materials with embedded metal ions synthesized by the sol–gel method, Materials Science and Engineering C, 33 (2013) 3795-3801.
    [11] C. Wu, Y. Zhou, M. Xu, P. Han, L. Chen, J. Chang, Y. Xiao, Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity, Biomaterials, 34 (2013) 422-433.
    [12] E. Vernè, S. Di Nunzio, M. Bosetti, P. Appendino, C.V. Brovarone, G. Maina, M. Cannas, Surface characterization of silver-doped bioactive glass, Biomaterials, 26 (2005) 5111-5119.
    [13] M. Diba, A. Boccaccini, Silver-containing bioactive glasses for tissue engineering applications, Precious Metals for Biomedical Applications, Elsevier, 2014, pp. 177-211.
    [14] S.J. Shih, Y.J. Chou, K.B. Borisenko, Preparation method: structure–bioactivity correlation in mesoporous bioactive glass, Journal of Nanoparticle Research, 15 (2013) 1763.
    [15] Y.J. Chou, S.H. Lin, C.J. Shih, S.L. Chang, S.J. Shih, The effect of Ag dopants on the bioactivity and antibacterial properties of one-step synthesized Ag-containing mesoporous bioactive glasses, Journal of Nanoscience and Nanotechnology, 16 (2016) 10001-10007.
    [16] S. Jebahi, H. Oudadesse, H. El Feki, T. Rebai, H. Keskes, P. Pellen, A. El Feki, Antioxidative/oxidative effects of strontium-doped bioactive glass as bone graft. In vivo assays in ovariectomised rats, Journal of Applied Biomedicine, 10 (2012) 195-209.
    [17] A. Moghanian, S. Firoozi, M. Tahriri, Characterization, in vitro bioactivity and biological studies of sol-gel synthesized SrO substituted 58S bioactive glass, Ceramics International, 43 (2017) 14880-14890.
    [18] S. Hesaraki, M. Gholami, S. Vazehrad, S. Shahrabi, The effect of Sr concentration on bioactivity and biocompatibility of sol–gel derived glasses based on CaO–SrO–SiO2–P2O5 quaternary system, Materials Science and Engineering C, 30 (2010) 383-390.
    [19] S. Hesaraki, M. Alizadeh, H. Nazarian, D. Sharifi, Physico-chemical and in vitro biological evaluation of strontium/calcium silicophosphate glass, Journal of Materials Science: Materials in Medicine, 21 (2010) 695-705.
    [20] J. Lao, E. Jallot, J.M. Nedelec, Strontium-delivering glasses with enhanced bioactivity: a new biomaterial for antiosteoporotic applications?, Chemistry of Materials, 20 (2008) 4969-4973.
    [21] A. Goel, R.R. Rajagopal, J.M. Ferreira, Influence of strontium on structure, sintering and biodegradation behaviour of CaO–MgO–SrO–SiO2–P2O5–CaF2 glasses, Acta Biomaterialia, 7 (2011) 4071-4080.
    [22] J. Lao, J.M. Nedelec, E. Jallot, New strontium-based bioactive glasses: physicochemical reactivity and delivering capability of biologically active dissolution products, Journal of Materials Chemistry, 19 (2009) 2940-2949.
    [23] S. Taherkhani, F. Moztarzadeh, Influence of strontium on the structure and biological properties of sol–gel-derived mesoporous bioactive glass (MBG) powder, Journal of Sol-Gel Science and Technology, 78 (2016) 539-549.
    [24] A. Hoppe, B. Sarker, R. Detsch, N. Hild, D. Mohn, W.J. Stark, A. Boccaccini, In vitro reactivity of Sr-containing bioactive glass (type 1393) nanoparticles, Journal of Non-Crystalline Solids, 387 (2014) 41-46.
    [25] C. Capuccini, P. Torricelli, E. Boanini, M. Gazzano, R. Giardino, A. Bigi, Interaction of Sr‐doped hydroxyapatite nanocrystals with osteoclast and osteoblast‐like cells, Journal of Biomedical Materials Research - Part A, 89 (2009) 594-600.
    [26] P. Koutsoukos, G. Nancollas, Influence of strontium ion on the crystallization of hydroxyapatite from aqueous solution, Journal of Physical Chemistry, 85 (1981) 2403-2408.
    [27] E. Effah Kaufmann, P. Ducheyne, I. Shapiro, Evaluation of osteoblast response to porous bioactive glass (45S5) substrates by RT-PCR analysis, Tissue Engineering, 6 (2000) 19-28.
    [28] G. Jell, I. Notingher, O. Tsigkou, P. Notingher, J. Polak, L. Hench, M. Stevens, Bioactive glass‐induced osteoblast differentiation: A noninvasive spectroscopic study, Journal of Biomedical Materials Research - Part A, 86 (2008) 31-40.
    [29] P.D. Costantino, C.D. Friedman, Synthetic bone graft substitutes, Otolaryngologic Clinics of North America, 27 (1994) 1037-1074.
    [30] T.J. Cypher, J.P. Grossman, Biological principles of bone graft healing, Journal of Foot and Ankle Surgery, 35 (1996) 413-417.
    [31] L.L. Hench, The story of Bioglass®, Journal of Materials Science: Materials in Medicine, 17 (2006) 967-978.
    [32] L. Hench, An introduction to materials in medicine. Bioceramics, Journal of American Ceramic Society, 81 (1998) 1705-1727.
    [33] L.L. Hench, J.K. West, The sol-gel process, Chemical Reviews, 90 (1990) 33-72.
    [34] P. Saravanapavan, J.R. Jones, R.S. Pryce, L.L. Hench, Bioactivity of gel–glass powders in the CaO‐SiO2 system: A comparison with ternary (CaO‐P2P5‐SiO2) and quaternary glasses (SiO2‐CaO‐P2O5‐Na2O), Journal of Biomedical Materials Research - Part A, 66 (2003) 110-119.
    [35] M. Vallet-Regí, C.V. Ragel, A.J. Salinas, Glasses with medical applications, European Journal of Inorganic Chemistry, 2003 (2003) 1029-1042.
    [36] M.M. Pereira, A.E. Clark, L.L. Hench, Effect of texture on the rate of hydroxyapatite formation on gel‐silica surface, Journal of the American Ceramic Society, 78 (1995) 2463-2468.
    [37] C.J. Brinker, Y. Lu, A. Sellinger, H. Fan, Evaporation‐induced self‐assembly: nanostructures made easy, Advanced Materials, 11 (1999) 579-585.
    [38] A. López Noriega, D. Arcos, I. Izquierdo Barba, Y. Sakamoto, O. Terasaki, M. Vallet Regí, Ordered mesoporous bioactive glasses for bone tissue regeneration, Chemistry of Materials, 18 (2006) 3137-3144.
    [39] M. Vallet-Regí, F. Balas, D. Arcos, Mesoporous materials for drug delivery, Angewandte Chemie International Edition, 46 (2007) 7548-7558.
    [40] C.E. Ashley, E.C. Carnes, G.K. Phillips, D. Padilla, P.N. Durfee, P.A. Brown, T.N. Hanna, J. Liu, B. Phillips, M.B. Carter, The targeted delivery of multicomponent cargos to cancer cells by nanoporous particle-supported lipid bilayers, Nature Materials, 10 (2011) 389.
    [41] J.R. Jones, Sol‐Gel Derived Glasses for Medicine, 2012.
    [42] P. Stoor, V. Kirstilä, E. Söderling, I. Kangasniemi, K. Herbst, A. Yli Urpo, Interactions between bioactive glass and periodontal pathogens, Microbial Ecology in Health and Disease, 9 (1996) 109-114.
    [43] L.L. Hench, Bioceramics: from concept to clinic, Journal of the American Ceramic Society, 74 (1991) 1487-1510.
    [44] A. Clark Jr, C. Pantano Jr, L. Hench, Auger spectroscopic analysis of bioglass corrosion films, Journal of the American Ceramic Society, 59 (1976) 37-39.
    [45] T. Kokubo, K. Hata, T. Nakamura, T. Yamamuro, Apatite formation on ceramics, metals and polymers induced by a CaO SiO2 based glass in a simulated body fluid, Bioceramics, Elsevier, 1991, pp. 113-120.
    [46] T. Kokubo, S. Ito, Z. Huang, T. Hayashi, S. Sakka, T. Kitsugi, T. Yamamuro, Ca, P‐rich layer formed on high‐strength bioactive glass‐ceramic A‐W, Journal of Biomedical Materials Research - Part A, 24 (1990) 331-343.
    [47] A.M. Cortizo, M.S. Molinuevo, D.A. Barrio, L. Bruzzone, Osteogenic activity of vanadyl (IV)–ascorbate complex: Evaluation of its mechanism of action, International Journal of Biochemistry and Cell Biology, 38 (2006) 1171-1180.
    [48] M. Yamaguchi, Role of zinc in bone formation and bone resorption, Journal of Trace Elements in Experimental Medicine, 11 (1998) 119–135.
    [49] P. Marie, P. Ammann, G. Boivin, C. Rey, Mechanisms of action and therapeutic potential of strontium in bone, Calcified Tissue International, 69 (2001).
    [50] J. Jerosch, A. Bader, G. Uhr, Knochen: Curasan-Taschenatlas spezial, Georg Thieme Verlag, 2002.
    [51] A. Hoppe, N.S. Güldal, A. Boccaccini, A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics, Biomaterials, 32 (2011) 2757-2774.
    [52] E.M. Carlisle, Silicon: a requirement in bone formation independent of vitamin D1, Calcified Tissue International, 33 (1981) 27-34.
    [53] E.M. Carlisle, Silicon: a possible factor in bone calcification, Science, 167 (1970) 279-280.
    [54] R. Jugdaohsingh, K.L. Tucker, N. Qiao, L.A. Cupples, D.P. Kiel, J.J. Powell, Dietary silicon intake is positively associated with bone mineral density in men and premenopausal women of the Framingham Offspring cohort, Journal of Bone and Mineral Research, 19 (2004) 297-307.
    [55] J. Damen, J. Ten Cate, Silica-induced precipitation of calcium phosphate in the presence of inhibitors of hydroxyapatite formation, Journal of Dental Research, 71 (1992) 453-457.
    [56] D. Reffitt, N. Ogston, R. Jugdaohsingh, H. Cheung, B.A.J. Evans, R. Thompson, J. Powell, G. Hampson, Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro, Bone, 32 (2003) 127-135.
    [57] S. Maeno, Y. Niki, H. Matsumoto, H. Morioka, T. Yatabe, A. Funayama, Y. Toyama, T. Taguchi, J. Tanaka, The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture, Biomaterials, 26 (2005) 4847-4855.
    [58] P.J. Marie, The calcium-sensing receptor in bone cells: a potential therapeutic target in osteoporosis, Bone, 46 (2010) 571-576.
    [59] P. Valerio, M. Pereira, A. Goes, M.F. Leite, Effects of extracellular calcium concentration on the glutamate release by bioactive glass (BG60S) preincubated osteoblasts, Biomedical Materials, 4 (2009) 045011.
    [60] M. Julien, S. Khoshniat, A. Lacreusette, M. Gatius, A. Bozec, E.F. Wagner, Y. Wittrant, M. Masson, P. Weiss, L. Beck, Phosphate‐dependent regulation of MGP in osteoblasts: Role of ERK1/2 and Fra‐1, Journal of Bone and Mineral Research, 24 (2009) 1856-1868.
    [61] P. Marie, Strontium ranelate: a physiological approach for optimizing bone formation and resorption, Bone, 38 (2006) 10-14.
    [62] P. Meunier, D. Slosman, P. Delmas, J. Sebert, M. Brandi, C. Albanese, R. Lorenc, S. Pors-Nielsen, M. De Vernejoul, A. Roces, Strontium ranelate: dose-dependent effects in established postmenopausal vertebral osteoporosis—a 2-year randomized placebo controlled trial, Journal of Clinical Endocrinology Metabolism, 87 (2002) 2060-2066.
    [63] E. Verné, M. Miola, C.V. Brovarone, M. Cannas, S. Gatti, G. Fucale, G. Maina, A. Massé, S. Di Nunzio, Surface silver-doping of biocompatible glass to induce antibacterial properties. Part I: massive glass, Journal of Materials Science: Materials in Medicine, 20 (2009) 733-740.
    [64] U. Lohbauer, G. Jell, P. Saravanapavan, J.R. Jones, L.L. Hench, Indirect cytotoxicity evaluation of silver doped bioglass Ag-S70C30 on human primary keratinocytes, Key Engineering Materials, Trans Tech Publ, 2005, pp. 431-434.
    [65] H. Klasen, A historical review of the use of silver in the treatment of burns. II. Renewed interest for silver, Burns, 26 (2000) 131-138.
    [66] K.F. Bader, Organ deposition of silver following silver nitrate therapy of burns, Plastic and Reconstructive Surgery, 37 (1966) 550-551.
    [67] T.T. Swe, K.A. Shariff, H. Mohamad, K. Ishikawa, K. Hayashi, M.H.A. Bakar, Behavioural response of cells and bacteria on single and multiple doped Sr and Ag S53P4 sol-gel bioglass, Ceramics International, (2020).
    [68] N. Ranga, E. Poonia, S. Jakhar, A.K. Sharma, A. Kumar, S. Devi, S. Duhan, Enhanced antimicrobial properties of bioactive glass using strontium and silver oxide nanocomposites, Journal of Asian Ceramic Societies, 7 (2019) 75-81.
    [69] A. Vale, P.R. Pereira, A. Barbosa, E. Torrado, N. Alves, Optimization of silver-containing bioglass nanoparticles envisaging biomedical applications, Materials Science Engineering: C, 94 (2019) 161-168.
    [70] C. Mariappan, N. Ranga, Influence of silver on the structure, dielectric and antibacterial effect of silver doped bioglass-ceramic nanoparticles, Ceramics International, 43 (2017) 2196-2201.
    [71] C. Shuai, Y. Xu, P. Feng, G. Wang, S. Xiong, S. Peng, Antibacterial polymer scaffold based on mesoporous bioactive glass loaded with in situ grown silver, Chemical Engineering Journal, 374 (2019) 304-315.
    [72] R. Phetnin, S.T. Rattanachan, Preparation and antibacterial property on silver incorporated mesoporous bioactive glass microspheres, Journal of Sol-Gel Science Technology, 75 (2015) 279-290.
    [73] M. Gholipourmalekabadi, M. Sameni, A. Hashemi, F. Zamani, A. Rostami, M. Mozafari, Silver-and fluoride-containing mesoporous bioactive glasses versus commonly used antibiotics: Activity against multidrug-resistant bacterial strains isolated from patients with burns, Burns, 42 (2016) 131-140.
    [74] Q.L. Feng, J. Wu, G. Chen, F. Cui, T. Kim, J. Kim, A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus, Journal of Biomedical Materials Research, 52 (2000) 662-668.
    [75] J.R. Morones, J.L. Elechiguerra, A. Camacho, K. Holt, J.B. Kouri, J.T. Ramírez, M.J. Yacaman, The bactericidal effect of silver nanoparticles, Nanotechnology, 16 (2005) 2346.
    [76] S.K. Gogoi, P. Gopinath, A. Paul, A. Ramesh, S.S. Ghosh, A. Chattopadhyay, Green fluorescent protein-expressing escherichia coli as a model system for investigating the antimicrobial activities of silver nanoparticles, Langmuir, 22 (2006) 9322-9328.
    [77] S. Pal, Y.K. Tak, J.M. Song, Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium escherichia coli, Applied Environmental Microbiology, 73 (2007) 1712-1720.
    [78] L.C. Yun’an Qing, R. Li, G. Liu, Y. Zhang, X. Tang, J. Wang, H. Liu, Y. Qin, Potential antibacterial mechanism of silver nanoparticles and the optimization of orthopedic implants by advanced modification technologies, International Journal of Nanomedicine, 13 (2018) 3311.
    [79] E. Bonnelye, A. Chabadel, F. Saltel, P. Jurdic, Dual effect of strontium ranelate: stimulation of osteoblast differentiation and inhibition of osteoclast formation and resorption in vitro, Bone, 42 (2008) 129-138.
    [80] P. Cacoub, V. Descamps, O. Meyer, C. Speirs, P. Belissa-Mathiot, P. Musette, Drug rash with eosinophilia and systemic symptoms (DRESS) in patients receiving strontium ranelate, Osteoporosis International, 24 (2013) 1751-1757.
    [81] S. Das, J.C. Crockett, therapy, Osteoporosis–a current view of pharmacological prevention and treatment, Drug Design, Development and Therapy, 7 (2013) 435.
    [82] F. Drago, L. Cogorno, F. Broccolo, G. Ciccarese, A. Parodi, A fatal case of DRESS induced by strontium ranelate associated with HHV-7 reactivation, Osteoporosis International, 27 (2016) 1261-1264.
    [83] B.S. Komm, D. Morgenstern, L. A Yamamoto, S.N. Jenkins, The safety and tolerability profile of therapies for the prevention and treatment of osteoporosis in postmenopausal women, Expert Review of Clinical Pharmacology, 8 (2015) 769-784.
    [84] O. Tabatabaei Malazy, P. Salari, P. Khashayar, B. Larijani, New horizons in treatment of osteoporosis, DARU, Journal of Pharmaceutical Sciences, 25 (2017) 2.
    [85] M. O’donnell, P. Candarlioglu, C. Miller, E. Gentleman, M. Stevens, Materials characterisation and cytotoxic assessment of strontium-substituted bioactive glasses for bone regeneration, Journal of Materials Chemistry, 20 (2010) 8934-8941.
    [86] G. Boivin, P. Deloffre, B. Perrat, G. Panczer, M. Boudeulle, Y. Mauras, P. Allain, Y. Tsouderos, P.J. Meunier, Strontium distribution and interactions with bone mineral in monkey iliac bone after strontium salt (S 12911) administration, Journal of Bone and Mineral Research, 11 (1996) 1302-1311.
    [87] Y. Xiang, J. Du, Effect of strontium substitution on the structure of 45S5 bioglasses, Chemistry of Materials, 23 (2011) 2703-2717.
    [88] K. Fujikura, N. Karpukhina, T. Kasuga, D. Brauer, R. Hill, R. Law, Influence of strontium substitution on structure and crystallisation of Bioglass® 45S5, Journal of Materials Chemistry, 22 (2012) 7395-7402.
    [89] P. Kaur, K. Singh, S. Kaur, S. Kaur, A.P. Singh, Sol-gel derived strontium-doped SiO2–CaO–MgO–P2O5 bioceramics for faster growth of bone like hydroxyapatite and their in vitro study for orthopedic applications, Materials Chemistry and Physics, 245 (2020) 122763.
    [90] C. Fournier, A. Perrier, M. Thomas, N. Laroche, V. Dumas, A. Rattner, L. Vico, A. Guignandon, Reduction by strontium of the bone marrow adiposity in mice and repression of the adipogenic commitment of multipotent C3H10T1/2 cells, Bone, 50 (2012) 499-509.
    [91] Y. Li, J. Li, S. Zhu, E. Luo, G. Feng, Q. Chen, J. Hu, Effects of strontium on proliferation and differentiation of rat bone marrow mesenchymal stem cells, Biochemical and Biophysical Research Communications, 418 (2012) 725-730.
    [92] Z. Saidak, E. Haÿ, C. Marty, A. Barbara, P.J. Marie, Strontium ranelate rebalances bone marrow adipogenesis and osteoblastogenesis in senescent osteopenic mice through NFATc/Maf and Wnt signaling, Aging Cell, 11 (2012) 467-474.
    [93] L.L. Zhu, S. Zaidi, Y. Peng, H. Zhou, B.S. Moonga, A. Blesius, I. Dupin-Roger, M. Zaidi, L. Sun, Induction of a program gene expression during osteoblast differentiation with strontium ranelate, Biochemical and Biophysical Research Communications, 355 (2007) 307-311.
    [94] E.M. Brown, R.J. MacLeod, Extracellular calcium sensing and extracellular calcium signaling, Physiological Reviews, 81 (2001) 239-297.
    [95] E.M. Brown, P.M. Vassilev, S. Quinn, S.C. Hebert, G-protein-coupled, extracellular Ca2+-sensing receptor: a versatile regulator of diverse cellular functions, Vitamins and Hormones, 55 (1998) 1-71.
    [96] E.M. Brown, Extracellular Ca2+ sensing, regulation of parathyroid cell function, and role of Ca2+ and other ions as extracellular (first) messengers, Physiological reviews, 71 (1991) 371-411.
    [97] T. Kameda, H. Mano, Y. Yamada, H. Takai, N. Amizuka, M. Kobori, N. Izumi, H. Kawashima, H. Ozawa, K. Ikeda, Calcium-sensing receptor in mature osteoclasts, which are bone resorbing cells, Biochemical and Biophysical Research Communications, 245 (1998) 419-422.
    [98] M. Kanatani, T. Sugimoto, M. Kanzawa, S. Yano, K. Chihara, High extracellular calcium inhibits osteoclast-like cell formation by directly acting on the calcium-sensing receptor existing in osteoclast precursor cells, Biochemical and Biophysical Research Communications, 261 (1999) 144-148.
    [99] R. Mentaverri, S. Yano, N. Chattopadhyay, L. Petit, O. Kifor, S. Kamel, E. Terwilliger, M. Brazier, E. Brown, The calcium sensing receptor is directly involved in both osteoclast differentiation and apoptosis, FASEB Journal, 20 (2006) 2562-2564.
    [100] T. Yamaguchi, N. Chattopadhyay, O. Kifor, R.R. Butters JR, T. Sugimoto, E.M. Brown, Mouse osteoblastic cell line (MC3T3‐E1) expresses extracellular calcium (Ca2+ o)–sensing receptor and its agonists stimulate chemotaxis and proliferation of MC3T3‐E1 cells, Journal of Bone Mineral Research, 13 (1998) 1530-1538.
    [101] T. Yamaguchi, N. Chattopadhyay, O. Kifor, C. Ye, P.M. Vassilev, J.L. Sanders, E.M. Brown, Expression of extracellular calcium-sensing receptor in human osteoblastic MG-63 cell line, American Journal of Physiology - Cell Physiology, 280 (2001) C382-C393.
    [102] W. Chang, C. Tu, T.H. Chen, D. Bikle, D. Shoback, The extracellular calcium-sensing receptor (CaSR) is a critical modulator of skeletal development, Science Signaling, 1 (2008) ra1-ra1.
    [103] O. Fromigué, E. Haÿ, A. Barbara, C. Petrel, E. Traiffort, M. Ruat, P.J. Marie, Calcium sensing receptor‐dependent and receptor‐independent activation of osteoblast replication and survival by strontium ranelate, Journal of Cellular and Molecular Medicine, 13 (2009) 2189-2199.
    [104] M.S. Rybchyn, M. Slater, A.D. Conigrave, R.S. Mason, An Akt-dependent increase in canonical Wnt signaling and a decrease in sclerostin protein levels are involved in strontium ranelate-induced osteogenic effects in human osteoblasts, Journal of Biological Chemistry, 286 (2011) 23771-23779.
    [105] A.S. Hurtel-Lemaire, R. Mentaverri, A. Caudrillier, F. Cournarie, A. Wattel, S. Kamel, E.F. Terwilliger, E.M. Brown, M. Brazier, The calcium-sensing receptor is involved in strontium ranelate-induced osteoclast apoptosis new insights into the associated signaling pathways, Journal of Biological Chemistry, 284 (2009) 575-584.
    [106] A. Caudrillier, A.S. Hurtel-Lemaire, A. Wattel, F. Cournarie, C. Godin, L. Petit, J.P. Petit, E. Terwilliger, S. Kamel, E.M. Brown, Strontium ranelate decreases RANKL-induced osteoclastic differentiation in vitro: involvement of the calcium sensing receptor, Molecular Pharmacology, (2010) mol. 109.063347.
    [107] T. Koga, Y. Matsui, M. Asagiri, T. Kodama, B. de Crombrugghe, K. Nakashima, H. Takayanagi, NFAT and osterix cooperatively regulate bone formation, Nature Medicine, 11 (2005) 880-885.
    [108] M.M. Winslow, M. Pan, M. Starbuck, E.M. Gallo, L. Deng, G. Karsenty, G.R. Crabtree, Calcineurin/NFAT signaling in osteoblasts regulates bone mass, Developmental Cell, 10 (2006) 771-782.
    [109] S.M. Sprague, M.A. Josephson, Bone disease after kidney transplantation, Seminars in Nephrology, Elsevier, 2004, pp. 82-90.
    [110] A.O. Aliprantis, Y. Ueki, R. Sulyanto, A. Park, K.S. Sigrist, S.M. Sharma, M.C. Ostrowski, B.R. Olsen, L.H. Glimcher, NFATc1 in mice represses osteoprotegerin during osteoclastogenesis and dissociates systemic osteopenia from inflammation in cherubism, Journal of Clinical Investigation, 118 (2008) 3775-3789.
    [111] C.Y. Logan, R. Nusse, The wnt signaling pathway in development and disease, Annual Review of Cell and Development Biology, 20 (2004) 781-810.
    [112] Y. Gong, R.B. Slee, N. Fukai, G. Rawadi, S. Roman-Roman, A.M. Reginato, H. Wang, T. Cundy, F.H. Glorieux, D. Lev, LDL receptor-related protein 5 (LRP5) affects bone accrual and eye development, Cell, 107 (2001) 513-523.
    [113] W. Balemans, M. Ebeling, N. Patel, E. Van Hul, P. Olson, M. Dioszegi, C. Lacza, W. Wuyts, J. Van Den Ende, P. Willems, Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST), Human Molecular Genetics, 10 (2001) 537-544.
    [114] Y. Cui, P.J. Niziolek, B.T. MacDonald, C.R. Zylstra, N. Alenina, D.R. Robinson, Z. Zhong, S. Matthes, C.M. Jacobsen, R.A. Conlon, Lrp5 functions in bone to regulate bone mass, Nature Medicine, 17 (2011) 684.
    [115] W. Simonet, D. Lacey, C. Dunstan, M. Kelley, M. Chang, R. Lüthy, H. Nguyen, S. Wooden, L. Bennett, T. Boone, Osteoprotegerin: a novel secreted protein involved in the regulation of bone density, Cell, 89 (1997) 309-319.
    [116] L.C. Hofbauer, S. Khosla, C.R. Dunstan, D.L. Lacey, W.J. Boyle, B.L. Riggs, The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption, Journal of Bone Mineral Research, 15 (2000) 2-12.
    [117] D.M. Anderson, E. Maraskovsky, W.L. Billingsley, W.C. Dougall, M.E. Tometsko, E.R. Roux, M.C. Teepe, R.F. DuBose, D. Cosman, L. Galibert, A homologue of the TNF receptor and its ligand enhance T-cell growth and dendritic-cell function, Nature, 390 (1997) 175-179.
    [118] N. Udagawa, N. Takahashi, H. Yasuda, A. Mizuno, K. Itoh, Y. Ueno, T. Shinki, M.T. Gillespie, T.J. Martin, K. Higashio, Osteoprotegerin produced by osteoblasts is an important regulator in osteoclast development and function, Endocrinology, 141 (2000) 3478-3484.
    [119] D.M. Ornitz, P.J. Marie, FGF signaling pathways in endochondral and intramembranous bone development and human genetic disease, Genes and Development, 16 (2002) 1446-1465.
    [120] P.J. Marie, H. Miraoui, N. Sévère, FGF/FGFR signaling in bone formation: progress and perspectives, Growth Factors, 30 (2012) 117-123.
    [121] J. Caverzasio, Strontium ranelate promotes osteoblastic cell replication through at least two different mechanisms, Bone, 42 (2008) 1131-1136.
    [122] J. Caverzasio, C. Thouverey, Activation of FGF receptors is a new mechanism by which strontium ranelate induces osteoblastic cell growth, Cellular Physiology and Biochemistry, 27 (2011) 243-250.
    [123] M. Pi, L. Chen, M.Z. Huang, W. Zhu, B. Ringhofer, J. Luo, L. Christenson, B. Li, J. Zhang, P.D. Jackson, GPRC6A null mice exhibit osteopenia, feminization and metabolic syndrome, PLoS ONE, 3 (2008).
    [124] M. Pi, L. Zhang, S.F. Lei, M.Z. Huang, W. Zhu, J. Zhang, H. Shen, H.W. Deng, L.D. Quarles, Impaired osteoblast function in GPRC6A null mice, Journal of Bone and Mineral Research, 25 (2010) 1092-1102.
    [125] P. Wellendorph, L.D. Johansen, A.A. Jensen, E. Casanova, M. Gassmann, P. Deprez, P. Clément-Lacroix, B. Bettler, H. Bräuner-Osborne, No evidence for a bone phenotype in GPRC6A knockout mice under normal physiological conditions, Journal Of Molecular Endocrinology, 42 (2009) 215-223.
    [126] S. Choudhary, P. Halbout, C. Alander, L. Raisz, C. Pilbeam, Strontium ranelate promotes osteoblastic differentiation and mineralization of murine bone marrow stromal cells: involvement of prostaglandins, Journal of Bone and Mineral Research, 22 (2007) 1002-1010.
    [127] K. Okuyama, K. Ohshima, K. Tsuto, Preparation of micro controlled particles using aerosol process technology, KONA Powder and Particle Journal, 9 (1991) 79-93.
    [128] L. Whittig, W. Allardice, X‐ray diffraction techniques, Methods of Soil Analysis: Part 1 Physical, 5 (1986) 331-362.
    [129] P. Li, C. Ohtsuki, T. Kokubo, K. Nakanishi, N. Soga, T. Nakamura, T. Yamamuro, Apatite formation induced by silica gel in a simulated body fluid, Journal of the American Ceramic Society, 75 (1992) 2094-2097.
    [130] M. Tuncer, E. Seker, Single step sol-gel made silver chloride on Titania xerogels to inhibit E. coli bacteria growth: effect of preparation and chloride ion on bactericidal activity, Journal of Sol-Gel Science and Technology, 59 (2011) 304-310.
    [131] S.J. Shih, W.L. Tzeng, R. Jatnika, C.J. Shih, K.B. Borisenko, Control of Ag nanoparticle distribution influencing bioactive and antibacterial properties of Ag‐doped mesoporous bioactive glass particles prepared by spray pyrolysis, Journal of Biomedical Materials Research - Part B Applied Biomaterials, 103 (2015) 899-907.
    [132] L. Li, Y.J. Zhu, High chemical reactivity of silver nanoparticles toward hydrochloric acid, Journal of Colloid and Interface Science, 303 (2006) 415-418.
    [133] A. Henglein, Physicochemical properties of small metal particles in solution:" microelectrode" reactions, chemisorption, composite metal particles, and the atom-to-metal transition, Journal of Physical Chemistry, 97 (1993) 5457-5471.
    [134] A. Henglein, Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles, Chemical Reviews, 89 (1989) 1861-1873.
    [135] D. Gopi, S. Ramya, D. Rajeswari, P. Karthikeyan, L. Kavitha, Strontium, cerium co-substituted hydroxyapatite nanoparticles: synthesis, characterization, antibacterial activity towards prokaryotic strains and in vitro studies, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 451 (2014) 172-180.
    [136] M. Echezarreta-López, M. Landin, Using machine learning for improving knowledge on antibacterial effect of bioactive glass, International Journal of Pharmaceutics, 453 (2013) 641-647.
    [137] G.A. Fielding, M. Roy, A. Bandyopadhyay, S. Bose, Antibacterial and biological characteristics of silver containing and strontium doped plasma sprayed hydroxyapatite coatings, Acta Biomaterialia, 8 (2012) 3144-3152.
    [138] Z. Geng, Z. Cui, Z. Li, S. Zhu, Y. Liang, Y. Liu, X. Li, X. He, X. Yu, R. Wang, Strontium incorporation to optimize the antibacterial and biological characteristics of silver-substituted hydroxyapatite coating, Materials Science and Engineering C, 58 (2016) 467-477.
    [139] A. Guida, M. Towler, J. Wall, R. Hill, S. Eramo, Preliminary work on the antibacterial effect of strontium in glass ionomer cements, Journal of Materials Science Letters, 22 (2003) 1401-1403.
    [140] B.J. Hong, S.J. Shih, Novel pore-forming agent to prepare of mesoporous bioactive glass using one-step spray pyrolysis, Ceramics International, 43 (2017) S771-S775.
    [141] N. Miyata, K. Fuke, Q. Chen, M. Kawashita, T. Kokubo, T. Nakamura, Apatite-forming ability and mechanical properties of PTMO-modified CaO–SiO2–TiO2 hybrids derived from sol–gel processing, Biomaterials, 25 (2004) 1-7.
    [142] J.K. Christie, R.I. Ainsworth, N.H. de Leeuw, Investigating structural features which control the dissolution of bioactive phosphate glasses: Beyond the network connectivity, Journal of Non-Crystalline Solids, 432 (2016) 31-34.
    [143] H. Lin, J. Zhang, F. Qu, J. Jiang, P. Jiang, In vitro hydroxyapatite-forming ability and antimicrobial properties of mesoporous bioactive glasses doped with Ti/Ag, Journal of Nanomaterials, 2013 (2013).
    [144] A. Balamurugan, G. Balossier, J. Michel, S. Kannan, H. Benhayoune, A. Rebelo, J. Ferreira, Sol gel derived SiO2‐CaO‐MgO‐P2O5 bioglass system—Preparation and in vitro characterization, Journal of Biomedical Materials Research - Part B Applied Biomaterials, 83 (2007) 546-553.

    QR CODE