簡易檢索 / 詳目顯示

研究生: 武德勝
VO DUC THANG
論文名稱: 疏水及羧甲基改質幾丁聚醣並其在抗菌和環保上之應用
FUNCTIONALIZATION OF HYDROPHOBICALLY AND CARBOXYMETHYL MODIFIED CHITOSANS FOR ANTIMICROBIAL AND ENVIRONMENTAL APPLICATIONS
指導教授: 李振綱
Cheng-Kang Lee
口試委員: 何明樺
Ming-Hua Ho
蔡伸隆
Shen-Long Tsai
楊銘乾
Ming-Chien Yang
劉懷勝
Hwai-Shen Liu
董崇民
Trong-Ming Don
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 104
中文關鍵詞: 幾丁聚醣改性疏水性幾丁聚醣羧甲基幾丁聚醣細胞捕獲抗菌活性甲基橙薑黃素
外文關鍵詞: Chitosan, modification, hydrophobically modified chitosan, carboxymethyl chitosan, cell capture, antibacterial activity, methyl orange, curcumin
相關次數: 點閱:332下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 幾丁聚醣是幾丁質經由脫乙醯處理所得的陽離子生物聚合物。其羥基和胺基可以被修飾以產生具有廣泛應用的羧甲基幾丁聚醣以及疏水性殼聚醣衍生物。羧甲基幾丁聚醣(carboxymethyl chitosan - CMCS)具有比幾丁聚醣本身更高的抗微生物活性,主要是由於其羥基和氨基之間的相互作用,導致氨基形成質子化的陽離子,有利於與一般帶負電荷之微生物細胞作用。銀離子可被在接枝於磁性納米顆粒上的CMCS原位還原成納米顆粒(AgNPs),作為磁性抗菌納米粒子(MNP @ CMCS-Ag)。由於CMCS和AgNPs的雙重作用,MNPs@CMCS-Ag可明顯提高其對浮游細菌細胞以及生物膜的抗菌活性。另一方面,經過十二烷醛與幾丁聚醣(CS)的胺基反應可合成出疏水性幾丁聚醣(HMCS),由於其C12烷基疏水鏈能與細胞作用,而表現出良好的止血功能。HMCS也可以通過其疏水尾端和細菌細胞外膜之間的相互作用而凝結細菌細胞。因此,HMCS塗層表面可被用來捕捉和固定化細菌細胞。HMCS的疏水尾端不僅可以與細菌細胞外膜產生相互作用,而且可以破壞細菌,導致細胞死亡。在與HMCS塗層接觸2小時後,超過50%的最初加入的大腸桿菌細胞(2.5 x10^4 CFU )可被殺死。HMCS塗層不僅可成為耐用的抗菌表面,而且其高細胞捕獲能力可以來製造大腸桿菌的細胞陣列。此外,在劇烈的機械攪拌下,HMCS在弱酸性條件下溶解時可以產生非常穩定的泡沫。經過冷凍乾燥穩定形成的HMCS泡沫,可得耐用且質輕的泡棉(密度為32 mg mL-1)。除了幾丁聚醣的陽離子性質之外,接枝的C12烷基鏈也能幫助HMCS泡棉捕獲大腸桿菌細胞(約4.0x108個細胞mg-1海綿)。經過5次反覆的細胞移除操作,HMCS泡棉的大腸桿菌細胞去除能力,可以使用乙醇洗滌而再生回復 > 90%的細胞去除能力。此外,疏水烷基尾端的存在可降低HMCS的結晶度,並可增強與疏水化合物如甲基橙和膳食補充物薑黃素的相互作用。HMCS海綿體可增加MO的吸附(168 mg g-1),可作為環保性的生物吸收劑。而且,HMCS海綿體也表現出對薑黃素有效的吸附能力(39mg g-1),吸附有薑黃素的HMCS海綿體,預期具有增強的抗微生物和傷口癒合能力。


    Chitosan, a well-known cationic biopolymer, is obtained from chitin after thorough deacetylation. The hydroxyl and amino groups can be modified to produce carboxymethyl chitosan and hydrophobically modified chitosan derivatives which have a wide range of applications. Carboxymethyl chitosan (CMCS) was known to have a much better antimicrobial activity than chitosan itself due to the interactions between the carboxyl and amino groups that leads to the formation of protonated cationic amino groups. Silver ions were in situ reduced to nanoparticles (AgNPs) on CMCS grafted magnetic nanoparticles as magnetic antimicrobial nanoparticles (MNPs@CMCS-Ag). MNPs@CMCS-Ag could significantly increase its antimicrobial activity against planktonic bacterial cells as well as existing biofilm due to the dual action of CMCS and AgNPs. On the other hand, hydrophobically modified chitosan (HMCS), synthesized by reacting dodecyl aldehyde with the amino groups of chitosan (CS) has demonstrated its good hemostatic property due to the hydrophobic tails. HMCS can also coagulate bacterial cells via the interactions between its hydrophobic tails and outer membrane of bacterial cells. Therefore, HMCS coated surface was employed to capture and immobilize bacterial cells. The hydrophobic tails of HMCS was found not only can interact with outer membrane of bacterial cells but also can disrupt it that leads to the death of cells. More than 50% of the initially loaded E. coli cells (2.5 x 10^4 CFU) could be killed after 2 h contact with HMCS coating. The facile HMCS coating not only generated a durable antimicrobial surface but was also employed to fabricate patterned E. coli cells arrays by taking advantage of its strong cells capture capacity. In addition, the HMCS can generate very stable foam when dissolved in mild acidic condition under vigorous mechanical stirring. A durable and lightweight (density of 32 mg mL-1) sponge was easily obtained by freeze-drying the stably formed HMCS foam. In addition to the cationic nature of chitosan, the grafted C12 alkyl chains were also able to help HMCS sponge for capturing E. coli cells (~4.0 x 10^8 cells mg-1 sponge). After 5 repeated cells removal operation, the removal capacity of HMCS sponge could be regenerated back to >90% by thorough washing with ethanol. Moreover, the presence of hydrophobic alkyl tails that lowers the crystallinity of HMCS and leads to an enhanced interaction with hydrophobic model compounds such as methyl orange and dietary supplement curcumin. The HMCS sponge demonstrated a significantly increased MO adsorption (168 mg g-1) that may find its place as an effective and sustainable bio-absorbents in environmental protections. Besides, HMCS sponge also demonstrated an effective adsorption capacity (39 mg g-1) toward the curcumin. The curcumin loaded HMCS sponge is expected to have enhanced antimicrobial and wound healing activity.

    摘要 i ABSTRACT ii ACKNOWLEDGEMENT iv ABBREVIATIONS viii LIST OF FIGURES ix LIST OF SCHEMES xvi LIST OF TABLES xvii CHAPTER 1 1 INTRODUCTION 1 1.1. Background 1 1.2. Objectives 2 CHAPTER 2 6 LITERATURE REVIEW 6 2.1. Chitosan (CS) 6 2.2. Antibacterial material 6 2.3. Carboxymethyl chitosan (CMCS) 7 2.4. Hydrophobically modified chitosan (HMCS) 8 2.5. Dye adsorption 10 2.6. Wound healing property of curcumin 10 CHAPTER 3 12 MATERIALS AND METHOD 12 3.1. Materials 12 3.1.1. Bacteria 12 3.1.2. Chemical 12 3.2. Bacterial culture medium 13 3.3. Reagent 13 3.4. Apparatus 14 3.5. Characterization 15 CHAPTER 4 19 SILVER DEPOSITED CARBOXYMETHYL CHITOSAN-GRAFTED MAGNETIC NANOPARTICLES AS DUAL ACTION DELIVERABLE ANTIMICROBIAL MATERIALS 19 4.1. PREPARATION AND CHARACTERIZATION 19 4.1.1. Carboxymethyl chitosan (CMCS) preparation 19 4.1.2. CS/CMCS grafted magnetic nanoparticles (MNPs@CS, MNPs@CMCS) 19 4.1.3. In situ deposition of silver on MNPs and MNPs@CMCS (MNPs@Ag and MNPs@CMCS-Ag) 20 4.1.4. Antibacterial effect 21 4.1.5. Minimum inhibitory concentration (MIC) 21 4.1.6. Biofilm disruption 22 4.2. RESULTS AND DISCUSSION 22 4.2.1. Characterization of CMCS and CMCS grafted MNPs (MNPs@CMCS) 22 4.2.2. Silver deposited MNPs@CMCS (MNPs@CMCS-Ag) 26 4.2.3. Antibacterial and biofilm removal effect 31 4.3. CONCLUSION 36 CHAPTER 5 38 CELLS CAPTURE AND ANTIMICROBIAL EFECT OF HYDROPHOBICALLY MODIFIED CHITOSAN COATING ON ESCHERICHIA COLI 38 5.1. PREPARATION AND CHARACTERIZATION 38 5.1.1. Hydrophobically modified chitosan (HMCS) synthesis 38 5.1.2. Cell suspension gelation induced by HMCS 38 5.1.3. Surface coated with HMCS 38 5.1.4. Antimicrobial activity of HMCS surface against E. coli 39 5.1.5. Cells capture and patterning 39 5.2. RESULTS AND DISCUSSION 40 5.2.1. Characterization of HMCS 40 5.2.2. HMCS induced cells gelation 43 5.2.3. HMCS surface coating 46 5.2.4. Antimicrobial effect of HMCS coating 51 5.2.5. Cells capture on patterned HMCS surface 56 5.3. CONCLUSION 58 CHAPTER 6 60 PREPARATION, CHARACTERIZATION AND APPLICATIONS OF HYDROPHOBICALLY MODIFIED CHITOSAN SPONGE 60 6.1. HMCS SPONGE PREPARATION AND CHARACTERIZATION 60 6.1.1. Experimental section 60 6.1.2. Results and discussion 60 6.2. ANTIMICROBIAL SPONGE PREPARED BY HYDROPHOBICALLY MODIFIED CHITOSAN FOR BACTERIAL REMOVAL 63 6.2.1. Experimental section 63 6.2.1.1. Bacteria removal ability of sponges 63 6.2.1.2. Contact-killing activity of sponges 64 6.2.1.3. Reusability of sponge for bacterial removal 64 6.2.2. Results and discussion 64 6.2.2.1. Bacteria removal ability of sponges 64 6.2.2.2. Antibacterial effect of sponges 67 6.2.2.3. Reusability of HMCS for cells removal 70 6.2.3. Conclusion 71 6.3. HYDROPHOBICALLY MODIFIED CHITOSAN SPONGE PREPARATION AND ITS APPLICATION FOR ANIONIC DYE REMOVAL 72 6.3.1. Experimental section 72 6.3.1.1. Adsorption equilibrium 72 6.3.1.2. Adsorption kinetic 73 6.3.1.3. Reusability of CS and HMCS sponge for MO adsorption 73 6.3.2. Results and discusion 73 6.3.2.1. Effect of ionic strength and pH on adsorption 74 6.3.2.2. Adsorption kinetic 75 6.3.2.3. Adsorption isotherm 77 6.3.2.4. Adsorption thermodynamic 80 6.3.2.5. Reused ability of CS and HMCS sponge 81 6.3.3. Conclusion 83 6.4. HYDROPHOBICALLY MODIFIED CHITOSAN SPONGE ADSORBED CURCUMIN AS POTENTIAL MATERIAL FOR WOUND DRESSING 84 6.4.1. Experimental section 84 6.4.1.1. Curcumin adsorption 84 6.4.1.2. DPPH* free radical scavenging activity 84 6.4.1.3. Evaluation of whole-blood clotting 85 6.4.2. Results and discussion 85 6.4.2.1. Curcumin adsorption 85 6.4.2.2. DPPH* free radical scavenging activity 87 6.4.2.3. Evaluation of whole-blood clotting 88 6.4.3. Conclusion 88 CHAPTER 7 89 FUTURE WORK AND SUGGESTION 89 REFERENCES 94

    [1] V.K. Mourya, N.N. Inamdar, A. Tiwari, Carboxymethyl chitosan and its applications, Advanced Materials Letters, 1 (2010) 11-33.
    [2] T. Chen, R. Wang, L.Q. Xu, K.G. Neoh, E.-T. Kang, Carboxymethyl Chitosan-Functionalized Magnetic Nanoparticles for Disruption of Biofilms of Staphylococcus aureus and Escherichia coli, Ind. Eng. Chem. Res., 51 (2012) 13164-13172.
    [3] S. Ifuku, M. Tsuji, M. Morimoto, H. Saimoto, H. Yano, Synthesis of Silver Nanoparticles Templated by TEMPO-Mediated Oxidized Bacterial Cellulose Nanofibers, Biomacromolecules, 10 (2009) 2714-2717.
    [4] M.J. Laudenslager, J.D. Schiffman, C.L. Schauer, Carboxymethyl Chitosan as a Matrix Material for Platinum, Gold, and Silver Nanoparticles, Biomacromolecules, 9 (2008) 2682-2685.
    [5] J. Song, N.L. Birbach, J.P. Hinestroza, Deposition of silver nanoparticles on cellulosic fibers via stabilization of carboxymethyl groups, Cellulose, 19 (2012) 411-424.
    [6] L. Huang, M.L. Zhai, D.W. Long, J. Peng, L. Xu, G.Z. Wu, J.Q. Li, G.S. Wei, UV-induced synthesis, characterization and formation mechanism of silver nanoparticles in alkalic carboxymethylated chitosan solution, J Nanopart Res, 10 (2008) 1193-1202.
    [7] A.J. Varma, S.V. Deshpande, J.F. Kennedy, Metal complexation by chitosan and its derivatives: a review, Carbohydr. Polym., 55 (2004) 77-93.
    [8] N. Tien An, N.T. Dong, P.T.B. Hanh, T.T.Y. Nhi, D.A. Vu, Silver-N-Carboxymethyl Chitosan Nanocomposites: Synthesis and its Antibacterial Activities, Journal of Bioterrorism & Biodefense, 01 (2010).
    [9] J. Wu, Y. Zheng, W. Song, J. Luan, X. Wen, Z. Wu, X. Chen, Q. Wang, S. Guo, In situ synthesis of silver-nanoparticles/bacterial cellulose composites for slow-released antimicrobial wound dressing, Carbohydrate polymers, 102 (2014) 762-771.
    [10] A.G. Destaye, C.-K. Lin, C.-K. Lee, Glutaraldehyde Vapor Cross-linked Nanofibrous PVA Mat with in Situ Formed Silver Nanoparticles, ACS Appl. Mater. Int., 5 (2013) 4745-4752.
    [11] H. Xu, F. Qu, H. Xu, W. Lai, Y. Andrew Wang, Z.P. Aguilar, H. Wei, Role of reactive oxygen species in the antibacterial mechanism of silver nanoparticles on Escherichia coli O157:H7, Biometals : an international journal on the role of metal ions in biology, biochemistry, and medicine, 25 (2012) 45-53.
    [12] Liu , X. Chen, H. Park, Self-assembled nanoparticles based on linoleic-acid modified chitosan: Stability and adsorption of trypsin, Carbohydrate Polymers, 62 (2005) 293-298.
    [13] Y.-L. Chiu, M.-C. Chen, C.-Y. Chen, P.-W. Lee, F.-L. Mi, U.S. Jeng, H.-L. Chen, H.-W. Sung, Rapidly in situ forming hydrophobically-modified chitosan hydrogels via pH-responsive nanostructure transformation, Soft Matter, 5 (2009) 962.
    [14] J.E. St. Dennis, Q. Meng, R. Zheng, N.S. Pesika, G.L. McPherson, J. He, H.S. Ashbaugh, V.T. John, M.B. Dowling, S.R. Raghavan, Carbon microspheres as network nodes in a novel biocompatible gel, Soft Matter, 7 (2011) 4170-4173.
    [15] M.B. Dowling, R. Kumar, M.A. Keibler, J.R. Hess, G.V. Bochicchio, S.R. Raghavan, A self-assembling hydrophobically modified chitosan capable of reversible hemostatic action, Biomaterials, 32 (2011) 3351-3357.
    [16] D.-T. Vo, C.G. Whiteley, C.-K. Lee, Hydrophobically Modified Chitosan-Grafted Magnetic Nanoparticles for Bacteria Removal, Industrial & Engineering Chemistry Research, 54 (2015) 9270-9277.
    [17] X. Geng, O.H. Kwon, J. Jang, Electrospinning of chitosan dissolved in concentrated acetic acid solution, Biomaterials, 26 (2005) 5427-5432.
    [18] C.-G. Liu, K.G.H. Desai, X.-G. Chen, H.-J. Park, Linolenic Acid-Modified Chitosan for Formation of Self-Assembled Nanoparticles, Journal of Agricultural and Food Chemistry, 53 (2004) 437-441.
    [19] J.-H. Lee, J.P. Gustin, T. Chen, G.F. Payne, S.R. Raghavan, Vesicle−Biopolymer Gels:  Networks of Surfactant Vesicles Connected by Associating Biopolymers, Langmuir, 21 (2004) 26-33.
    [20] Y.H. Kim, S.H. Gihm, C.R. Park, K.Y. Lee, T.W. Kim, I.C. Kwon, H. Chung, S.Y. Jeong, Structural Characteristics of Size-Controlled Self-Aggregates of Deoxycholic Acid-Modified Chitosan and Their Application as a DNA Delivery Carrier, Bioconjugate Chemistry, 12 (2001) 932-938.
    [21] Y. Hu, Y. Du, J. Yang, J. Kennedy, X. Wang, L. Wang, Synthesis, characterization and antibacterial activity of guanidinylated chitosan, Carbohydrate Polymers, 67 (2007) 66-72.
    [22] M. Kong, X.G. Chen, K. Xing, H.J. Park, Antimicrobial properties of chitosan and mode of action: a state of the art review, International journal of food microbiology, 144 (2010) 51-63.
    [23] N.J. Ashbolt, Microbial contamination of drinking water and disease outcomes in developing regions, Toxicology, 198 (2004) 229-238.
    [24] Y. Jin, F. Liu, C. Shan, M. Tong, Y. Hou, Efficient bacterial capture with amino acid modified magnetic nanoparticles, Water research, 50 (2014) 124-134.
    [25] S.D. Richardson, Disinfection by-products and other emerging contaminants in drinking water, Trends in Analytical Chemistry, 22 (2003) 19.
    [26] R.S. Sayah, J.B. Kaneene, Y. Johnson, R. Miller, Patterns of antimicrobial resistance observed in Escherichia coli isolates obtained from domestic- and wild-animal fecal samples, human septage, and surface water, Applied and environmental microbiology, 71 (2005) 1394-1404.
    [27] Z.-m. Xiu, Q.-b. Zhang, H.L. Puppala, V.L. Colvin, P.J.J. Alvarez, Negligible Particle-Specific Antibacterial Activity of Silver Nanoparticles, Nano Letters, 12 (2012) 4271-4275.
    [28] Z. Markova, K.M. Siskova, J. Filip, J. Cuda, M. Kolar, K. Safarova, I. Medrik, R. Zboril, Air stable magnetic bimetallic Fe-Ag nanoparticles for advanced antimicrobial treatment and phosphorus removal, Environ. Sci. Technol., 47 (2013) 5285-5293.
    [29] Z.-m. Xiu, Q.-b. Zhang, H.L. Puppala, V.L. Colvin, P.J.J. Alvarez, Negligible Particle-Specific Antibacterial Activity of Silver Nanoparticles, Nano Lett., 12 (2012) 4271-4275.
    [30] Z. Qi, P. Bharate, C.H. Lai, B. Ziem, C. Bottcher, A. Schulz, F. Beckert, B. Hatting, R. Mulhaupt, P.H. Seeberger, R. Haag, Multivalency at Interfaces: Supramolecular Carbohydrate-Functionalized Graphene Derivatives for Bacterial Capture, Release, and Disinfection, Nano letters, 15 (2015) 6051-6057.
    [31] R.D. Ambashta, M. Sillanpaa, Water purification using magnetic assistance: a review, Journal of hazardous materials, 180 (2010) 38-49.
    [32] Y.-F.W. Yan-Feng Huang, and Xiu-Ping Yan, Amine-Functionalized Magnetic Nanoparticles for Rapid Capture and Removal of Bacterial Pathogens, ENVIRONMENTAL SCIENCE & TECHNOLOGY, 44 (2010) 6.
    [33] L.Y. Ing, N.M. Zin, A. Sarwar, H. Katas, Antifungal Activity of Chitosan Nanoparticles and Correlation with Their Physical Properties, International Journal of Biomaterials, 2012 (2012) 9.
    [34] I. Perelshtein, E. Ruderman, N. Perkas, T. Tzanov, J. Beddow, E. Joyce, T.J. Mason, M. Blanes, K. Molla, A. Patlolla, A.I. Frenkel, A. Gedanken, Chitosan and chitosan-ZnO-based complex nanoparticles: formation, characterization, and antibacterial activity, J. Mater. Chem. B, 1 (2013) 1968-1976.
    [35] R.J.B. Pinto, S.C.M. Fernandes, C.S.R. Freire, P. Sadocco, J. Causio, C.P. Neto, T. Trindade, Antibacterial activity of optically transparent nanocomposite films based on chitosan or its derivatives and silver nanoparticles, Carbohydr. Res., 348 (2012) 77-83.
    [36] W. Sajomsang, P. Gonil, S. Saesoo, C. Ovatlarnporn, Antifungal property of quaternized chitosan and its derivatives, International Journal of Biological Macromolecules, 50 (2012) 263-269.
    [37] F. Croisier, C. Jérôme, Chitosan-based biomaterials for tissue engineering, Eur. Polym. J., 49 (2013) 780-792.
    [38] X.P.Z. Zhi Li, Xiao Fei Liu, Yun Lin Guan, Kang De Yao, Study on antibacterial O-carboxymethylated chitosan/cellulose blend film from LiCl/N, N-dimethylacetamide solution, Polymer Communication, 43 (2002) 7.
    [39] C. Qin, H. Li, Q. Xiao, Y. Liu, J. Zhu, Y. Du, Water-solubility of chitosan and its antimicrobial activity, Carbohydr. Polym., 63 (2006) 367-374.
    [40] C.-H. Wang, W.-S. Liu, J.-F. Sun, G.-G. Hou, Q. Chen, W. Cong, F. Zhao, Non-toxic O-quaternized chitosan materials with better water solubility and antimicrobial function, International Journal of Biological Macromolecules, 84 (2016) 418-427.
    [41] D. Zhu, H. Cheng, J. Li, W. Zhang, Y. Shen, S. Chen, Z. Ge, S. Chen, Enhanced water-solubility and antibacterial activity of novel chitosan derivatives modified with quaternary phosphonium salt, Mater. Sci. Eng., C, 61 (2016) 79-84.
    [42] X.-G. Chen, H.-J. Park, Chemical characteristics of O-carboxymethyl chitosans related to the preparation conditions, Carbohydr. Polym. , 53 (2003) 355-359.
    [43] R. Wang, K.G. Neoh, Z. Shi, E.-T. Kang, P.A. Tambyah, E. Chiong, Inhibition of escherichia coli and proteus mirabilis adhesion and biofilm formation on medical grade silicone surface, Biotechnol. Bioeng. , 109 (2012) 336-345.
    [44] A.M. El-Shafei, M.M.G. Fouda, D. Knittel, E. Schollmeyer, Antibacterial activity of cationically modified cotton fabric with carboxymethyl chitosan, Journal of Applied Polymer Science, 110 (2008) 1289-1296.
    [45] J. Hyung Park, S. Kwon, M. Lee, H. Chung, J.H. Kim, Y.S. Kim, R.W. Park, I.S. Kim, S. Bong Seo, I.C. Kwon, S. Young Jeong, Self-assembled nanoparticles based on glycol chitosan bearing hydrophobic moieties as carriers for doxorubicin: in vivo biodistribution and anti-tumor activity, Biomaterials, 27 (2006) 119-126.
    [46] K.H. Min, K. Park, Y.S. Kim, S.M. Bae, S. Lee, H.G. Jo, R.W. Park, I.S. Kim, S.Y. Jeong, K. Kim, I.C. Kwon, Hydrophobically modified glycol chitosan nanoparticles-encapsulated camptothecin enhance the drug stability and tumor targeting in cancer therapy, Journal of controlled release : official journal of the Controlled Release Society, 127 (2008) 208-218.
    [47] J. Zhang, X.G. Chen, Y.Y. Li, C.S. Liu, Self-assembled nanoparticles based on hydrophobically modified chitosan as carriers for doxorubicin, Nanomedicine : nanotechnology, biology, and medicine, 3 (2007) 258-265.
    [48] Y.L. Chiu, Y.C. Ho, Y.M. Chen, S.F. Peng, C.J. Ke, K.J. Chen, F.L. Mi, H.W. Sung, The characteristics, cellular uptake and intracellular trafficking of nanoparticles made of hydrophobically-modified chitosan, Journal of controlled release : official journal of the Controlled Release Society, 146 (2010) 152-159.
    [49] M.B. Dowling, R. Kumar, M.A. Keibler, J.R. Hess, G.V. Bochicchio, S.R. Raghavan, A self-assembling hydrophobically modified chitosan capable of reversible hemostatic action, Biomaterials, 32 (2011) 3351-3357.
    [50] V. Javvaji, M.B. Dowling, H. Oh, I.M. White, S.R. Raghavan, Reversible gelation of cells using self-assembling hydrophobically-modified biopolymers: towards self-assembly of tissue, Biomaterials Science, 2 (2014) 1016.
    [51] J.P.G. Jae-Ho Lee, Tianhong Chen, Gregory F. Payne, and Srinivasa R. Raghavan, Vesicle−Biopolymer Gels  Networks of Surfactant Vesicles Connected by Associating Biopolymers, Langmuir, 21 (2005) 8.
    [52] M.B. Dowling, V. Javvaji, G.F. Payne, S.R. Raghavan, Vesicle capture on patterned surfaces coated with amphiphilic biopolymers, Soft Matter, 7 (2011) 1219-1226.
    [53] J.S. Arora, T. Ponnusamy, R. Zheng, P. Venkataraman, S.R. Raghavan, D. Blake, V.T. John, Spatially directed vesicle capture in the ordered pores of breath-figure polymer films, Soft Matter, 11 (2015) 5188-5191.
    [54] R. Zheng, J. Arora, B. Boonkaew, S.R. Raghavan, D.L. Kaplan, J. He, N.S. Pesika, V.T. John, Liposomes tethered to a biopolymer film through the hydrophobic effect create a highly effective lubricating surface, Soft Matter, 10 (2014) 9226-9229.
    [55] C.H. Kim, J.W. Choi, H.J. Chun, K.S. Choi, Synthesis of chitosan derivatives with quaternary ammonium salt and their antibacterial activity, Polymer Bulletin, 38 (1997) 387-393.
    [56] M. Kong, X.G. Chen, C.S. Liu, C.G. Liu, X.H. Meng, L.J. Yu, Antibacterial mechanism of chitosan microspheres in a solid dispersing system against E. coli, Colloids and Surfaces B: Biointerfaces, 65 (2008) 197-202.
    [57] O. Inta, R. Yoksan, J. Limtrakul, Hydrophobically modified chitosan: a bio-based material for antimicrobial active film, Materials science & engineering. C, Materials for biological applications, 42 (2014) 569-577.
    [58] J.C. Tiller, C.J. Liao, K. Lewis, A.M. Klibanov, Designing surfaces that kill bacteria on contact, Proceedings of the National Academy of Sciences of the United States of America, 98 (2001) 5981-5985.
    [59] S. Chen, J. Zhang, C. Zhang, Q. Yue, Y. Li, C. Li, Equilibrium and kinetic studies of methyl orange and methyl violet adsorption on activated carbon derived from Phragmites australis, Desalination, 252 (2010) 149-156.
    [60] E. Haque, J.W. Jun, S.H. Jhung, Adsorptive removal of methyl orange and methylene blue from aqueous solution with a metal-organic framework material, iron terephthalate (MOF-235), Journal of hazardous materials, 185 (2011) 507-511.
    [61] Y. Hu, T. Guo, X. Ye, Q. Li, M. Guo, H. Liu, Z. Wu, Dye adsorption by resins: Effect of ionic strength on hydrophobic and electrostatic interactions, Chemical Engineering Journal, 228 (2013) 392-397.
    [62] R.J. Hua-Yue Zhua, Ling Xiao, Wei Li, A novel magnetically separable -Fe2O3 crosslinked chitosan adsorbent Preparation, characterization and adsorption application for removal of hazardous azo dye, Journal of hazardous materials, 179 (2010) 7.
    [63] A. Mittal, A. Malviya, D. Kaur, J. Mittal, L. Kurup, Studies on the adsorption kinetics and isotherms for the removal and recovery of Methyl Orange from wastewaters using waste materials, Journal of hazardous materials, 148 (2007) 229-240.
    [64] T.K. Saha, Adsorption of Methyl Orange onto Chitosan from Aqueous Solution, Journal of Water Resource and Protection, 02 (2010) 898-906.
    [65] M. Vakili, M. Rafatullah, B. Salamatinia, A.Z. Abdullah, M.H. Ibrahim, K.B. Tan, Z. Gholami, P. Amouzgar, Application of chitosan and its derivatives as adsorbents for dye removal from water and wastewater: a review, Carbohydrate polymers, 113 (2014) 115-130.
    [66] A.B. Ray, A. Selvakumar, A.N. Tafuri, Removal of selected pollutants from aqueous media by hardwood mulch, Journal of hazardous materials, 136 (2006) 213-218.
    [67] U. Kumar, M. Bandyopadhyay, Fixed bed column study for Cd(II) removal from wastewater using treated rice husk, Journal of hazardous materials, 129 (2006) 253-259.
    [68] A. Mittal, Use of hen feathers as potential adsorbent for the removal of a hazardous dye, Brilliant Blue FCF, from wastewater, Journal of hazardous materials, 128 (2006) 233-239.
    [69] O. Hamdaoui, Batch study of liquid-phase adsorption of methylene blue using cedar sawdust and crushed brick, Journal of hazardous materials, 135 (2006) 264-273.
    [70] A. Gurses, C. Dogar, M. Yalcin, M. Acikyildiz, R. Bayrak, S. Karaca, The adsorption kinetics of the cationic dye, methylene blue, onto clay, Journal of hazardous materials, 131 (2006) 217-228.
    [71] M. Hajjaji, A. Alami, A. El Bouadili, Removal of methylene blue from aqueous solution by fibrous clay minerals, Journal of hazardous materials, 135 (2006) 188-192.
    [72] H. Chen, J. Zhao, J. Wu, G. Dai, Isotherm, thermodynamic, kinetics and adsorption mechanism studies of methyl orange by surfactant modified silkworm exuviae, Journal of hazardous materials, 192 (2011) 246-254.
    [73] D. Akbik, M. Ghadiri, W. Chrzanowski, R. Rohanizadeh, Curcumin as a wound healing agent, Life sciences, 116 (2014) 1-7.
    [74] A. Yadav, V. Lomash, M. Samim, S.J. Flora, Curcumin encapsulated in chitosan nanoparticles: a novel strategy for the treatment of arsenic toxicity, Chemico-biological interactions, 199 (2012) 49-61.
    [75] L. Weng, P. Rostamzadeh, N. Nooryshokry, H.C. Le, J. Golzarian, In vitro and in vivo evaluation of biodegradable embolic microspheres with tunable anticancer drug release, Acta Biomaterialia, 9 (2013) 6823-6833.
    [76] G. Drochioiu, I. Mangalagiu, E. Avram, K. Popa, A.C. Dirtu, I. Druta, Cyanide Reaction with Ninhydrin: Elucidation of Reaction and Interference Mechanisms, Analytical Sciences, 20 (2004) 1443-1447.
    [77] P. Nagaraja, M.S. Hemantha Kumar, H.S. Yathirajan, J.S. Prakash, Novel Sensitive Spectrophotometric Method for the Trace Determination of Cyanide in Industrial Effluent, Analytical Sciences, 18 (2002) 1027-1030.
    [78] M. Ghasemi, M. Minier, M. Tatoulian, F. Arefi-Khonsari, Determination of Amine and Aldehyde Surface Densities:  Application to the Study of Aged Plasma Treated Polyethylene Films, Langmuir, 23 (2007) 11554-11561.
    [79] T. Chen, R. Wang, L.Q. Xu, K.G. Neoh, E.-T. Kang, Carboxymethyl Chitosan-Functionalized Magnetic Nanoparticles for Disruption of Biofilms of Staphylococcus aureus and Escherichia coli, Industrial & Engineering Chemistry Research, 51 (2012) 13164-13172.
    [80] Z.-A. Lin, J.-N. Zheng, F. Lin, L. Zhang, Z. Cai, G.-N. Chen, Synthesis of magnetic nanoparticles with immobilized aminophenylboronic acid for selective capture of glycoproteins, Journal of Materials Chemistry, 21 (2011) 518-524.
    [81] Y. Fu, L. Liu, L. Zhang, W. Wang, Highly Conductive One-Dimensional Nanofibers: Silvered Electrospun Silica Nanofibers via Poly(dopamine) Functionalization, ACS Appl. Mater. Int., 6 (2014) 5105-5112.
    [82] X. Fei Liu, Y. Lin Guan, D. Zhi Yang, Z. Li, K. De Yao, Antibacterial action of chitosan and carboxymethylated chitosan, Journal of Applied Polymer Science, 79 (2001) 1324-1335.
    [83] K.-H. Cho, J.-E. Park, T. Osaka, S.-G. Park, The study of antimicrobial activity and preservative effects of nanosilver ingredient, Electrochim. Acta, 51 (2005) 956-960.
    [84] Y.-Y. Li, X.-G. Chen, L.-M. Yu, S.-X. Wang, G.-Z. Sun, H.-Y. Zhou, Aggregation of hydrophobically modified chitosan in solution and at the air-water interface, J. Appl. Polym. Sci., 102 (2006) 1968.
    [85] X.F. Liu, Y.L. Guan, D.Z. Yang, Z. Li, K.D. Yao, Antibacterial action of chitosan and carboxymethylated chitosan, J. Appl. Polym. Sci., 79 (2001) 1324.
    [86] A. Zhu, M.B. Chan-Park, S. Dai, L. Li, The aggregation behavior of O-carboxymethylchitosan in dilute aqueous solution, Colloids and surfaces. B, Biointerfaces, 43 (2005) 143-149.
    [87] Z.-A. Lin, J.-N. Zheng, F. Lin, L. Zhang, Z. Cai, G.-N. Chen, Synthesis of magnetic nanoparticles with immobilized aminophenylboronic acid for selective capture of glycoproteins, J. Mater. Chem., 21 (2011) 518.
    [88] D.-T. Vo, C.G. Whiteley, C.-K. Lee, Hydrophobically Modified Chitosan-Grafted Magnetic Nanoparticles for Bacteria Removal, Ind. Eng. Chem. Res., 54 (2015) 9270-9277.
    [89] P. Mukherjee, A. Ahmad, D. Mandal, S. Senapati, S.R. Sainkar, M.I. Khan, R. Parishcha, P.V. Ajaykumar, M. Alam, R. Kumar, M. Sastry, Fungus-Mediated Synthesis of Silver Nanoparticles and Their Immobilization in the Mycelial Matrix: A Novel Biological Approach to Nanoparticle Synthesis, Nano Lett., 1 (2001) 515-519.
    [90] A. Panáček, L. Kvítek, R. Prucek, M. Kolář, R. Večeřová, N. Pizúrová, V.K. Sharma, T.j. Nevěčná, R. Zbořil, Silver Colloid Nanoparticles:  Synthesis, Characterization, and Their Antibacterial Activity, J. Phys. Chem. B, 110 (2006) 16248-16253.
    [91] P. Zhang, C. Shao, Z. Zhang, M. Zhang, J. Mu, Z. Guo, Y. Liu, In situ assembly of well-dispersed Ag nanoparticles (AgNPs) on electrospun carbon nanofibers (CNFs) for catalytic reduction of 4-nitrophenol, Nanoscale, 3 (2011) 3357-3363.
    [92] W.K. Jung, H.C. Koo, K.W. Kim, S. Shin, S.H. Kim, Y.H. Park, Antibacterial activity and mechanism of action of the silver ion in Staphylococcus aureus and Escherichia coli, Applied and environmental microbiology, 74 (2008) 2171-2178.
    [93] A.M. Abdel-Mohsen, R.M. Abdel-Rahman, M.M. Fouda, L. Vojtova, L. Uhrova, A.F. Hassan, S.S. Al-Deyab, I.E. El-Shamy, J. Jancar, Preparation, characterization and cytotoxicity of schizophyllan/silver nanoparticle composite, Carbohydrate polymers, 102 (2014) 238-245.
    [94] W. Duan, C. Shen, H. Fang, G.H. Li, Synthesis of dehydroabietic acid-modified chitosan and its drug release behavior, Carbohydrate research, 344 (2009) 9-13.
    [95] Y. Wu, M. Li, H. Gao, Polymeric micelle composed of PLA and chitosan as a drug carrier, Journal of Polymer Research, 16 (2008) 11-18.
    [96] B.M. Chesnutt, A.M. Viano, Y. Yuan, Y. Yang, T. Guda, M.R. Appleford, J.L. Ong, W.O. Haggard, J.D. Bumgardner, Design and characterization of a novel chitosan/nanocrystalline calcium phosphate composite scaffold for bone regeneration, Journal of biomedical materials research. Part A, 88 (2009) 491-502.
    [97] W.I. Abdel-Fattah, T. Jiang, T. El-Bassyouni Gel, C.T. Laurencin, Synthesis, characterization of chitosans and fabrication of sintered chitosan microsphere matrices for bone tissue engineering, Acta biomaterialia, 3 (2007) 503-514.
    [98] Y. Hu, Y. Du, J. Yang, Y. Tang, J. Li, X. Wang, Self-aggregation and antibacterial activity of N-acylated chitosan, Polymer, 48 (2007) 3098-3106.
    [99] K. Ogawa, T. Yui, Crystallinity of PartiallyN-Acetylated Chitosans, Bioscience, Biotechnology, and Biochemistry, 57 (2014) 1466-1469.
    [100] C.-H.N. Trang Si Trung, Willem F. Stevens, Characterization of decrystallized chitosan and its application in biosorption of textile dyes, Biotechnology Letters, 25 (2003) 6.
    [101] D.T. Vo, C.K. Lee, Cells capture and antimicrobial effect of hydrophobically modified chitosan coating on Escherichia coli, Carbohydrate polymers, 164 (2017) 109-117.
    [102] V. Burckbuchler, A.-L. Kjøniksen, C. Galant, R. Lund, C. Amiel, K.D. Knudsen, B. Nyström, Rheological and Structural Characterization of the Interactions between Cyclodextrin Compounds and Hydrophobically Modified Alginate, Biomacromolecules, 7 (2006) 1871-1878.
    [103] X. Guo, A.A. Abdala, B.L. May, S.F. Lincoln, S.A. Khan, R.K. Prud'homme, Novel Associative Polymer Networks Based on Cyclodextrin Inclusion Compounds, Macromolecules, 38 (2005) 3037-3040.
    [104] A.H. Itsuro Tomatsu, and Akira Harada, Photoresponsive Hydrogel System Using Molecular Recognition of alpha-Cyclodextrin, Macromolecules, 38 (2005) 5.
    [105] L. Karlson, K. Thuresson, B. Lindman, A rheological investigation of the complex formation between hydrophobically modified ethyl (hydroxy ethyl) cellulose and cyclodextrin, Carbohydrate Polymers, 50 (2002) 219-226.
    [106] J. Blacklock, H. Handa, D. Soundara Manickam, G. Mao, A. Mukhopadhyay, D. Oupicky, Disassembly of layer-by-layer films of plasmid DNA and reducible TAT polypeptide, Biomaterials, 28 (2007) 117-124.
    [107] C.A. Nava-Ortiz, C. Alvarez-Lorenzo, E. Bucio, A. Concheiro, G. Burillo, Cyclodextrin-functionalized polyethylene and polypropylene as biocompatible materials for diclofenac delivery, International journal of pharmaceutics, 382 (2009) 183-191.
    [108] M. Lahiani-Skiba, Y. Boulet, I. Youm, F. Bounoure, P. Vérité, P. Arnaud, M. Skiba, Interaction between hydrophilic drug and α-cyclodextrins: physico-chemical aspects, Journal of Inclusion Phenomena and Macrocyclic Chemistry, 57 (2007) 211-217.
    [109] J. Zhan, A. Singh, Z. Zhang, L. Huang, J.H. Elisseeff, Multifunctional aliphatic polyester nanofibers for tissue engineering, Biomatter, 2 (2012) 202-212.
    [110] J. Łuczak, C. Jungnickel, I. Łącka, S. Stolte, J. Hupka, Antimicrobial and surface activity of 1-alkyl-3-methylimidazolium derivatives, Green Chemistry, 12 (2010) 593.
    [111] H. Tan, R. Ma, C. Lin, Z. Liu, T. Tang, Quaternized chitosan as an antimicrobial agent: antimicrobial activity, mechanism of action and biomedical applications in orthopedics, International journal of molecular sciences, 14 (2013) 1854-1869.
    [112] D.L. Zhi Li, Xiaoxia Sheng, Robert E. Cohen, and Michael F. Rubner, Two-Level Antibacterial Coating with Both Release-Killing and Contact-Killing Capabilities, Langmuir, 22 (2006) 4.
    [113] M. Liu, Y. Shen, P. Ao, L. Dai, Z. Liu, C. Zhou, The improvement of hemostatic and wound healing property of chitosan by halloysite nanotubes, RSC Advances, 4 (2014) 23540.
    [114] D.T. Vo, S. Sabrina, C.K. Lee, Silver deposited carboxymethyl chitosan-grafted magnetic nanoparticles as dual action deliverable antimicrobial materials, Materials science & engineering. C, Materials for biological applications, 73 (2017) 544-551.
    [115] E. Klodzinska, M. Szumski, E. Dziubakiewicz, K. Hrynkiewicz, E. Skwarek, W. Janusz, B. Buszewski, Effect of zeta potential value on bacterial behavior during electrophoretic separation, Electrophoresis, 31 (2010) 1590-1596.
    [116] V.M. Esquerdo, T.R. Cadaval, Jr., G.L. Dotto, L.A. Pinto, Chitosan scaffold as an alternative adsorbent for the removal of hazardous food dyes from aqueous solutions, Journal of colloid and interface science, 424 (2014) 7-15.
    [117] H.Y. Zhu, R. Jiang, L. Xiao, G.M. Zeng, Preparation, characterization, adsorption kinetics and thermodynamics of novel magnetic chitosan enwrapping nanosized gamma-Fe2O3 and multi-walled carbon nanotubes with enhanced adsorption properties for methyl orange, Bioresource technology, 101 (2010) 5063-5069.
    [118] L. Xiong, Y. Yang, J. Mai, W. Sun, C. Zhang, D. Wei, Q. Chen, J. Ni, Adsorption behavior of methylene blue onto titanate nanotubes, Chemical Engineering Journal, 156 (2010) 313-320.
    [119] C.H. Giles, T.H. MacEwan, S.N. Nakhwa, D. Smith, 786. Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids, Journal of the Chemical Society (Resumed), (1960) 3973-3993.
    [120] R.K. Das, N. Kasoju, U. Bora, Encapsulation of curcumin in alginate-chitosan-pluronic composite nanoparticles for delivery to cancer cells, Nanomedicine : nanotechnology, biology, and medicine, 6 (2010) 153-160.
    [121] F. Zsila, Z. Bikádi, M. Simonyi, Unique, pH-dependent biphasic band shape of the visible circular dichroism of curcumin–serum albumin complex, Biochemical and Biophysical Research Communications, 301 (2003) 776-782.
    [122] I.F. Nata, K.-J. Chen, C.-K. Lee, Facile microencapsulation of curcumin in acetylated starch microparticles, Journal of Microencapsulation, 31 (2014) 344-349.
    [123] P.T. Kumar, V.K. Lakshmanan, T.V. Anilkumar, C. Ramya, P. Reshmi, A.G. Unnikrishnan, S.V. Nair, R. Jayakumar, Flexible and microporous chitosan hydrogel/nano ZnO composite bandages for wound dressing: in vitro and in vivo evaluation, ACS applied materials & interfaces, 4 (2012) 2618-2629.
    [124] M.F. Shih, M.D. Shau, M.Y. Chang, S.K. Chiou, J.K. Chang, J.Y. Cherng, Platelet adsorption and hemolytic properties of liquid crystal/composite polymers, International journal of pharmaceutics, 327 (2006) 117-125.
    [125] S. Sun, A. Wang, Adsorption kinetics of Cu(II) ions using N,O-carboxymethyl-chitosan, Journal of hazardous materials, 131 (2006) 103-111.
    [126] Z. Yang, H. Yang, Z. Jiang, T. Cai, H. Li, H. Li, A. Li, R. Cheng, Flocculation of both anionic and cationic dyes in aqueous solutions by the amphoteric grafting flocculant carboxymethyl chitosan-graft-polyacrylamide, Journal of hazardous materials, 254-255 (2013) 36-45.
    [127] T. Klotzbach, M. Watt, Y. Ansari, S. Minteer, Effects of hydrophobic modification of chitosan and Nafion on transport properties, ion-exchange capacities, and enzyme immobilization, Journal of Membrane Science, 282 (2006) 276-283.
    [128] K.H. Sjoholm, M. Cooney, S.D. Minteer, Effects of degree of deacetylation on enzyme immobilization in hydrophobically modified chitosan, Carbohydrate polymers, 77 (2009) 420-424.
    [129] M.J. Cooney, J. Petermann, C. Lau, S.D. Minteer, Characterization and evaluation of hydrophobically modified chitosan scaffolds: Towards design of enzyme immobilized flow-through electrodes, Carbohydrate polymers, 75 (2009) 428-435.
    [130] M.B. Dowling, W. Smith, P. Balogh, M.J. Duggan, I.C. MacIntire, E. Harris, T. Mesar, S.R. Raghavan, D.R. King, Hydrophobically-modified chitosan foam: description and hemostatic efficacy, The Journal of surgical research, 193 (2015) 316-323.

    QR CODE