簡易檢索 / 詳目顯示

研究生: 顏慧如
Hui-Ju Yen
論文名稱: 以聚醣為主之奈米粒子做為藥物傳遞系統用於改善細胞吞噬效能之研究
Polysaccharide-based nanoparticles as drugs carrier to improve cellular uptake efficacy
指導教授: 洪伯達
Po-Da Hong
口試委員: 白孟宜
Meng-Yi Bai
蔡協致
Hsieh-Chih Tsai
胡德民
Teh-Min Hu
楊震中
Jenn-Jong Young
高治華
Jyh-Hwa Kau
洪伯達
Po-Da Hong
學位類別: 博士
Doctor
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 148
中文關鍵詞: 幾丁聚醣幾丁聚醣季銨鹽衍生物硫酸軟骨素奈米粒子金奈米粒子
外文關鍵詞: TMC (trimethyl chitosan), HTCC (N-[(2-hydroxy-3-trimethylammonium) propyl] chitosan chloride), ChS (chondroitin sulfate), gold, nanoparticles
相關次數: 點閱:269下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 第一部分:由硫酸軟骨素及幾丁聚醣季銨鹽組成之帶正或負電荷奈米粒子用於蛋白質的運輸
    幾丁聚醣 (chitosan, CS) 及硫酸軟骨素 (ChS) 均具有良好的生物相容性,CS 更具有黏膜吸附性,並且有短暫打開上皮細胞間緊密接合點的能力,但僅溶於弱酸性溶液中,而限制其應用範圍,為克服此點,我們改用幾丁聚醣季銨鹽衍生物 TMC (trimethyl chitosan)及HTCC (N-[(2-hydroxy-3-trimethylammonium)propyl] chitosan chloride) 與 ChS 製備奈米粒子載體。結果發現,(+)/(–)-ChS-TMCs 及 (+)/(–)-ChS-HTCCs 奈米粒子均可被細胞攝入。

    第二部分:帶正電荷並覆蓋幾丁聚醣季銨鹽衍生物的奈米金粒之合成,細胞毒性及癌細胞吞噬效能研究
    利用綠色合成法,在室溫下,製備出含奈米金的幾丁聚醣季銨鹽衍生物奈米粒子。在此,幾丁聚醣季銨鹽衍生物為 HTCC、Fol-HTCC (folate-conjugated HTCC)、Gal-HTCC (galactosyl-conjugated HTCC)。以幾丁聚醣季銨鹽衍生物作為穩定劑,葡萄糖為還原劑,氫氧化鈉為催化劑,在室溫下,水溶液中,將四氯化金的金離子還原成各種帶正電荷的金奈米粒子,並研究了葡萄糖、氫氧化鈉和HTCC濃度對 HTCC-Au 奈米粒子之粒徑、電位和穩定性之影響。且在細胞週期實驗中顯示此 HTCCs-Au 奈米粒子對人臍靜脈內皮細胞均未有毒性。在流式細胞儀實驗結果,具有葉酸取代基的 金奈米粒子在 Caco-2、HepG2 和 Hela 癌細胞中被攝入的程度都比沒有葉酸取代基的金奈米粒子更大;但是具有半乳糖取代基的金奈米粒子僅在 HepG2 癌細胞中被攝入的程度較高。


    Part 1: Positively and negatively surface-charged nanoparticles assembled from chondroitin sulfate and quaternary chitosan as protein carrier
    Chitosan (CS) and chondroitin sulfate (ChS) had good biocompatibility. CS had biological properties such as muco-adhesive, and more short-term ability to open between epithelial tight junctions. But only soluble in weak acid solution, and limited its application. In order to overcome this point, we switched to alkyl quaternary ammonium salts of chitosan derivatives, TMC (trimethyl chitosan) and HTCC (N-[(2-hydroxy-3-trimethylammonium) propyl] chitosan chloride), and prepared ChS nanoparticles (NPs) carriers. The results showed that, (+)/(–)-ChS-TMCs and (+)/(–)-ChS-HTCCs NPs were taken up by human cell.

    Part 2: Positively charged gold nanoparticles capped with quaternary chitosan derivatives: synthesis, cytotoxicity and cancer cells uptake efficacy studies
    Further use of green synthesis method at room temperature to prepare HTCCs-Au NPs. Here, the HTCCs were HTCC, Fol-HTCC (folate-conjugated HTCC) and Gal-HTCC (galactosyl-conjugated HTCC). The HTCCs were used as a stabilizer, glucose was used as a reducing agent, and NaOH was used as a catalyst. The gold ions of gold tetrachloride were reduced to various positively charged gold NPs at room temperature in an aqueous solution. We studied the effects of glucose, NaOH and HTCC concentrations on the particle size, zeta potential and stability of HTCC-Au NPs. Furthermore, in cell cycle experiments, the HTCCs-Au NPs were not toxic to human umbilical vein endothelial cells. As a result of flow cytometry experiments, Fol-HTCC-Au NPs were uptake to a greater extent in Caco-2, HepG2, and HeLa cancer cells than HTCC-Au NPs. However, Gal-HTCC-Au NPs were only highly uptake in HepG2 cancer cells.

    目錄 頁次 中文摘要……….……………...………………………………………...…………………….Ⅰ 英文摘要………….………….…………………………………………………….....…….…Ⅱ 誌 謝………………………………………………………………………………......…..Ⅲ 目 錄………………………………………………………………………………………………………Ⅳ 圖表索引………….…………………………………………………………………………………………Ⅷ 第一部分 1、 緒論……………………………………………………………………………........3 1.1 前言…………………..………………………………………….……………......3 1.2 奈米技術……………………………………………………….………….….....3 1.3 奈米粒子的種類……………………………………………………………….………4 1.4 奈米粒子做為疫苗佐劑的優勢……………………………………………4 1.5 理想粒子疫苗佐劑所需具備的條件……………………………………5 1.6 奈米粒子與抗原間的交互作用……………………………………………6 1.7 幾丁聚醣及其季銨鹽衍生物…………………………………………………7 1.8 硫酸軟骨素…………………………………………………………………………………9 1.9 幾丁聚醣奈米粒子…………………………………………………………...10 1.10 聚電解質複合法 (Polyelectrolyte complexation, PEC)……………………..11 1.11 研究目的及實驗設計………………………………………………………...12 2、 材料與方法…………………………………………………………………....13 2.1 材料……………………….....……………………………...........13 2.2 TMC 的合成…………………………….……………………..……………...14 2.3 FITC-conjugated TMC (f-TMC) 之合成………………14 2.4 HTCC 之合成……………………………………………..……………....…15 2.5 FITC-conjugated HTCC (f-HTCC) 之合成…………15 2.6 ChS-TMC NPs 聚集區的研究……………………………………...15 2.7 ChS-HTCC NPs 聚集區的研究…………………………………………16 2.8 ChS-TMC 或 ChS-f-TMC NPs 的製備和 FITC-BSA 的包埋…………...16 2.9 ChS-HTCC 或 ChS-f-HTCC NPs 的製備和 FITC-BSA 的包埋………...16 2.10 ChS-TMC NPs and ChS-HTCC NPs 的光譜測量………16 2.11 NPs 含水量和生成產率的測定……………………………………………17 2.12 負載率和包埋率的評估……………………………………………………...17 2.13 FITC-BSA 活體外釋放的評估……………………………………………18 2.14 細胞存活率試驗…………………………………………………………….....19 2.15 細胞攝取分析 (uptake analysis)………………………………19 2.16 利用流式細胞儀 (flow cytometry) 量化細胞攝取之值……………………19 3、 結果與討論………………………………………………………………….......21 3.1 幾丁聚醣季銨鹽衍生物及其 FITC 共軛物的合成…………21 3.1.1 TMC 及 f-TMC 之合成……………………………………………………...21 3.1.2 HTCC 及 f-HTCC 的合成…………………………………………………..23 3.2 以 PEC 法製備聚醣 NPs 之生成條件探討……………………26 3.2.1 ChS 及 TMC 的質量比對 NPs 之粒徑、介面電位、產率及透射率的影饗……………………………………………………………………………….................26 3.2.2 ChS 及 HTCC 的比例對 NPs 之粒徑、介面電位、產率及透射率的影響………………………………………………………………………………................28 3.3 奈米粒子的特性分析………………………………………………………....36 3.3.1 ChS-TMC NPs 的特性分析………………………………………………….36 3.3.2 ChS-HTCC NPs 的特性分析……………………………………………….36 3.4 蛋白質包埋研究……………………………………………………………......39 3.4.1 ChS-TMC NPs 包埋 FITC-BSA 研究………………………………39 3.4.2 ChS-HTCC NPs 包埋 FITC-BSA 研究……………………………42 3.5 蛋白質活體外釋放研究………………………………………………………..42 3.5.1 ChS-TMC NPs 的活體外釋放研究………………………………………42 3.5.2 ChS-HTCC NPs 的活體外釋放研究……………………………………42 3.6 細胞毒性試驗……………………………………………………………….......45 3.7 細胞胞吞試驗……………………………………………………………….......47 3.7.1 細胞攝取分析 (uptake analysis)…………………………………47 3.7.2 利用流式細胞儀 (flow cytometry) 量化細胞攝取之值…………………...48 4、 結論…………………………………………………………………………..........50 5、 參考文獻.……………………………………………………………………........51 第二部分 6、 緒論………………………………………………………………………….......... 63 6.1 前言…………………………………………………………………………...........63 6.2 癌症標靶運輸 (Cancer-Targeted Delivery) 及導向方式…………………...63 6.3 癌細胞的受體………………………………………………………………........65 6.4 標靶分子……………………………………………………………………..........66 6.5 奈米技術及奈米載體………………………………………………………......68 6.6 奈米金………………………………………………………………………...........71 6.7 天然聚醣類分子……………………………………………………………........72 6.8 帶有不同介面電位之奈米金及奈米銀的通用綠色合成法………73 6.9 研究目的及實驗設計………………………………………………………........74 7、 材料與方法…………………………………………………………………...........75 7.1 材料………………………………………………………………………….............75 7.2 HTCC 之合成………………………………………………………………..........76 7.3 Folate-conjugated HTCC (Fol-HTCC) 之合成………….76 7.4 Galactosyl-conjugated HTCC (Gal-HTCC) 之合成……77 7.5 FITC-conjugated HTCCs (Fol-f-HTCC, Gal-f-HTCC) 之合成……………..77 7.6 HTCC-Au NPs 的綠色合成…………………………………………………......77 7.7 HTCCs-Au NPs 的綠色合成………………………………………………….....78 7.8 HTCCs and HTCCs-Au NPs 的光譜測量……………………………………78 7.9 細胞培養……………………………………………………………………............…79 7.10 運用Cell cycle assay using fluorescence-activated cell sorting (FACS)作細胞週期分析………………………………………………………………………...................79 7.11 利用流式細胞儀 (flow cytometry) 量化細胞攝取之值…………………….79 8、 結果與討論………………………………………………………………..........…...81 8.1 HTCC衍生物及其FITC共軛物的合成……………………………....……..81 8.1.1 HTCC 及 f-HTCC之合成………………………………………………….........81 8.1.2 HTCCs 及 f-HTCCs之合成……………………………………………….......…81 8.2 HTCCs-Au NPs 的綠色合成生成條件探討………………………………..…84 8.2.1 HTCC、NaOH、葡萄糖的比例對Au NPs粒徑、介面電位和形成速率的影響………………………………………………………………………………......................84 8.2.2 HTCCs-Au NPs 的生成條件探討………………………………………....……86 8.3 HTCCs-Au NPs的特性分析………………………………………………….......87 8.4 細胞毒性試驗-運用 FACS 作細胞週期分析……………………………….89 8.5 細胞胞吞試驗-細胞攝取分析 (uptake analysis)…………………91 9、 結論…………………………………………………………………………................94 10、 參考文獻……………………………………………………………………..............95 11、 總結論…………………………………………………………………………..............99 附 錄………….……………………………………………………………………...............101

    第一部分:
    1. Davis JP. Experience with hepatitis A and B vaccines. Am J Med 2005; 118(10 Suppl 1):7-15.
    2. Look M, Bandyopadhyay A, Blum JS, Fahmy TM. Application of nanotechnologies for improvedimmune response against infectious diseases in the developing world. Adv Drug Deliv Rev 2009; 62(4-5):378-93.
    3. O’Hagan DT, Valiante NM. Recent advances in the discovery and delivery of vaccine adjuvants. Nat Rev Drug Discov 2003; 2(9):727-35.
    4. Perrie Y, Mohammed AR, Kirby DJ, McNeil SE, Bramwell VW. Vaccine adjuvant systems: enhancing the efficacy of sub-unit protein antigens. Int J Pharm 2008; 364(2) 272-80.
    5. Copland MJ, Baird MA, Rades T, et al. Liposomal delivery of antigen to human dendritic cells. Vaccine 2003; 21(9-10):883-90.
    6. Schijns V. Immunological concepts for vaccine adjuvant activity. Curr Opin Immunol 2000; 12(4):456-63.
    7. Caputo A, Sparnacci K, Ensoli B, Tondelli L. Functional polymeric nano/microparticles for surface adsorption and delivery of protein and DNA vaccines. Curr Drug Deliv 2008; 5(4):230-42.
    8. Petrovsky N, Aguilar JC. Vaccine adjuvants: current state and future trends. Immunol Cell Biol 2004; 82(5):488-96.
    9. Singh M, Briones M, Ott G, O’Hagan DT. Cationic microparticles: a potent delivety system for DNAvaccines. Proc Natl Acad Sci USA 2000; 97:811-6.
    10. Chang S, Warner J, Liang L, Fairman J. A novel vaccine adjuvant for recombinant flu antigens. Biologicals 2009; 37(3):141-7.
    11. Kalkanidis M, Pietersz GA, Xiang SD, et al. Methods for nano-particle based vaccine formulation and evaluation of their immunogenicity. Methods 2006; 40(1):20-9.
    12. Peek LJ, Middaugh CR, Berkland C. Nanotechnology in vaccine delivery. Adv Drug Deliv Rev 2008; 60(8):915-28.
    13. Scheerlinck J-PY, Greenwood DLV. Virus-sized vaccine delivery systems. Drug Discov Today 2008; 13(19–20):882-7.
    14. Aguilar JC, Rodríguez EG. Vaccine adjuvants revisited. Vaccine 2007; 25(19):3752-62.
    15. O’Hagan DT, Singh M. Microparticles as vaccine adjuvants and delivery systems. Expert Rev Vaccines 2003; 2:269-83.
    16. Schmidt CS, Morrow WJW, Sheikh NA. Smart adjuvants. Expert Rev Vaccines 2007; 6:391-400.
    17. SayIn B, Somavarapu S, Li XW, Sesardic D, Senel S, Alpar OH. TMC-MCC (N-trimethyl chitosanmono-N-carboxymethyl chitosan) nanocomplexes for mucosal delivery of vaccines. Eur J Pharm Sci 2009; 38(4):362-9.
    18. Gómez S, Gamazo C, San Roman B, et al. A novel nanoparticulate adjuvant for immunotherapy with Lolium perenne. J Immunol Methods 2009; 348(1-2):1-8.
    19. Gunaseelan S, Gunaseelan K, Deshmukh M, Zhang X, Sinko PJ. Surface modifications of nanocarriers for effective intracellular delivery of anti-HIV drugs. Adv Drug Deliv Rev 2010; 62(4-5):518-31.
    20. Reed SG, Bertholet S, Coler RN, Friede M. New horizons in adjuvants for vaccine development. Trends Immunol 2009; 30(1):23-32.
    21. Jones KS. Biomaterials as vaccine adjuvants. Biotechnol Progress 2008; 24(4):807-14.
    22. Mallapragada SK, Narasimhan B. Immunomodulatory biomaterials. Int J Pharm 2008; 364(2):265-71.
    23. Thomas C, Gupta V, Ahsan F. Influence of surface charge of PLGA particles of recombinant hepatitis B surface antigen in enhancing systemic and mucosal immune responses. Int J Pharm 2009; 379(1):41-50.
    24. Couvreur P, Vauthier C. Nanotechnology: intelligent design to treat complex disease. Pharm Res 2006; 23:1417-50.
    25. Moghimi SM, Hunter AC, Murray JC. Nanomedicine: current status and future prospects. FASEB J 2005; 19:311-30.
    26. Treuel L, Jiang X, Nienhaus GU. New views on cellular uptake and trafficking of manufactured nanoparticles. J Royal Soc Interface 2013; 10:20120939.
    27. Mamo T, Poland GA. Nanovaccinology: the next generation of vaccines meets 21st century materials science and engineering. Vaccine 2012; 30:6609-11.
    28. Bolhassani A, Safaiyan S, Rafati S. Improvement of different vaccine delivery systems for cancer therapy. Mol Cancer 2011; 10:3-22.
    29. Krishnamachari Y, Geary S, Lemke C, Salem A. Nanoparticle delivery systems in cancer vaccines. Pharm Res 2011; 28:215-36.
    30. Hamdy S, Haddadi A, Hung RW, Lavasanifar A. Targeting dendritic cells with nano-particulate PLGA cancer vaccine formulations. Adv Drug Deliv Rev 2011; 63:943-55.
    31. Chackerian B. Virus-like particle based vaccines for Alzheimer disease. Hum Vaccines 2010; 6:926-30.
    32. Tissot AC, Maurer P, Nussberger J, Sabat R, Pfister T, Ignatenko S, et al. Effect of immunisation against angiotensin II with CYT006-AngQb on ambulatory blood pressure: a double-blind, randomized, placebo-controlled phase IIa study. Lancet 2008; 371:821-7.
    33. Maurer P, Jennings GT, Willers J, Rohner F, Lindman Y, Roubicek K, et al. A therapeutic vaccine for nicotine dependence: preclinical efficacy, and phase I safety and immunogenicity. Eur J Immunol 2005; 35:2031-40.
    34. Roldao A, Mellado MCM, Castilho LR, Carrondo MJ, Alves PM. Virus-like particles in vaccine development. Expert Rev Vaccines 2010; 9:1149-76.
    35. Correia-Pinto JF, Csaba N, Alonso MJ. Vaccine delivery carriers: insights and future perspectives. Int J Pharm 2013; 440: 27-38.
    36. Kushnir N, Streatfield SJ, Yusibov V. Virus-like particles as a highly efficient vaccine platform: diversity of targets and production systems and advances in clinical development. Vaccine 2012; 31:58-83.
    37. Plummer EM, Manchester M. Viral nanoparticles and virus-like particles: platforms for contemporary vaccine design. WIRES Nanomed Nanobi 2011; 3:174-96.
    38. Zhao L, Seth A, Wibowo N, Zhao CX, Mitter N, Yu C, Middelberg APJ. Nanoparticle vaccines. Vaccine 2014; 32:327-37.
    39. Reddy ST, Rehor A, Schmoekel HG, Hubbell JA, Swartz MA. In vivo targeting of dendritic cells in lymph nodes with poly(propylene sulfide) nanoparticles. J Controlled Release 2006; 112(1):26-34.
    40. Walter E, Dreher D, Kok M, et al. Hydrophilic poly(D,L-lactide-co-glycolide) microspheres for the delivery of DNA to human-derived macrophages and dendritic cells. J Controlled Release 2001; 76(1-2):149-68.
    41. Rice-Ficht AC, Arenas-Gamboa AM, Kahl-McDonagh MM, Ficht TA. Polymeric particles in vaccine delivery. Curr Opin Microbiol 2009; 13(1):106-12.
    42. Thomasin C, Corradin G, Men Y, Merkle HP, Gander B. Tetanus toxoid and synthetic malaria antigen containing poly(lactide)/poly(lactide-co-glycolide) microspheres: importance of polymer degradation and antigen release for immune response. J Controlled Release 1996; 41(1-2):131-45.
    43. Slütter B, Soema PC, Ding Z, Verheul R, Hennink W, Jiskoot W. Conjugation of ovalbumin to trimethyl chitosan improves immunogenicity of the antigen. J Controlled Release 2010; 143(2):207-14.
    44. O’Hagan DT. Microparticles and polymers for the mucosal delivery of vaccines. Adv Drug Deliv Rev 1998; 34(2-3):305-20.
    45. Kazzaz J, Neidleman J, Singh M, Ott G, O’Hagan DT. Novel anionic microparticles are a potent adjuvant for the induction of cytotoxic T lymphocytes against recombinant p55 gag from HIV-1. J Controlled Release 2000; 67(2-3):347-56.
    46. Jain S, Yap WT, Irvine DJ. Synthesis of protein-loaded hydrogel particles in an aqueous two-phase system for coincident antigen and CpG oligonucleotide delivery to antigen-presenting cells. Biomacromolecules 2005; 6(5):2590-600.
    47. Shen Z, Reznikoff G, Dranoff G, Rock K. Cloned dendritic cells can present exogenous antigens on both MHC class I and class II molecules. J Immunol 1997; 158(6):2723-30.
    48. Sharma S, Mukkur TKS, Benson HAE, Chen Y. Pharmaceutical aspects of intranasal delivery of vaccines using particulate systems. J Pharm Sci 2009; 98(3):812-43.
    49. Manocha M, Pal PC, Chitralekha KT, et al. Enhanced mucosal and systemic immune response with intranasal immunization of mice with HIV peptides entrapped in PLG microparticles in combination with Ulex Europaeus-I lectin as M cell target. Vaccine 2005; 23(48-49):5599-617.
    50. Ying M, Gander B, Merkle HP, Corradin G. Induction of sustained and elevated immune responses to weakly immunogenic synthetic malarial peptides by encapsulation in biodegradable polymer microspheres. Vaccine 1996; 14(15):1442-50.
    51. Panyam J, Labhasetwar V. Biodegradable nanoparticles for drug and gene delivery to cells and tissue. Adv Drug Deliv Rev 2003; 55(3):329-47.
    52. Tobío M, Gref R, Sánchez A, Langer R, Alonso MJ. Stealth PLA-PEG nanoparticles as protein carriers for nasal administration. Pharm Res 1998; 15(2):270-5.
    53. Mody KT, Popat A, Mahony D, Cavallaro AS, Yu C, Mitter N. Mesoporous silica nanoparticles as antigen carriers and adjuvants for vaccine delivery. Nanoscale 2013; 5:5167-79.
    54. Oyewumi MO, Kumar A, Cui Z. Nano-microparticles as immune adjuvants: correlating particle sizes and the resultant immune responses. Expert Rev Vaccines 2010; 9:1095-107.
    55. Wendorf J, Singh M, Chesko J, Kazzaz J, Soewanan E, Ugozzoli M, et al. A practical approach to the use of nanoparticles for vaccine delivery. J Pharm Sci 2006; 95:2738-50.
    56. Stieneker F, Kreuter J, Lower J. High antibody-titers in mice with polymethylmethacrylate nanoparticles as adjuvant for HIV vaccines. AIDS 1991; 5:431-5.
    57. He Q, Mitchell AR, Johnson SL, Wagner-Bartak C, Morcol T, Bell SJD. Calcium phosphate nanoparticle adjuvant. Clin Diagn Lab Immun 2000; 7:899-903.
    58. Giddam AK, Zaman M, Skwarczynski M, Toth I. Liposome-based delivery system for vaccine candidates: constructing an effective formulation. Nanomed 2012; 7:1877-93.
    59. Glück R, Moser C, Metcalfe IC. Influenza virosomes as an efficient system for adjuvanted vaccine delivery. Expert Opin Biol Ther 2004; 4:1139-45.
    60. Morein B, Sundquist B, Hoglund S, Dalsgaard K, Osterhaus A. ISCOM a novel structure for antigenic presentation of membrane proteins from enveloped viruses. Nature 1984; 308:457-60.
    61. Pearse MJ, Drane D. ISCOMATRIXTM adjuvant: a potent inducer of humoral and cellular immune responses. Vaccine 2004; 22:2391-5.
    62. Middelberg APJ, Rivera-Hernandez T, Wibowo N, Lua LHL, Fan Y, Magor G, et al. A microbial platform for rapid and low-cost virus-like particle and capsomere vaccines. Vaccine 2011; 29:7154-62.
    63. Neirynck S, Deroo T, Saelens X, Vanlandschoot P, Jou WM, Fiers W. A universal influenza A vaccine based on the extracellular domain of the M2 protein. Nat Med 1999; 5:1157-63.
    64. Ionescu RM, Przysiecki CT, Liang X, Garsky VM, Fan J, Wang B, et al. Pharmaceutical and immunological evaluation of human papillomavirus virus like particle as an antigen carrier. J Pharm Sci 2006; 95:70-9.
    65. Morel S, Didierlaurent A, Bourguignon P, Delhaye S, Baras B, Jacob V, et al. Adjuvant System AS03 containing [alpha]-tocopherol modulates innate immune response and leads to improved adaptive immunity. Vaccine 2011; 29:2461-73.
    66. O’Hagan DT, Ott GS, Van Nest G. Recent advances in vaccine adjuvants: the development of MF59 emulsion and polymeric microparticles. Mol Med Today 1997; 3:69-75.
    67. Wibowo N. Engineering viral capsomeres as a vaccine platform. The University of Queensland: Australian Institute for Bioengineering & Nanotechnology; 2012. p. 85-107 [Ph.D. thesis].
    68. Vallhov H, Kupferschmidt N, Gabrielsson S, Paulie S, Strømme M, Garcia-Bennett AE, et al. Adjuvant properties of mesoporous silica particles tune the development of effector T cells. Small 2012; 8:2116-24.
    69. Vallhov H, Gabrielsson S, Strømme M, Scheynius A, Garcia-Bennett AE. Mesoporous silica particles induce size dependent effects on human dendritic cells. Nano Lett 2007; 7:3576-82.
    70. Majeti NV, Ravi K. A review of chitin and chitosan applications. React Funct Polym 2000; 46:1-27.
    71. Baudner BC, Giuliani MM, Coos Verhoef J, Rappuoli R, Junginger HE, Giudice GD. The concomitant use of the LTK63 mucosal adjuvant and of chitosan-based delivery system enhances the immunogenicity and efficacy of intranasally administered vaccines. Vaccine 2003; 21:3837–44.
    72. Vllasaliu D, Exposito-Harris R, Heras A, Casettari L, Garnetta M, Illumd L, Stolnik S. Tight junction modulation by chitosan nanoparticles: Comparison with chitosan solution. Int J Pharm 2010; 400:183–93.
    73. Calvo P, Remunan-Lopez C, Vila-Jato JL, Alonso MJ. Novel hydrophilic chitosan-polyethylene oxide nanoparticles as protein carriers. J Appl Polym Sci 1997; 63:125–32.
    74. Calvo P, Remunan-Lopez C, Vila-Jato JL, Alonso MJ. Chitosan and chitosan/ethylene oxide-propylene oxide block copolymer nanoparticles as novel carriers for proteins and vaccines. Pharm Res 1997; 14:1431–6.
    75. Huang M, Ma Z, Khor E, Lim LY. Uptake of FITC-chitosan nanoparticles by A549 cells. Pharm Res 2002; 19:1488-94.
    76. Yeh MK, Cheng KM, Hu CS, Huang YC, Young JJ. Novel protein-loaded chondroitin sulfate-chitosan nanoparticles: Preparation and characterization. Acta Biomater 2011; 7:3804–12.
    77. Liu Z, Jiao Y, Liu F, Zhang Z. Heparin/chitosan nanoparticle carriers prepared by polyelectrolyte complexation. J Biomed Mater Res 2007; 83A:806–12.
    78. Motwani SK, Chopra S, Talegaonkar S, Kohli K, Ahmad FJ, Khar RK. Chitosan- sodium alginate nanoparticles as submicroscopic reservoirs for ocular delivery: Formulation, optimization and in vitro characterization. Eur J Pharm Biopharm 2008; 68:513–25.
    79. Oyarzun-Ampuero FA, Brea J, Loza MI, Torres D, Alonso MJ. Chitosan-hyaluronic acid nanoparticles loaded with heparin for the treatment of asthma. Int J Pharm 2009; 381:122–9.
    80. Domard A, Rinaudo M, Terrassin C. New method for the quaternization of chitosan. Int J Biol Macromol 1986; 8:105-7.
    81. Kotze AF, Thanou M, Lueben HL, Boer AG, Verhoef JC, Junginger HE. Enhancement of paracellular drug transport with highly quaternized N-trimethyl chitosan chloride in neutral environments: in vitro evaluation in intestinal epithelial cells (caco-2). J Pharm Sci 1999; 88:253-7.
    82. Thanou M, Verhoef JC, Marbach P, Junginger HE. Intestinal absorption of otreotide: N-trimethyl chitosan chloride (TMC) ameliorates the permeability and absorption properties of the somatostatin analogue in vitro and in vivo. J Pharm Sci 2000; 89:951-7.
    83. Hamman JH, Schultz CM, Kotze AF. N-trimethyl chitosan chloride: optimum degree of quaternization for drug absorption enhancement across epithelial cells. Drug Dev Ind Pharm 2003; 29:161-72.
    84. Jia Z, Shen D, Xu W. Synthesis and antibacterial activities of quaternary ammonium salt of chitosan. Carbohydr Res 2001; 333:1-6.
    85. Cardile V, Frasca G, Rizza L, Bonina F, Puglia C, Barge A, Chiambretti N, Cravotto G. Improved adhesion to mucosal cells of water-soluble chitosan tetraalkylammonium salts. Int J Pharm 2008; 362:88-92.
    86. Nam CW, Kim YH, Ko SW. Modification of polyacrylonitrile (PAN) fiber by blending with N-(2-hydroxy)propyl-3-trimethylammonium chitosan chloride. J Appl Polym Sci 1999; 74:2258–65.
    87. Wei W, Ma G, Wang L, Wu J, Su Z. Hollow quarternized chitosan microspheres increase the therapeutic effect of orally administered insulin. Acta Biomater 2010; 6:205-9.
    88. Wu J, Wei W, Wang L, Su Z, Ma G. A thermosensitive hydrogel based on quaternized chitosan and poly(ethylene glycol) for nasal drug delivery system. Biomater 2007; 28:2220-32.
    89. Wu Y, Wei W, Zhou M, Wang Y, Wu J, Ma G, Su Z. Thermal-sensitive hydrogel as adjuvant-free vaccine delivery system for H5N1 intranasal immunization. Biomater 2012; 33:2351-60.
    90. Peng Z, Wang L, Du L, Guo S, Wang X, Tang T. Adjustment of the antibacterial activity and biocompatibility of hydroxypropyltrimethyl ammonium chloride chitosan by varying the degree of substitution of quaternary ammonium. Carbohydr Polym 2010; 81:275–83.
    91. Zhang X, Geng X, Jiang H, Li J, Huang J. Synthesis and characteristics of chitin and chitosan with the (2-hydroxy-3-trimethylammonium)propyl functionality, and evaluation of their antioxidant activity in vitro. Carbohydr Polym 2012; 89:486–91.
    92. Faizuloev E, Marova A, Nikonova A, Volkova I, Gorshkova M, Izumrudov V. Water-soluble N-[(2-hydroxy-3-trimethylammonium)propyl]chitosan chloride as a nucleic acid vector for cell transfection. Carbohydr Polym 2012; 89:1088-94.
    93. Xiao S, Wan Y, Wang X, Zha Q, Liu H, Qiu Z, Zhang S. Synthesis and characterization of N-(2-hydroxy)propyl-3-trimethyl ammonium chitosan chloride for potential application in gene delivery. Colloids and Surfaces B: Biointerfaces 2012; 91:168-74.
    94. Lv P, Wei W, Yue H, Yang T, Wang L, Ma G. Porous quaternized chitosan nanoparticles containing paclitaxel nanocrystals improved therapeutic efficacy in non-small-cell lung cancer after oral administration. Biomacromol 2011; 12:4230-39.
    95. Xiao B, Wang X, Qiu Z, Ma J, Zhou L,Wan Y, Zhang S. A dual-functionally modified chitosan derivative for efficient liver-targeted gene delivery. J Biomed Mater Res A 2013; 101A:1888-97.
    96. Martins AF, Pereira AGB, Fajardo AR, Rubira AF, Muniz EC. Characterization of polyelectrolytes complexes based on N,N,N-trimethyl chitosan/heparin prepared at different pH conditions. Carbohydr Polym 2011; 86:1266–72.
    97. Paliwal R, Paliwal SR, Agrawal GP, Vyas SP. Chitosan nanoconstructs for improved oral delivery of low molecular weight heparin: In vitro and in vivo evaluation. Int J Pharm 2012; 422:179–84.
    98. Martins AF, Bueno PVA, Almeida EAMS, Rodrigues FHA, Rubira AF, Muniz EC. Characterization of N-trimethyl chitosan/alginate complexes and curcumin release. Int J Biol Macromol 2013; 57:174–84.
    99. Amidi M, Romeijn SG, Borchard G, Junginger HE, Hennink WE, Jiskoot W. Preparation and characterization of protein-loaded N-trimethyl chitosan nanoparticles as nasal delivery system. J Controlled Release 2006; 111:107–16.
    100. Amidi M, Romeijn SG, Verhoef JC, Junginger HE, Bungener L, Huckriede A, Crommelin DJA, Jiskoot W. N-Trimethyl chitosan (TMC) nanoparticles loaded with influenza subunit antigen for intranasal vaccination: Biological properties and immunogenicity in a mouse model. Vaccine 2007; 25:144–53.
    101. Chen F, Zhang ZR, Huang Y. Evaluation and modification of N-trimethyl chitosan chloride nanoparticles as protein carriers. Int J Pharm 2007; 336:166–73.
    102. Sayın B, Somavarapu S, Li XW, Thanou M, Sesardic D, Alpar HO, Senel S. Mono-N-carboxymethyl chitosan (MCC) and N-trimethyl chitosan (TMC) nanoparticles for non-invasive vaccine delivery. Int J Pharm 2008; 363:139–48.
    103. Zhao X, Yin L, Ding J, Tang C, Gu S, Yin C, Mao Y. Thiolated trimethyl chitosan nanocomplexes as gene carriers with high in vitro and in vivo transfection efficiency. J Controlled Release 2010; 144:46–54.
    104. Wang S, Jiang T, Ma M, Hu Y, Zhang J. Preparation and evaluation of anti-neuroexcitation peptide (ANEP) loaded N-trimethyl chitosan chloride nanoparticles for brain-targeting. Int J Pharm 2010; 386:249–55.
    105. Vongchan P, Wutti-In Y, Sajomsang W, Gonil P, Kothan S, Linhardt RJ. N,N,N-Trimethyl chitosan nanoparticles for the delivery of monoclonal antibodies against hepatocellular carcinoma cells. Carbohydr Polym 2011; 85:215–20.
    106. Tafaghodi M, Saluja Vinay, Kersten GFA, Kraan H, Slütter B, Amorijc JP, Jiskoot W. Hepatitis B surface antigen nanoparticles coated with chitosan and trimethyl chitosan: Impact of formulation on physicochemical and immunological characteristics. Vaccine 2012; 30:5341–8.
    107. Jin Y, Song Y, Zhu X, Zhou D, Chen C, Zhang Z, Huang Y. Goblet cell-targeting nanoparticles for oral insulin delivery and the influence of mucus on insulin transport. Biomaterials 2012; 33:1573–82.
    108. Zhang J, Tang C, Yin C. Galactosylated trimethyl chitosane-cysteine nanoparticles loaded with Map4k4 siRNA for targeting activated macrophages. Biomaterials 2013; 34:3667–77.
    109. Sun Y, Wan A. Preparation of nanoparticles composed of chitosan and its derivatives as delivery systems for macromolecules. J Appl Polym Sci 2007; 105:552-61.
    110. Li T, Shi X, Du Y, Tang Y. Quaternized chitosan/alginate nanoparticles for protein delivery. J Biomed Mater Res 2007; 383-90.
    111. Wang TW, Xu Q, Wu Y, Zeng AJ, Li M, Gao H. Auaternized chitosan (QCS)/poly (aspartic acid) nanoparticles as a protein drug-delivery system. Carbohydr Res 2009; 344:908-14.
    112. Shu S, Zhang X, Wu Z, Wang Z, Li C. Delivery of protein drugs using nanoparticles self-assembled from dextran sulfate and quaternized chitosan. J Controlled Release 2011; 152:e170-1.
    113. Mikami T, Kitagawa H. Biosynthesis and function of chondroitin sulfate. Biochim Biophys Acta 2013; 1830:4719–33.
    114. 薛敬和、李文婷。第4章:生命的完整體現-個體。生命科學與工程第二版:77-100。
    115. Foot M, Mulholland M. Classification of chondroitin sulfate A, chondroitin sulfate C, glucosamine hydrochloride and glucosamine 6 sulfate using chemometric techniques. J Pharm Biomed Anal 2005; 38:397–407.
    116. Bottegoni C, Muzzarelli RAA, Giovannini F, Busilacchi A, Gigante A. Oral chondroprotection with nutraceuticals made of chondroitin sulphate plus glucosamine sulphate in osteoarthritis. Carbohydr Polym 2014; 109:126–38.
    117. Sakai S, Akiyama H, SatoY, Yoshioka Y, Linhardt RJ, Goda Y, Maitani T, Toida T. Chondroitin sulfate intake inhibits the IgE-mediated allergic response by down- regulating Th2 responses in mice. J Biol Chem 2006; 281:19872–80.
    118. Iovu M, Dumais G, Du Souich P. Anti-inflammatory activity of chondroitin sulfate. Osteoarthritis Cartilage 2008; 16:S14–8.
    119. Muller AJ, Letelier ME, Galleguillos MA, Molina-Berrios AE, Adarmes HH. Comparison of the antioxidant effects of synovial fluid from equine metacarpophalangeal joints with those of hyaluronic acid and chondroitin sulfate. Am J Vet Res 2010; 71:399–404.
    120. Delgado-Roche L, Acosta E, Soto Y, Hernandez-Matos Y, Olivera A, Fernandez-Sanchez E, Vazquez AM. The treatment with an anti-glycosaminoglycan antibody reduces aortic oxidative stress in a rabbit model of atherosclerosis. Free Rad Res 2013; 47:309–15.
    121. Cai S, Liu Y, Shu XZ, Prestwich GD. Injectable glycosaminoglycan hydrogels for controlled release of human basic fibroblast growth factor. Biomaterials 2005; 26:6054–67.
    122. Park JS, Yang HJ, Woo DG, Yang HN, Na K, Park KH. Chondrogenic differentiation of mesenchymal stem cells embedded in a scaffold by longterm release of TGF-3 complexed with chondroitin sulfate. J Biomed Mater Res A 2010; 92:806–16.
    123. Lim JJ, Hammoudi TM, Bratt-Leal AM, Hamilton SK, Kepple KL, Bloodworth NC, McDevitt TC, Temenoff JS. Development of nano- and microscale chondroitin sulfate particles for controlled growth factor delivery. Acta Biomater 2011; 7:986–95.
    124. Varghese S, Hwang NS, Canver AC, Theprungsirikul P, Lin DW, Elisseeff J. Chondroitin sulfate based niches for chondrogenic differentiation of mesenchymal stem cells. Matrix Biol 2008; 27:12–21.
    125. Mizuguchi S, Uyama T, Kitagawa H, Nomura KH, Dejima K, Gengyo-Ando K, Mitani S, Sugahara K, Nomura K. Chondroitin proteoglycans are involved in cell division of Caenorhabditis elegans. Nature 2003; 423:443–8.
    126. Zou XH, Jiang YZ, Zhang GR, Jin HM, Hieu NTM, Ouyang HW. Specific interactions between human fibroblasts and particular chondroitin sulfate molecules for wound healing. Acta Biomater 2009; 5:1588–95.
    127. Lee CT, Kung PH, Lee YD. Preparation of poly(vinyl alcohol)-chondroitin sulfate hydrogel as matrices in tissue engineering. Carbohydr Polym 2005; 61:348–54.
    128. Chang KY, Cheng LW, Ho GH, Huang YP, Lee YD. Fabrication and characterization of poly(γ-glutamic acid-graft-chondroitin sulfate/polycarprolactone porous scaffolds for cartilage tissue engineering. Acta Biomater 2009; 5:193747.
    129. Yan S, Zhang Q, Wang J, Liu Y, Lu S, Li M, Kaplan DL. Silk fibroin/chondroitin sulfate/hyaluronic acid ternary scaffolds for dermal tissue reconstruction. Acta Biomateri 2013; 9:6771–82.
    130. Tiyaboonchai W. Chitosan nanoparticles: a promising system for drug delivery. Naresuan University J 2003; 11:51-66.
    131. Sieval AB, Thanoual M, Kotze AF, Verhoef JC, Brussee J, Junginger HE. Preparation and NMR characterization of highly substituted N-trimethyl chitosan chloride. Carbohydr Polym 1998; 36;157-65.
    132. Das RK, Kasoju N, Bora U. Encapsulation of curcumin inalginate-chitosan–pluronic composite nanoparticles for delivery to cancercells. Nanomedicine: NBM 2010; 6(1):153–60.
    133. Korsmeyer RW, Gurny R, Doelker E, Buri P, Peppas NA. Mechanismof solute release from porous hydrophilic polymers. Int J Pharm 1983; 15(1):25–35.
    134. Ritger PL, Peppas NA. (1987). A Simple equation for description of solute release II. Fickian and anomalous release from swellable devices. J Controlled Release 1987; 5(1):37–42.
    135. Lim SH, Hudson SM. Synthesis and antimicrobial activity of a water-soluble chitosan derivative with a fiber-reactive group. Carbohydr Res 2004; 339:313–9.

    第二部分:
    1. Fabienne D, Olivier F, Véronique P. To exploit the tumor microenvironment: passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J Controlled Release 2010; 148:135-46.
    2. Large DE, Soucy JR, Hebert J, Auguste DT. Advances in receptor-mediated, tumor-targeted drug delivery. Adv Therap 2019; 2:1800091.
    3. Kydd J, Jadia R, Velpurisiva P, Gad A, Paliwal S, Rai P. Targeting Strategies for the Combination Treatment of Cancer Using Drug Delivery Systems. Pharmaceutics 2017; 9:46.
    4. Zhang J, Jiang C, Longo JPF, Azevedo RB, Zhang H, Muehlmann LA. An updated overview on the development of new photosensitizers for anticancer photodynamic therapy. Acta Pharm Sin B 2018; 8:137-146.
    5. Deng K, Li C, Huang S, Xing B, Jin D, Zeng Q, Hou Z, Lin J. Recent progress in near infrared light triggered photodynamic therapy. Small 2017; 13.
    6. Cerna T, Eckschlager T, Stiborova M. Targeted nanoparticles – a promising opportunity in cancer therapy – review. J Metallomics Nanotechnol 2015; 4:6-11.
    7. Díaz MR, Vivas-Mejia PE. Nanoparticles as drug delivery systems in cancer medicine: emphasis on RNAi-containing nanoliposomes. Pharmaceuticals (Basel) 2013; 6:1361-80.
    8. Catuogno S, Esposito CL, de Franciscis V. Aptamer-mediated targeted delivery of therapeutics: an update. Pharmaceuticals (Basel) 2016; 9:69.
    9. Park C, Kim YH, Hwangbo S, Cho H. Photodynamic therapy by conjugation of cell-penetrating peptide with fluorochrome. Int J Nanomed 2017; 12:8185-96.
    10. Yu X, Trase I, Ren M, Duval K, Guo X, Chen Z. Design of nanoparticle-based carriers for targeted drug delivery. J Nanomater 2016; 2016.
    11. Abrahamse H, Kruger CA, Kadanyo S, Mishra A. Nanoparticles for advanced photodynamic therapy of cancer. Photomed Laser Surg 2017; 35:581-8.
    12. Yang S, Gao H. Nanoparticles for modulating tumor microenvironment to improve drug delivery and tumor therapy. Pharmacol Res 2017; 126:97–108.
    13. Gao S, Wang J, Tian R, Wang G, Zhang L, Li Y, Li L, Ma Q, Zhu L. Construction and evaluation of a targeted hyaluronic acid nanoparticle/photosensitizer complex for cancer photodynamic therapy. ACS Appl Mater Interfaces 2017; 9:32509-19.
    14. Yang SJ, Lin FH, Tsai KC, Wei MF, Tsai HM, Wong JM, Shieh MJ. Folic Acid-Conjugated Chitosan Nanoparticles Enhanced Protoporphyrin IX Accumulation in Colorectal Cancer Cells. Bioconjugate Chem 2010; 21:679-89.
    15. Li J, Zheng L, Cai H, Sun W, Shen M, Zhang G, Shi X. Polyethyleneimine-mediated synthesis of folic acid-targeted iron oxide nanoparticles for in vivo tumor MR imaging. Biomaterials 2013; 34: 8382-92.
    16. Mathew ME, Mohan JC, Manzoor K, Nair SV, Tamura H, Jayakumar R. Folate conjugated carboxymethyl chitosan–manganese doped zinc sulphide nanoparticles for targeted drug delivery and imaging of cancer cells. Carbohydr Polym 2010; 80: 442-8.
    17. Chan P, Kurisawa M, Chung JE, Yang YY. Synthesis and characterization of chitosan-g- poly (ethylene glycol)-folate as a non-viral carrier for tumor-targeted gene delivery. Biomaterials 2007; 28:540-9.
    18. Stallivieri A, Baros F, Jetpisbayeva G, Myrzakhmetov B, Frochot C. The interest of folic acid in targeted photodynamic therapy. Curr Med Chem 2015; 22:3185-207.
    19. Kim TH, Park IK, Nah JW, Choi YJ, Cho, CS. Galactosylated chitosan/ DNA nanoparticles prepared using water-soluble chitosan as a gene carrier. Biomaterials 2004; 25(17):3783-92.
    20. Boisselier E, Astruc D. Gold nanoparticles in nanomedicine: preparations, imaging, diagnostics, therapies and toxicity. Chem Soc Rev 2009; 38(6):1759-82.
    21. Voigt J, Christensen J, Shastri VP. Differential uptake of nanoparticles byendothelial cells through polyelectrolytes with affinity for caveolae. PNAS 2014; 111(8):2942-7.
    22. Fang J, Nakamura H, Maeda H. The EPR effect: unique features of tumorblood vessels for drug delivery, factors involved, and limitations and augmentation ofthe effect. Adv Drug Deliver Rev 2011; 63(3):136-51.
    23. Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomed 2012; 7: 5577-91.
    24. Kitamura K, Takahashi T, Yamaguchi T, Noguchi A, Noguchi A, Takashina K, et al. Chemical engineering of the monoclonal antibody A7 by polyethylene glycol for targeting cancer chemotherapy. Cancer Res 1991; 51(16):4310-5.
    25. Zeineldin R, Muller CY, Stack MS, Hudson LG. Targeting the EGF receptor for ovarian cancer therapy. J Oncol 2010; 414676.
    26. Singh M. Transferrin as a targeting ligand for liposomes and anticancer drugs. Curr Pharm Design 1999; 5(6):443-51.
    27. Nasongkla N, Shuai X, Ai H, Weinberg BD, Pink J, Boothman DA, et al. cRGD-functionalized polymer micelles for targeted doxorubicin delivery AngewandteChemie. Int Ed Engl 2004; 43(46):6323-7.
    28. Azhdarzadeh M, Atyabi F, Saei AA, Varnamkhasti BS, Omidi Y, Fateh M, et al. Theranostic MUC-1 aptamer targeted gold coated superparamagneticironoxide nanoparticles for magnetic resonance imaging andphotothermal therapy ofcolon cancer. Colloids Surf B: Biointerfaces 2016; 143:224-32.
    29. Farokhzad OC, Cheng J, Teply BA, Sherifi I, Jon S, Kantoff PW, et al. Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. PNAS 2006; 103(16):6315-20.
    30. Deng X, Cao M, Zhang J, Hu K, Yin Z, Zhou Z, et al. Hyaluronic acid-chitosan nanoparticles for co-delivery of MiR-34a and doxorubicin in therapy against triple negative breast cancer. Biomaterials 2014; 35(14):4333-44.
    31. Tran TH, Choi JY, Ramasamy T, Truong DH, Nguyen CN, Choi HG, et al. Hyaluronic acid-coated solid lipid nanoparticles for targeted delivery of vorinostat to CD44 overexpressing cancer cells. Carbohydr Polym 2014; 114:407-15.
    32. Asimakopoulou AP, Theocharis AD, Tzanakakis GN, Karamanos NK. The biological role of chondroitin sulfate in cancer and chondroitin-based anticancer agents. In Vivo 2008; 22(3):385-90.
    33. Li P, Wang Y, Zeng F, Chen L, Peng Z, Kong LX. Synthesis and characterization of folate conjugated chitosan and cellular uptake of its nanoparticles in HT-29 cells. Carbohydr Res 2011; 346(6): 801-6.
    34. Li X, Zhou H, Yang L, Du G, Pai-Panandiker AS, Huang X, et al. Enhancement of cell recognition in vitro by dual-ligand cancer targeting gold nanoparticles. Biomaterials 2011; 32(10):2540-5.
    35. Xiao B, Wang X, Qiu Z, Ma J, Zhou L,Wan Y, Zhang S. A dual-functionally modified chitosan derivative for efficient liver-targeted gene delivery. J Biomed Mater Res A 2013; 101A:1888-97.
    36. Tseng C, Wang T, Dong G, Yueh-Hsiu Wu S, Young T, Shieh M, et al. Development of gelatin nanoparticles with biotinylated EGF conjugation for lung cancer targeting. Biomaterials 2007; 28(27):3996-4005.
    37. Hadis D, Ali E, Elham A, Sedigheh FA, Mohammad K, Abolfazl A. Application of gold nanoparticles in biomedical and drug delivery. Artif Cells Nanomed Biotechnol 2014; early online:1-13.
    38. Patra JK, Das G, Fraceto LF, Ramos Campos EV, Rodriguez-Torres M del P, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S, Shin HS. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol 2018; 16:71.
    39. Cheng KM, Hung YW, Chen CC, Liu CC, Young JJ. Green synthesis of chondroitin sulfate-capped silver nanoparticles: characterization and surface modification. Carbonhydr Polym 2014; 110:195-202.
    40. Chang TY, Chen CC, Cheng KM, Chin CY, Chen YH, Chen XA, Sun JR, Young JJ, Chiueh TS. Trimethyl chitosan-capped silver nanoparticles with positive surface charge: their catalytic activity and antibacterial spectrum including multidrug-resistant strains of Acinetobacter baumannii. Colloids Surf B: Biointerfaces 2017; 155:61-70.
    41. Young JJ, Cheng KM, Young YA, Chen XA, Chen YH, Chang TY, Yen HJ, Chen CC. Chondroitin sulfate-stabilized silver nanoparticles: improved synthesis and their catalytic, antimicrobial, and biocompatible activities. Carbohydr Res 2018; 457:14-24.
    42. Nam CW, Kim YH, Ko SW. Modification of polyacrylonitrile (PAN) fiber by blending with N-(2-hydroxy)propyl-3-trimethylammonium chitosan chloride. J Appl Polym Sci 1999; 74:2258-65.
    43. Lim SH, Hudson SM. Synthesis and antimicrobial activity of a water-soluble chitosan derivative with a fiber-reactive group. Carbohydr Res 2004; 339:313-9.
    44. Tsai TN, Yen HJ, Chen CC, Chen YC, Young YA, Cheng KM, et al. Novel protein-loaded chondroitin sulfate-N-[(2-hydroxy-3- trimethylammonium) propyl]chitosan nanoparticles with reverse zeta potential: preparation, characterization, and ex vivo assessment. J Mater Chem B 2015; 3:8729-37.
    45. Riccardi C, Nicoletti I. Analysis of apoptosis by propidium iodide staining and flow cytometry. Nat Protoc 2006; 1(3):1458–61.
    46. Kim YH, Choi HM, Yoon JH. Synthesis of a quaternary ammonium derivative of chitosan and its application to a cotton antimicrobial finish. Text Res J 1998; 68(6):428-34.
    47. Xiao B, Wan Y, Wang X, Zha Q, Liu H, Qiu Z, et al. Synthesis and characterization of N-(2-hydroxy)propyl-3-trimethyl ammonium chitosan chloride for potential application in gene delivery. Colloids Surf B: Biointerfaces 2012; 91:168-74.
    48. Xiao B, Wang X, Qiu Z, Ma J, Zhou L, Wan Y, et al. A dual-functionally modified chitosan derivative for efficient liver-targeted gene delivery. J Biomed Mater Res A 2013; 101(7):1888-97.
    49. Zhang J, Tang C, Yin C. Galactosylated trimethyl chitosane cysteine nanoparticles loaded with Map4k4 siRNA for targeting activated macrophages. Biomaterials 2013; 34(14):3667-77.
    50. Klingberg H, Oddershede LB, Loeschner K, Larsen EH, Lofta S, Møller P. Uptake of gold nanoparticles in primary human endothelial cells. Toxicol Res 2015; 4(3):655–66.
    51. Mohanty S, Mishra S, Jena P, Jacob B, Sarkar B, Sonawane A. An investigation on the antibacterial, cytotoxic, and antibiofilm efficacy of starch-stabilized silver nanoparticles. Nanomedicine: Nanotechnology, Biology, and Medicine 2012; 8(6):916–24.

    QR CODE