簡易檢索 / 詳目顯示

研究生: 謝志鍵
Chih-Chien Hsieh
論文名稱: 製備用於引導組織再生之非對稱幾丁聚醣支架
preparation of asymmetric chitosan membrane for guided tissue regeneration
指導教授: 何明樺
Ming-Hua Ho
口試委員: 楊銘乾
M-C Yang
蔡瑞瑩
Ruey Tsay
張 雍
YUNG CHANG
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 119
中文關鍵詞: 幾丁聚醣引導組織再生
外文關鍵詞: asymmetric membrane, guided tissue regeneration
相關次數: 點閱:262下載:5
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於幾丁聚醣具有良好的生物適應性、抗菌性、和生物可分解性,此研究利用幾丁聚醣製備具有組織整合性和細胞阻擋性的引導組織再生支架,期望能夠應用於治療牙周病所導致的齒槽骨缺損問題。
    研究中成功的使用兩階段相分離法製備出不對稱幾丁聚醣支架,由掃描式電子顯微鏡的觀察,可發現支架之不對稱性(上層結構的孔洞小於1μm,而下層結構的的孔洞約在80~120μm),此外,支架亦具有良好的連通性。由細胞穿透性的實驗可得知,上層結構的微小孔洞可以阻擋牙齦纖維母細胞(gingival fibroblast)的通過,然不致對組織液的質傳產生阻礙,而下層結構的大型孔洞,則可以提供足夠的空間供給齒槽骨細胞生長,其效果皆達四個月以上,符合臨床應用的要求。由細胞培養的結果得知,相較於商業化引導組織再生支架和具緻密皮層的幾丁聚醣支架,發現骨細胞在不對稱幾丁聚醣支架上表現較高的活性和骨表現型,即此幾丁聚醣支架之生物親和性較商業化之組織再生膜材較佳。從幾丁聚醣抗菌性和去乙醯度進行分析,在四個月的浸潤之後,幾丁聚醣的抗菌性仍維持優越的表現。综合以上結果,此非對稱幾丁聚醣支架具備有良好的抗菌性、生物相容性、細胞阻擋性和空間創造性,在齒槽骨再生的應用具有相當的潛力。


    Chitosan was used in this study to fabricate asymmetric scaffolds for the guided tissue regeneration (GTR) in the treatment of periodontal diseases. With the two-step phase separation, the lacy structure was formed by liquid-liquid demixing on the top layer of scaffolds, where the pore size was about 1 um. On the other hand, the pores on the bottom layer were cellular and ranged from 80 to 120um, which were formed by the formation of ice crystals. From the culture of osteoblastic cells, the tissue integration, cell occlusivity and space-making effect of the novel chitosan scaffold were all excellent for four months; meanwhile, the transport of tissue fluid would not be hindered by the top layer with small pores. Compared with commercial PLLA GTR membranes and chitosan scaffolds with dense skin, the asymmetric chitosan scaffold developed in this research significantly expressed better biocompatibility and osteoconductivity. The anti-bacterial activity of the asymmetric chitosan scaffold would also last at least for four months. From above results, the asymmetric chitosan scaffold was proved to be a potential GTR membrane for the regeneration of alveolar bones.

    中文摘要 I 英文摘要 II 誌謝 III 目錄 IV 圖目錄 VII 第一章 緒論1 第二章 文獻回顧 2-1 組織工程2 2-2 引導組織再生術(Guided tissue regeneration;GTR)4 2-2-1 引導組織再生支架用於齒槽骨再生組織工程5 2-3 幾丁聚醣8 2-3-1 基本性質8 2-3-2 幾丁聚醣之抗菌性的原理10 2-3-3 幾丁聚醣之去乙醯度的測量11 2-3-3-1 核磁共振儀12 2-3-3-2 紫外光法12 2-3-3-3 電位差滴定法13 2-3-3-4 紅外線光譜法13 2-3-3-5 熱差掃描儀14 2-3-4 幾丁質與幾丁聚醣在生醫材料上之應用15 2-4 製備支架的方法17 2-4-1 熱誘導式相分離法18 2-4-2 乾式相轉換法( Precipitation by solvent evaporation)18 2-4-3 濕式相轉換法( Immersion precipitation )19 2-4-4 乾/濕式相轉換法19 2-4-5 冷凍乾燥法和冷凍膠化法20 2-5 高分子熱力/動力學20 2-5-1 熱力學21 2-5-2 質傳動力學25 第三章 實驗 3-1 實驗藥品27 3-2 實驗儀器28 3-3 實驗步驟30 3-3-1 引導組織再生之幾丁聚醣支架之製備30 3-3-2 觀察非對稱幾丁聚醣支架在長時間下的崩解33 3-3-3 幾丁聚醣支架之抗菌實驗33 3-3-4 幾丁聚醣支架之去乙醯度的變化 35 3-3-5 引導組織再生支架對阻擋細胞培養液的測試35 3-3-6 引導組織再生支架對牙齦纖維母細胞之阻擋能力測試 37 3-3-7 測試骨細胞在幾丁聚醣和聚乳酸支架上的生物活性38 3-3-8 引導組織再生支架之蛋白質釋放測試39 3-3-9 掃描式電子顯微鏡40 3-3-10 細胞培養40 3-3-11 蛋白質測試42 第四章 結果與討論 4-1 控制揮發速率以製備不對稱幾丁聚醣支架44 4-1-1 提高揮發速率對孔洞結構的影響44 4-1-2 使用醋酸(acetic acid)為幾丁聚醣溶劑45 4-1-3 使用甲酸(formic acid)為幾丁聚醣溶劑54 4-2 兩階段式相分離(Two-step phase separation)59 4-3 觀察非對稱幾丁聚醣支架在長時間下的崩解67 4-4 幾丁聚醣支架去乙醯度和抗菌性的測試72 4-5 引導組織再生支架對牙齦纖維母細胞之阻擋能力測試77 4-6 引導組織再生支架中質傳情形之測試 82 4-7 測試骨細胞在幾丁聚醣和聚乳酸支架上的生物活性86 4-8 非對稱幾丁聚醣支架蛋白質控制釋放 89 第五章 結論91 參考文獻93

    【1】 Langer R., Vacanti J.P., Tissue engineering, Science, vol. 260, pp.920 (1993)
    【2】 Hubbell J.A., Biomaterials in tissue engineering, Bio.Technol, vol. 13, pp.565-575(1995)
    【3】 Lucas-Clerc C., Massart C., Campion J.P., Long-term culture of human pancreatic islets in an extracellular matrix: morphological and metabolic effects, Mol. cell endocrinol, vol. 94, pp.9-20(1993)
    【4】 Gottlow J., Nyman S., Karring T., Lindhe J., New attachment formation as the result of controlled tissue regeneration, J Clin Periodontol, vol. 11, pp.494–503(1984)
    【5】 Nyman S., Lindhe J., Karring T., Rylander H., New attachment following surgical treatment of human periodontal disease, J Clin Periodontol , vol. 9, pp.290–296(1982)
    【6】 Nyman S., Lang N.P., Buser D., Bragger U., Bone regeneration adjacement to titanium dental implants using guided tissue regeneration:a report of two cases, IJPRD ,vol. 5: 9-14(1990)
    【7】 Lazarra R.J., Immediate implant placement into extraction sites:surgical and restorative advantages, IJPRD, vol. 9, pp.333-343(1989)
    【8】 Becker W. & Becker B., Guided tissue regeneration for implants placed into extraction sockets and for implant dehiscence:Surgical techniques and case reports, IJPRD, vol. 10, pp. 377-391(1990)
    【9】 Hermann J.S. and Buser D., Guided bone regeneration for dental implants, Current Opinion in Periodontology, vol. 3, pp.168–177(1999)
    【10】 Mueller S.M., Shortkroff S., Schneider T.O., Breinan H.A., Yannas I.V., Meniscus cells seeded in type I and type II collagen-GAG matrices in vitro, Biomaterials, vol. 20, pp. 701-709(1999)
    【11】 Leffler C.C., Muller B.W., Influence of the acid type on the physical and drug liberation properties of chitosan–gelatin sponges, Int. J. Pharm., vol. 194, pp.229–237(2000)
    【12】 Zotkin M.A., Vikhoreva G.A., Smotrina T.V., Derbenev M.A., Thermal modification and study of the structure of chitosan films, Fiber Chemistry, vol. 36, 16-20(2004)
    【13】 Jia Z., Shen D., Xu W., Synthesis and antibacterial activities of quaternary ammonium salt of chitosan, Carbohydr. Res., vol. 333, pp. 1-6(2001)
    【14】 Zhi Li, Xupin Zhuang, Xiaofei Liu, Yunlin Guan, Kangde Yao, Rheological study on O-carboxymethylated chitosan/cellulose polyblends from LiCl/N,N-dimethylacetamide solution, J. Appl. Polym. Sci., vol. 88, pp.1719 - 1725 (2003)
    【15】 Tan S.C., Khor E., Tan T.K., Wong S.M., The degree of deacetylation of chitosan: advocating the first derivative UV-spectrophotometry method of determination, Talanta, vol. 45, pp. 713–719(1998)
    【16】Fereidoon Shahidi, Janak Kamil, Vidana Arachchi, You-Jin Jeon, Food applications of chitin and chitosan, Trends in Food Science & Technology, vol. 10, pp.37-51(1999)
    【17】 Jia Z., Shen D., Xu W., Synthesis and antibacterial activities of quaternary ammonium salt of chitosan, Carbohydr. Res., vol. 333, pp.1-6(2001)
    【18】 Tan S.C., Khor E., Tan T.K., Wong S.M., The degree of deacetylation of chitosan: advocating the first derivative UV-spectrophotometry method of determination, Talanta, vol. 45, pp. 713–719(1998)
    【19】Lavertu M., Xia Z., Serreqi A.N., Berrada M., Rodrigues A., Wang D., Buschmann M.D., Ajay Gupta, A validated 1H NMR method for the determination of the degree of deacetylation of chitosan, J. Pharm. Biomed. Anal., vol. 32, pp.1149-1158(2003)
    【20】 Heux L., Brugnerotto J., Desbrieres J., Versali M.F., Rinaudo M., Solid state NMR for determination of degree of acetylation of chitin and chitosan, Biomacromolecules, vol. 1, pp.746–751(2000)
    【21】 Muzzarelli R.A.A., Determination of degree of acetylation of chitosans by first derivative ultraviolet spectrophotometry, Carbohydr. Polym., vol. 5, pp.461-472(1985)
    【22】 Tanveer Ahmad Khan, Kok Khiang Peh, Hung Seng Ch’ng, Reporting degree of deacetylation values of chitosan:the influence of analytical methods, J Pharm Pharmaceut Sci, vol. 5, pp.205-212 (2002)
    【23】Broussignac P., Chim. Ind. Genie Chim. Vol. 99, pp.1241–1247(1968)
    【24】 Na’ndor Bala’zs & Pa’l Sipos, Limitations of pH-potentiometric titration for the determination of the degree of deacetylation of chitosan, Carbohydr. Res., vol. 342, pp.124–130(2007)
    【25】 Moore G.K., Roberts G.A.F., Muzzarelli R.A.A., Pariser E.R., (eds), Proceedings of the first International Conference on chitin/chitosan, MIT Sea Grant Report, vol 78-7, pp.421(1978)
    【26】 Sabnis S., Block L.H., Improved infrared spectroscopic method for the analysis of degree of N-deacetylation of chitosan, Polym. Bull., vol. 39, pp. 67–71(1997)
    【27】 Blair H.S., Guthrie J., Law T.K. & Turkington P., Chitosan and modified chitosan membranes I. Preparation and Characterization, J Appl Polym Sci., vol. 33, pp.641-656(1987)
    【28】Tanveer Ahmad Khan, Kok Khiang Peh, Hung Seng Ch’ng, Reporting degree of deacetylation values of chitosan:the influence of analytical methods, J Pharm Pharmaceut Sci, vol. 5, pp. 205-212 (2002)
    【29】Luciana Simionatto Guinesi, Eder Tadeu Gomes Cavalheiro, The use of DSC curves to determine the acetylation degree of chitin/chitosan samples, Thermochimica Acta, vol. 444, pp.128–133(2006)
    【30】 Brine C.J., Sandford P.A., Zikakis J.P., 1992, Advances in chitin and chitosan, London: Elsevier Applied Science
    【31】 Yannas I.V., Burke J.F., Warpehoski M., Prompt long-term functional replacement of skin, Trans. Am. Soc. Artif. Intern. Organs., vol. 27, pp.19-23(1981)
    【32】Chen X.G., Wang Z., Liu W.S., and Parka H.J., The effect of carboxymethyl-chitosan on proliferation and collagen secretion of normal and keloid skin fibroblasts, Biomaterials, vol.23, pp. 4609-4614(2002)
    【33】Chio B.K., Kin K.Y., Yoo Y.J., Oh S.J., Choi J.H., Kin C.Y., In vitro antimicrobial activity of a chitooligosaccharide mixture against Actinobacillus actinomycetemcomitants and Streptococcus mutants, Int J Antimicrob Agents , vol. 18, pp. 553-557(2001)
    【34】Sano H., Shibasaki K.I., Matsukubo T., Takaesu Y., Effect of chitosan rinsing on reduction of dental plaque formation, Bull. Tokyo Dent Coll, vol. 44, pp.9-16(2003)
    【35】 Muzzarelli R.A.A., Blagini G., Bellardini M., Simonelli L., Castaldini C., Fratto G., Osteoconduction exerted by methylpyrrolidinone chitosan used in dental surgery, Biomaterials, vol. 14, pp.39-43(1993)
    【36】Park J.S., Choi S.H., Moon I.S., Cho K.S., Kim C.K., Eight-week histological analysis on the effect of chitosan on surgically created one-wall intrabony defect in beagle dog, J Clin periodontal, vol. 30, pp.443-453(2003)
    【37】Genta I., Costantini M., Asti A., Conti B., and Montanari L., Influence of glutaraldehyde on drug release and mucoadhesive properties of chitosan microspheres, Carbohyd. Polym., vol. 36, pp.81-88(1998)
    【38】 Senel S., Ikinci G., Kas S., Yousefi-Rad A., Sargon M.F., and Hincal A., Chitosan films and hydrogels of chlorhexidine gluconate for oral mucosal delivery, Int. J. Pharm., vol. 193, pp. 197-203(2000)
    【39】 Toshinori S., Tsuyoshi I., and Yoshio O., In vitro gene delivery mediated by chitosan: Effect of pH, serum and molecular mass of chitosan on the transfection efficiency, Biomaterials, vol. 22, pp.2075-2080(2001)
    【40】 Chen G., Ushida T., Tateishi T., Preparation of poly (L-latide) and poly (D,L-lactic-co-glycolic acid) by use of ice microparticulates, Biomaterials, vol. 22, pp.2563-2567(2001)
    【41】 Ma J., Wang H., He B., Chen J.T., A preliminary in vitro study on the fabrication and tissue engineering applications of a novel chitosan bilayer materials as a scaffold of human neofetal fibroblast, Biomaterials, vol. 22, pp.331-336(2001)
    【42】 Nagpl V.J., Davis R.M., Desu S.B., Novel thin-films of titanium-dioxide particles synthesized by a sol-gel process, J mater res, vol. 10, pp.3068-3078(1995)
    【43】 Botchwey E.A., Pollack S.R., Levine E.M., Laurencin C.T., Bone tissue engineering in a rotating bioreactor using a microcarrier matrix system, J Biomed Mater Res, vol. 55, pp.242–253(2001)
    【44】Ma P.X., Zhang R., Xiao G., Franceschi R., Engineering new bone tissue in vitro on highly porous poly(-hydroxyl acids)/hydroxyapatite composite scaffolds, J Biomed Mater Res, vol. 54, pp.284-293(2001)
    【45】Nam Y.S., Part T.G., Porous biodegradable polymeric scaffolds prepared by thermally induced phase separation. J. Biomed. Mater. Res., vol. 47, pp.8-17(1999)
    【46】 Wei G., Ma P.X., Structure and properties of nano-hydroxyapatite/polymer composite scaffold for bone tissue engineering, Biomaterials, vol. 25, pp.4749-4757(2004)
    【47】 Kesting R.E., Concerning the microstructure of dry-RO membrane, J. Appl. Polym. Sci., vol. 17, pp.1771(1973)
    【48】 Yanagishita H., Nakane T. and Yoshitome H., Selection criteria for solvent and gelation medium in the phase inversion process, J. Membr. Sci., vol. 89, pp.215(1994)
    【49】 Zsigmongy R. and Bachman W., Filter and method for producing same, US Patent, vol. 1, pp.421-341(1992)
    【50】 Ming-Hua Ho, Pei-Yun Kuo, Hsyue-Jen Hsieh, Tzu-Yang Hsien Lein-Tuan Hou, Juin-Yih Lai and Da-Ming Wang, Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods, Biomaterials, vol. 25, pp.129–138(2004)
    【51】 Tompa H. , Polymer solutions, London, Butterworths(1956)
    【52】 Kamide K., Thermodynamics of polymer solutions, Elsevier Science Publishers B. V.(1990)
    【53】 Kim J.K., Kim Y.D., Kanamori T., Lee H.K. and Balk K.J., Vitrofication phenomena in polysulfone/NMP/water system, J. Appl. Polym. Sci, vol. 71, pp.431(1999)
    【54】 Zeman L. and Tkacik G., Thermodynamic analysis of a membrane-forming system water/n-methyl-2-pyrrolidone/polysu -lfone, J. Membr. Sci., vol. 36, pp.119(1988)
    【55】 Kesting R.E. and Fritzsche A.K., Polymeric gas separation membranes, New York: John Wiley and Sons(1993)
    【56】 Flory P.J., Principles of polymer chemistry, New York: Cornell University Press(1953)
    【57】 Lai J.Y., Lin S.F., Lin F.C. and Wang D.M., Construction of ternary phase diagrams in nonsolvent/solvent/PMMA systems, J. Polym. Sc., Part B:Polym. Phys., vol. 36, pp.607-615(1998)
    【58】 Kim J.Y., Lee H.K., Bank K.J. and Kim S.C., Liquid-liquid phase separation in polysulfone/solvent/water systems, J. Appl. Polym. Sci., vol. 65, pp. 2643-2653(1997)
    【59】 Mulder M.H.V., Basic Principles of Membrane Technology, The Netherlands: Kluwer Academic Publishers(1996)
    【60】Smolders C.A., Van Aartsen J.J., Steenbergen A., Liquid–liquid phase separation in concentrated solutions of non-crystallizable polymers by spinodal decomposition, Kolloid. Z.Z. polym., vol. 243, pp.14(1971)
    【61】 Yoon Sung Nam, Tae Gwan Park, Biodegradable polymeric microcellular foams by modified thermally induced phase separation method, Biomaterials, vol. 20, pp.1783-1790(1999)
    【62】 Hye-Won Kang, Yasuhiko Tabata, Yoshito Ikada, Fabrication of porous gelatin scaffolds fortissue engineering, Biomaterials, vol. 20, pp.1339-1344(1999)
    【63】 Tsay C.S., Mchugh A.J., Mass transfer modeling of asymmetric membrane formation by phase inversion, J. Polym. Sci, Part B:Polym. Phys., vol. 28, pp.1327(1990)
    【64】 Ray R.J., Krantz W.B. and Sani R.L., Linear stability theory model for finger formation in asymmetric membranes, J. Membr. Sci., vol. 23, pp.155(1985)
    【65】 Smolders C.A., Reuvers A.J., Boom R.M. and Wienk I.M., Microstructure in phase-inversion membranes, Part 1:Formation of macrovoids, J. Membr. Sci., vol. 73, pp.259(1992)
    【66】 Jacobs E.P. and Leukess W.D., Formation of an externally bskinned polysulfone capillary membrane, J.Membr. Sci., vol. 121, pp.149(1996)
    【67】Maqut V., Jerome R., Design of macroporous biodegradable polymer scaffolds for cell transplantation, Mat Sci Forum, vol. 250, pp.15-42(1997)
    【68】 Leffler C.C., Muller B.W., Influence of the acid type on the physical and drug liberation properties of chitosan–gelatin sponges, Int. J. Pharm., vol. 194, pp.229-237(2000)
    【69】 Madihally S.V., Matthew H.W.T., Porous chitosan scaffolds for tissue engineering, Biomaterials, vol. 20, pp.1133-1142(1999)
    【70】 Peter X. Ma, Ruiyun Zhang, Synthetic nano-scale fibrous extracellular matrix, J. Biomed Mater Res, vol. 46, pp.60–72(1999)
    【71】 Young T.H., Wang D.M., Hsieh C.C., Chen L.W., The effect of the second ohase inversion on microstructures in phase inversion EVAL membranes, J. Membr. Sci., vol 146, pp.469-178(1998)
    【72】 Baran E.T., Mano J.F., Reis R.L., Starch-chitosan hydrogels prepared by reductive alkylation cross-linking, J. Mater. Sci. Mater. Med, vol. 15, pp.759-765(2004)
    【73】 謝玠揚,聚麩胺酸及幾丁聚醣複合生醫基材之製程探討、性質改良及制放應用,國立台灣大學化學工程研究所博士論文(2005)
    【74】 Mi F.L., Wu Y.B., Shyu S.S, Chao A.C., Asymmetric chitosan membranes prepared by dry/wet phase separation: a new type of wound dressing for controlled antibacterial release, J. Membr. Sci., vol. 212, pp.237-254(2003)

    QR CODE