簡易檢索 / 詳目顯示

研究生: 蔡憲鋒
Hsien-feng Tsai
論文名稱: 合成具有控制藥物釋放速率之新藥物載體:中孔洞生物活性玻璃-乙烯基三甲氧基矽烷
Synthesis of a new drug carrier controlling drug release rate: Mesoporous bioactivity glasses-Vinyltrimethoxysilane (MBGs-VS)
指導教授: 徐新光
Shin-Guang Shyu
朱瑾
Jinn Chu
口試委員: 林秀美
none
張一知
none
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 47
中文關鍵詞: 中孔生物活性玻璃藥物遞送系統官能化布洛芬乙烯基三甲氧基矽烷
外文關鍵詞: Mesoporous bioactive glass, drug-delivery systems, functionalization, Ibuprofen, Vinyltrimethoxysilane
相關次數: 點閱:298下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 中孔矽材料近年來發展迅速,其具穩定且一致的中孔結構、高表面積、可調整的狹小尺寸分布、明確且可修飾的表面性質、無毒性與好的生物相容性等特點,這些特點也使得中孔矽材料在生醫材料上有著很好的應用性。
    中孔生物活性玻璃(mesoporous bioactivity glasses,MBGs)於2005年被發表出來,此材料將中孔洞材料與生物活性玻璃(bioactivity glasses,BGs)做結合,因其更容易於骨組織中產生氫氧基磷灰石(hydroxyapatite,HA),因此較一般中孔矽材料有更高的生物活性,在做為藥物遞送系統方面,其壁上矽醇基團可進行官能化反應,達到控制藥物釋放速率的效果,以上特點皆是中孔洞生物活性玻璃做為骨修復材料重要的條件。
    本篇以Ibuprofen做為載入藥物,以Vinyltrimethoxysilane(VS)為封口劑進行表面官能化反應,研究不同VS添加量與藥物釋放速率的關係,探討此材料在人體藥物治療上是否為一適合載體。


    Mesoporous silica materials have been developed rapidly in recent years in that these materials have several newly-found advantages, namely, the steady, uniform mesoporous structure, high surface area, adjustable narrow distribution of pore sizes, easily- modified surface properties, non-toxicity and good biocompatibility. These characteristics equip the mesoporous silica materials with very good applications of biomedical materials.
    Mesoporous bioactive glass was published in 2005. This material combined mesoporous material with bioactive glasses, making it easier to form Hydroxyapatite in bone tissue. Therefore, the bioactivity is higher than common mesoporous silicon materials. As a drug delivery system, the walls silanol groups can be functionalized to achieve the aim of controlling drug release rate. The characteristics described above are all important conditions for mesoporous bioactive glasses to be used as bone repair materials.
    This project employs the medicine, ibuprofen, as guest molecules to store and Vinyltrimethoxysilane for the sealant to be utilized into the surface functionalization reactions. Studying the different relationships between altering the amount of Vinyltrimethoxysilane and its effect on the drug release rate can provide more supporting ideas to discuss if they can be proper carriers in body therapy.

    摘要 i Abstract ii 謝誌 iii 目錄 v 圖目錄 viii 表目錄 x 第一章 緒論 1 1-1前言 1 1-2 骨修復材料 3 1-3 生物活性材料 6 1-4 生物活性玻璃 7 1-5 生物活性玻璃(BGs)的製備 8 1-6 中孔洞材料 9 1-7 中孔洞生物活性玻璃 12 1-8 藥物遞送系統 13 1-9 官能化封口簡介 15 1-10 布洛芬簡介 17 1-11 研究動機 18 第二章 實驗部分 19 2-1 實驗藥品與材料 19 2-2實驗儀器 19 2-3中孔洞生物活性玻璃合成 20 2-3-1合成原理 20 2-3-2 合成步驟 20 2-4 布洛芬載入與官能化封口方法 21 2-4-1 布洛芬載入 21 2-4-2 官能化封口實驗 21 2-4-3載完藥後官能化封口實驗 21 2-5體外藥物釋放試驗 22 2-6儀器原理 23 2-6-1X光粉末繞射儀 23 2-6-2表面積暨孔洞分析儀 24 第三章 結果與討論 29 3-1 MBGs性質鑑定與討論 29 3-1-1 X光小角繞射 29 3-1-2氮氣恆溫吸附脫附分析 30 3-1-3 X光能譜散佈分析儀 31 3-2 Ibuprofen之遞送測試 33 3-2-1氮氣恆溫吸附脫附分析 33 3-2-2藥物裝載及釋放測試 34 3-3 官能化封口測試 35 3-3-1氮氣恆溫吸附脫附分析 35 3-3-2 藥物裝載及釋放測試 36 第四章 結論 42 參考文獻 43

    1 Dorozhkin, S. V., and Epple, M.," Biological and medical significance of calcium phosphates" , Angewandte Chemie-International Edition,Vol. 41, p.3130-3146 (2002).
    2 Pilliar, R. M., "Modern Metal Processing for Improved Load-Bearing Surgical Implants", Biomaterials,Vol. 12,p. 95-100 (1991).
    3 Hench, L. L., "Bioceramics - from Concept to Clinic", Journal of the American Ceramic Society,Vol 74, p.1487-1510 (1991).
    4 Williams, D. F., "On the mechanisms of biocompatibility", Biomaterials 29, 2941-2953 (2008).
    5 Cao, W. P., and Hench, L. L., "Bioactive materials", Ceramics International,Vol. 22,p. 493-507 (1996).
    6 Hench, L. L., "Biomaterials: a forecast for the future", Biomaterials ,Vol. 19, p.1419-1423 (1998).
    7 Kokubo, T., "Bioactive Glass-Ceramics - Properties and Applications", Biomaterials,Vol. 12, p.155-163 (1991).
    8 Kokubo, T., Kushitani, H., Ohtsuki, C., Sakka, S.,and Yamamuro, T., "Effects of Ions Dissolved from Bioactive Glass-Ceramic on Surface Apatite Formation", Journal of Materials Science-Materials in Medicine,Vol. 4,p. 1-4 (1993).

    9 Kokubo, T., Kushitani, H., Sakka, S., Kitsugi, T.,and Yamamuro, T., "Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W3", Journal of Biomedical Materials Research, Vol. 24,p. 721-734 (1990).
    10 Kokubo, T., Ito, S., Sakka, S., and Yamamuro, T., "Formation of a High-Strength Bioactive Glass Ceramic in the System MgO-CaO-SiO2-P2O5", Journal of Materials Science, Vol. 21, p.536-540 (1986).
    11 Vogel, W., and Holand,W., "DEVELOPMENT, STRUCTURE, PROPERTIES AND APPLICATION OF GLASS-CERAMICS FOR MEDICINE", Journal of Non-Crystalline Solids, Vol. 123, p.349-353 (1990).
    12 Vallet-Regi, M., "Ceramics for medical applications", Journal of the Chemical Society-Dalton Transactions, p. 97-108 (2001).
    13 Vallet-Regi, M., Arcos, D., and Perez-Pariente, J., "Evolution of porosity during in vitro hydroxycarbonate apatite growth in sol-gel glasses", Journal of Biomedical Materials Research,Vol. 51, p.23-28 (2000).
    14 Vallet-Regi, M., Ragel, C. V., and Salinas, A. J., "Glasses with medical applications", European Journal of Inorganic Chemistry, p. 1029-1042 (2003).
    15 Vallet-Regi, M., and Ramila, A., "New bioactive glass and changes in porosity during the growth of a carbonate hydroxyapatite layer on glass surfaces", Chemistry of Materials, Vol.12, p. 961-965 (2000).
    16 Sepulveda, P., Jones, J. R., and Hench, L. L., "In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses", Journal of Biomedical Materials Research,Vol. 61,p. 301-311 (2002).
    17 IUPAC Manual of Symbols and Terminology Pure appl. Chem. Vol.31, p. 578-638 (1972).
    18 Davis, M. E., "Ordered porous materials for emerging applications", Nature Vol. 417, p. 813-821 (2002).
    19 Kresge, C. T., Leonowicz, M. E., Roth, W. J., Vartuli, J. C., and Beck, J. S., "Ordered Mesoporous Molecular-Sieves Synthesized by a Liquid-Crystal Template Mechanism", Nature,Vol. 359, p.710-712 (1992).
    20 Zhao, D. Y. et al., "Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores", Science, Vol. 279, p. 548-552 (1998).
    21 Schmidt-Winkel, P. et al., "Mesocellular siliceous foams with uniformly sized cells and windows", Journal of the American Chemical Society,Vol.121,p. 254-255 (1999).
    22 Vallet-Regi, M., "Ordered mesoporous materials in the context of drug delivery systems and bone tissue engineering", Chemistry-a European Journal, Vol. 12, p. 5934-5943 (2006).
    23 Beck, J. S. et al.," A New Family of Mesoporous Molecular Sieves Prepared with Liquid Crystal Templates", Journal of the American Chemical Society, Vol. 114, p. 10834-10843 (1992).
    24 Fan, J. et al., "Cubic mesoporous silica with large controllable entrance sizes and advanced adsorption properties", Angewandte Chemie-International Edition, Vol 42, p. 3146-3150 (2003).
    25 Andersson, J., Rosenholm, J., Areva, S., and Linden, M., "Influences of material characteristics on ibuprofen drug loading and release profiles from ordered micro- and mesoporous silica matrices", Chemistry of Materials, Vol. 16, p.4160-4167 (2004).
    26 Azais, T. et al., "Solid-state NMR study of ibuprofen confined in MCM-41 material", Chemistry of Materials, Vol. 18, p. 6382-6390 (2006).

    27 Liu, Y. M. et al., "Structure and catalytic properties of vanadium oxide supported on mesocellulous silica foams (MCF) for the oxidative dehydrogenation of propane to propylene", Journal of Catalysis, Vol. 239, p. 125-136 (2006).
    28 Munoz, B., Ramila, A., Perez-Pariente, J., Diaz, I., and Vallet-Regi, M., "MCM-41 organic modification as drug delivery rate regulator", Chemistry of Materials, Vol. 15, p. 500-503 (2003).
    29 Song, S. W., Hidajat, K., and Kawi, S., "Functionalized SBA-15 materials as carriers for controlled drug delivery: Influence of surface properties on matrix-drug interactions", Langmuir,Vol. 21, p. 9568-9575 (2005).
    30 Tourne-Peteilh, C. et al., "The potential of ordered mesoporous silica for the storage of drugs: The example of a pentapeptide encapsulated in a MSU-Tween 80", Chemphyschem,Vol. 4, p.281-286 (2003).
    31 Lai, C. Y. et al., "A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules", Journal of the American Chemical Society,Vol. 125, p.4451-4459 (2003).
    32 Barbe, C. et al., "Silica particles: A novel drug-delivery system", Advanced Materials, Vol 16, p. 1959-1966 (2004).
    33 Radu, D. R. et al., "A polyamidoamine dendrimer-capped mesoporous silica nanosphere-based gene transfection reagent", Journal of the American Chemical Society, Vol.126, p.13216-13217 (2004).
    34 Yan, X. X., Yu, C. Z., Zhou, X. F., Tang, J. W., and Zhao, D. Y. "Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities", Angewandte Chemie-International Edition,Vol. 43, P.5980-5984 (2004).
    35 Vallet-Regi, M. A., Ruiz-Gonzalez, L., Izquierdo-Barba, I., and Gonzalez-Calbet, J. M., "Revisiting silica based ordered mesoporous materials: medical applications", Journal of Materials Chemistry,Vol. 16, p. 26-31 (2006).
    36 Vallet-Regi, M., Balas, F., and Arcos, D. "Mesoporous materials for drug delivery", Angewandte Chemie-International Edition, Vol. 46, p. 7548-7558 (2007).
    37 Vallet-Regi, M., Ramila, A., del Real, R. P., and Perez-Pariente, J., "A new property of MCM-41: Drug delivery system", Chemistry of Materials,Vol. 13, p. 308-311 (2001).
    38 Qu, F. Y. et al., "A controlled release of ibuprofen by systematically tailoring the morphology of mesoporous silica materials", Journal of Solid State Chemistry, Vol. 179, p.2027-2035 (2006).
    39 Lee, C. H., Lin, T. S. and Mou, C. Y., "Mesoporous materials for encapsulating enzymes", Nano Today, Vol. 4, p. 165-179 (2009).
    40 Yiu, H. H. P., Wright, P. A., and Botting, N. P., "Enzyme immobilisation using SBA-15 mesoporous molecular sieves with functionalised surfaces", Journal of Molecular Catalysis B-Enzymatic, Vol. 15, p.81-92 (2001).
    41 Ma, H., He, J., Evans, D. G., and Duan, X., "Immobilization of lipase in a mesoporous reactor based on MCM-41", Journal of Molecular Catalysis B-Enzymatic, Vol.30, p. 209-217 (2004).
    42 Wei, J. et al., "Preparation and characterization of bioactive mesoporous wollastonite – Polycaprolactone composite scaffold", Biomaterials,Vol. 30, p. 1080-1088 (2009).

    無法下載圖示 全文公開日期 2016/07/25 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE