簡易檢索 / 詳目顯示

研究生: 費特納 弗發
Fetene Fufa Bakare
論文名稱: 噴霧熱裂解製備生醫玻璃之微結構對細胞毒性、降解特性及抗菌性的關聯性影響之研究
Correlation of Microstructure, Cytotoxicity, Degradation Behavior and Antibacterial Properties for Spray-Pyrolyzed Bioactive Glass
指導教授: 施劭儒
Shao-Ju Shih
口試委員: 王丞浩
Chen-Hao Wang
周育任
Yu-Jen Chou
鄒年棣
Nien-Ti Tsou
楊永欽
Yong-Chin Yang
施劭儒
Shao-Ju Shih
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 122
中文關鍵詞: 生醫玻璃噴霧熱烈解法酸催化劑電子顯微鏡降解形貌孔隙率抗菌活性
外文關鍵詞: Bioactive glass, spray pyrolysis, acid catalyst, electron microscope, manganese, degradation, morphology, porosity, antibacterial activity
相關次數: 點閱:226下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 生醫玻璃(BG)由於具有高度可調節的生物活性、生物相容性和生物降解特性,因此在骨組織工程和骨植入物、牙齒填充材料和藥物載體等潛在應用中受到了廣泛的關注。本文重點研究了噴霧熱烈解法製備生物活性玻璃的微結構、細胞毒性、降解行為和抗菌性能之間的相關性,以研究生醫玻璃的生物相容性和生物降解性質。另外,進行錳(Mn)摻雜的BG是為了克服BG所缺乏的抗菌活性。
    在這項研究中,利用X光繞射圖(XRD)來進行BG的相分析鑑定。使用掃描電子顯微鏡(SEM)觀察這些玻璃狀粉末的表面形貌,然後使用透射電子顯微鏡(TEM)確定其內部結構。使用MTT試驗 (3− [4, 5−dimethylthia− zol−2−yl] −2, 5−diphenyl tetrazolinum bromide) 進行細胞毒性的評估。此外,通過將粉末浸入模擬體液中1天,並通過X光繞射,SEM和FTIR技術對其進行了分析,從而分析了體外生物活性。最後,分別通過浸泡在SBF和菌落計數法中進行降解行為和抗菌活性測試。
    在第一個實驗中,我們通過使用各種酸催化劑(鹽酸、乳酸和醋酸)進行噴霧熱解來合成生醫玻璃(BG)粉,以控製表面形貌。檢查了表面形貌對所製備的BG粉末的細胞毒性和生物活性的影響。發現光滑的表面形貌表現出更好的細胞活力。特別是用鹽酸處理的(HBG)表現出光滑的表面形貌,也表現出更好的細胞活力。但是,乳酸處理(LBG)和醋酸處理(ABG)對細胞增殖具有抑製作用。
    在第二個實驗中,我們使用各種濃度的聚乙二醇(PEG)來控制BG的顆粒形貌,結構和孔隙率。並鑑定了形貌和降解行為的相關性。我們發現,隨著PEG濃度的增加,觀察到更高數量的多孔和中空顆粒,且粉末顯示出更高的比表面積和更高的生物活性。另外,在PEG處理的BG樣品中產生了更多的多孔和空心結構表現出更好的降解速率。
    本文的最後一部分提出了各種濃度的錳摻雜BG的製備方法。抗菌活性的結果表明,摻入5mol% Mn的BG粉末具有更好的抗菌性能,增強了BG粉末的生物活性,有利於新一代組織的發展。


    Bioactive glass (BG) receives considerable attention in the bone tissue engineering and wide potential applications for bone implants, tooth filling materials, and drug carriers due to their highly tunable bioactivity, biocompatibility, and biodegradation properties. Herein, the dissertation highlights the correlation of microstructure, cytotoxicity, degradation behavior and the antibacterial properties for spray-pyrolyzed bioactive glass to investigate the biocompatibility and biodegradation properties of bioactive glass. In addition, manganese (Mn) doped BG was performed in order to over comes the lack of antibacterial activity of BGs.
    In this study the phase compositions of the BG powders were characterized by X-ray diffraction. The surface morphologies of these glassy powders were observed using scanning electron microscopy (SEM), and then use transmission electron microscopy (TEM) to determine its inner structure. The cytotoxicity was evaluated using MTT test (3− [4, 5−dimethylthia− zol−2−yl] −2, 5−diphenyl tetrazolinum bromide). Furthermore, the in vitro bioactivity properties was analysed by immersing the powders into simulated body fluid for 1day and characterized by X-ray, SEM, and FTIR techniques. Finally, degradation behaviour and antibacterial activity tests were conducted by soaking in SBF and colony counting method respectively.
    In the first experiment we synthesized bioactive glass (BG) powders by spray pyrolysis with various acid catalyst (hydrochloric acid, lactic acid and acetic acid) to manipulate the surface morphologies. The effect of surface morphologies on the cytotoxicity and bioactivity of the prepared BG powders were examined. It was found that the smooth surface morphologies exhibited better in cell viability. Particularly, hydrochloric acid treated (HBG) showed smooth surface morphologies which exhibited better cell viability. However, lactic acid treated (LBG) and acetic acid treated (ABG) show an inhibitory effect on cell proliferation.
    In the second experiment, we use various concentration polyethylene glycol (PEG) to manipulate particle morphologies, structures and porosity of BG. Furthermore, the correlation of morphology and degradation behavior were examined. We found that with the increase of PEG concentration, higher populations of porous and hollow particles were observed and the powders exhibited a higher specific surface area and higher bioactivity. In addition, the more porous and hollow structures created in PEG-treated BG specimens exhibited better degradation rate.
    The final part of the thesis presents the preparations of various doping concentrations of Mn-doped BG. The results of antibacterial activity suggest that, 5mol% Mn-doped BG powders have better antibacterial property and enhanced the bioactivity of BG powders, which benefit to the new tissues generation.

    Abstract i 摘要 iii Acknowledgments v Table of Contents vi List of Figures x List of Tables xv Chapter 1. Introduction 1 1.1 Motivation and Objectives of the Study 4 Chapter 2. Literature Review 5 2.1 Bioceramic and Bioactive Materials 5 2.2 Bioactive Glasses 8 2.3 Applications of Bioactive Glass 10 2.3.1 Bone and Tissue Engineering 10 2.4 Effect of Acid Catalyst on the Structure of Bioactive Glass 12 2.5 Biocompatibility of Bioactive Glass 13 2.6 Degradation Behavior of Bioactive Glasses 14 2.7 Bone Bonding Mechanism of Bioactive Glass 16 2.7.1 Evaluation of in vitro Bioactivity Test 18 2.8 Ion-doped Bioactive Glass 22 Chapter 3. Material and Experimental Methods 24 3.1 Experimental Materials and Instruments 24 3.2 Chemicals 25 3.3 Materials Preparation 26 3.3.1 Preparations of HBG, LBG and ABG Powder 26 3.3.2 Preparation of PEG-treated BG Powder 29 3.3.3 Preparation of Manganese-doped BG Powder 32 3.4 Synthesis Method 35 3.4.1 Spray Pyrolysis 35 3.4.2 Particle Formation in the Spray Pyrolysis Method 38 3.5 Characterization Techniques 41 3.5.1 X-ray Diffraction Technique 41 3.5.2 Scanning Electron Microscopy (FE-SEM) 46 3.5.3 Transmission Electron Microscopy (TEM) 53 3.5.4 Thermo gravimetric Analysis 58 3.5.5 Fourier Transforms Infrared Spectroscopy 59 3.5.6 Brunauer-Emmett Teller (BET) 59 Chapter 4. Experimental Results 60 4.1 HBG, LBG and ABG Powders 60 4.1.1 X-Ray Diffraction Analysis 60 4.1.2 Scanning Electron Microscopy Analysis 61 4.1.3 Morphology Characterization After SBF Immersion 64 4.1.4 Fourier-Transform Infrared Spectroscopy Analysis 65 4.1.5 Phase Analysis After SBF Immersion 68 4.1.6 MTT-Test 69 4.2 PEG-treated BG 70 4.2.1 Thermal Analysis of Pure PEG 70 4.2.2 X-Ray Diffraction Analysis 71 4.2.3 Scanning Electron Microscopy Analysis 72 4.2.4 Transmission Electron Microscopy Analysis 74 4.2.5 Morphology Characterization After SBF Immersion 77 4.2.6 Fourier-Transform Infrared Spectroscopy Analysis 80 4.2.7 Phase Analysis After SBF Immersion 82 4.2.8 Degradation Test 83 4.3 Manganese-Doped BG Powder 84 4.3.1 X-Ray Diffraction Analysis 84 4.3.2 Scanning Electron Microscopy Analysis 85 4.3.3 Energy Dispersive X-ray Spectroscopy 87 4.3.4 Morphology Characterization After SBF Immersion 91 4.3.5 Fourier-Transform Infrared Spectroscopy Analysis 92 4.3.6 Antibacterial Test un-doped BG and Mn-doped BG Powders 95 Chapter 5. Discussion 96 5.1 Effect of Acid Catalyst 96 5.1.1 Effect of acid catalyst on Particle Formation 96 5.2 PEG-treated BG Powder 98 5.2.1 Particle Formation Mechanism 98 5.2.2 Correlation Between Morphology and Porosity 100 5.2.3 Correlation Between Porosity, Specific Surface Area, and Bioactivity 100 5.2.4 Correlation Between PEG Concentration, Porosity and Degradation Rate 102 5.3 Mn-doped BG Powder 104 5.3.1 Particle formation mechanism 104 5.3.2 Correlation of Antibacterial activity and bioactivity as a function of Mn concentration 106 Chapter 6. Conclusions 108 6.1 Effect of Acid Catalyst 108 6.2 PEG-treated BG Powder 108 6.3 Mn-doped BG Powder 108 Chapter 7. Future Work 109 Chapter 8. References 110

    1. Mears, S.C. and S.L. Kates, A Guide to Improving the Care of Patients with Fragility Fractures, Edition 2. Geriatric orthopaedic surgery & rehabilitation, 2015. 6(2): p. 58-120.
    2. Lysaght, M.J. and J.A. O’Loughlin, Demographic Scope and Economic Magnitude of Contemporary Organ Replacement Therapies. ASAIO Journal 2000, 2000. 46(5): p. 515-521.
    3. Petra, B., et al., The World Medical Market Fact Book. 2008, London: Espicom.
    4. Lysaght, M.J. and J. Reyes, The growth of tissue engineering. Tissue Engineering, 2001. 7(5): p. 485-93.
    5. De Long, W., et al., Bone grafts and bone graft substitutes in orthopaedic trauma surgery. Journal of BoneJoint Surgery, 2007. 89(3): p. 649-658.
    6. Catteaux, R., et al., Synthesis, characterization and bioactivity of bioglasses in the Na2O–CaO–P2O5–SiO2 system prepared via sol gel processing. Chemical Engineering Research and Design, 2013. 91(12): p. 2420-2426.
    7. Hench, L.L., Bioceramics: From Concept to Clinic. Journal of the American Ceramic Society, 1991. 74(7): p. 1487-1510.
    8. Bellucci, D., et al., A new bioactive glass/collagen hybrid composite for applications in dentistry. Materials, 2019. 12(13): p. 2079.
    9. Lei, B., et al., Fabrication of porous bioactive glass particles by one step sintering. Materials Letters, 2010. 64(21): p. 2293-2295.
    10. Fiume, E., et al., Bioactive Glasses: From Parent 45S5 Composition to Scaffold-Assisted Tissue-Healing Therapies. Journal of Functional Biomaterials, 2018. 9(1): p. 24.
    11. Li, R., A.E. Clark, and Hench, An investigation of bioactive glass powders by sol-gel processing. Journal of Applied Biomaterials, 1991. 2(4): p. 231-239.
    12. Yan, X., et al., Highly ordered mesoporous bioactive glasses with superior in vitro bone‐forming bioactivities. J Angewandte Chemie International Edition, 2004. 43(44): p. 5980-5984.
    13. Hong, B.-J., et al., Effect of acetic acid concentration on pore structure for mesoporous bioactive glass during spray pyrolysis. Materials, 2018. 11(6): p. 963.
    14. Lei, B., et al., Fabrication, structure and biological properties of organic acid-derived sol–gel bioactive glasses. Biomedical Materials, 2010. 5(5): p. 054103.
    15. Christodoulou, I., et al., Dose- and time-dependent effect of bioactive gel-glass ionic-dissolution products on human fetal osteoblast-specific gene expression. Biomedical Materials Research, 2005. 74B(1): p. 529-537.
    16. Silver, I.A., J. Deas, and M. Erecińska, Interactions of bioactive glasses with osteoblasts in vitro: effects of 45S5 Bioglass®, and 58S and 77S bioactive glasses on metabolism, intracellular ion concentrations and cell viability. Biomaterials, 2001. 22(2): p. 175-185.
    17. Jachak, A.C., et al., Biological interactions and safety of graphene materials. MRS bulletin, 2012. 37(12): p. 1307-1313.
    18. Drescher, D., et al., Toxicity of amorphous silica nanoparticles on eukaryotic cell model is determined by particle agglomeration and serum protein adsorption effects. Analytical and Bioanalytical Chemistry, 2011. 400(5): p. 1367.
    19. Melo, L.G.N., et al., Bone healing in surgically created defects treated with either bioactive glass particles, a calcium sulfate barrier, or a combination of both materials. Clinical Oral Implants Research, 2005. 16(6): p. 683-691.
    20. Jones, J.R., Review of bioactive glass: From Hench to hybrids. Acta Biomaterialia, 2013. 9(1): p. 4457-4486.
    21. Fujibayashi, S., et al., A comparative study between in vivo bone ingrowth and in vitro apatite formation on Na2O–CaO–SiO2 glasses. Biomaterials, 2003. 24(8): p. 1349-1356.
    22. Hill, R., An alternative view of the degradation of bioglass. Journal of Materials Science Letters 1996. 15(13): p. 1122-1125.
    23. Zhang, D., et al., In-vitro Degradation and Bioactivity of Tailored Amorphous Multi Porous Scaffold Structure. Journal of American Ceramic Society, 2012. 95(9): p. 2687-2694.
    24. Deliormanlı, A.M., Size-dependent degradation and bioactivity of borate bioactive glass. Ceramics International, 2013. 39(7): p. 8087-8095.
    25. El-Kady, A.M., et al., Synthesis, characterization and microbiological response of silver doped bioactive glass nanoparticles. Ceramics International, 2012. 38(1): p. 177-188.
    26. Shih, S.J., et al., Control of Ag nanoparticle distribution influencing bioactive and antibacterial properties of Ag‐doped mesoporous bioactive glass particles prepared by spray pyrolysis. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2015. 103(4): p. 899-907.
    27. Wu, C., et al., Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials, 2013. 34(2): p. 422-433.
    28. Sopyan, I., et al., Effects of manganese doping on properties of sol–gel derived biphasic calcium phosphate ceramics. Ceramics International, 2011. 37(8): p. 3703-3715.
    29. Lüthen, F., et al., Influence of manganese ions on cellular behavior of human osteoblasts in vitro. Biomolecular Engineering, 2007. 24(5): p. 531-536.
    30. Fujitani, W., et al., Synthesis of Hydroxyapatite contining manganese and its evaluation of biocompatibility. Nano Biomedicine, 2010. 2(1): p. 37-46.
    31. Miola, M., et al., In vitro study of manganese-doped bioactive glasses for bone regeneration. Materials Science and Engineering: C, 2014. 38: p. 107-118.
    32. Montazerian, M. and E. Dutra Zanotto, History and trends of bioactive glass‐ceramics. Biomedical Materials Research, 2016. 104(5): p. 1231-1249.
    33. El-Meliegy, E. and R. Van Noort, Glasses and glass ceramics for medical applications. 2011: Springer science & business media.
    34. Cao, W. and L.L. Hench, Bioactive materials. Ceramics International, 1996. 22(6): p. 493-507.
    35. June, W., An introduction to bioceramics. Vol. 1. 1993: World scientific.
    36. Hulbert, S., et al., History of bioceramics. Ceramics International, 1982. 8(4): p. 131-140.
    37. Capello, W.N., et al., Ceramic-on-ceramic total hip arthroplasty: update. The Journal of Arthroplasty, 2008. 23(7): p. 39-43.
    38. Buschow, K.J., et al., Encyclopedia of materials. 2001. 1: p. 11.
    39. Djustiana, N., Y. Faza, and A.J.P.S.O.C.C.U.C.B.M.F.B.A. Cahyanto, Review on bioceramic nanofiber using electrospinning method for dental application. p. 201724.
    40. Hench, L.L. and J.K. West, The sol-gel process. Chemical Reviews, 1990. 90(1): p. 33-72.
    41. Hench, L.L., et al., Bonding mechanisms at the interface of ceramic prosthetic materials. Journal of Biomedical Materials Research, 1971. 5(6): p. 117-141.
    42. Cranin, A.N., Biomaterials: An interfacial approach, L. L. Hench and E. C. Ethridge, New York, Academic, 1982, 384 pp. 14 Chapters, Glossary, Bibliography, and Index. Price: $42.00. Journal of Biomedical Materials Research, 1985. 19(5): p. 611-612.
    43. Andersson, Ö.H., K.H. Karlsson, and K. Kangasniemi, Calcium phosphate formation at the surface of bioactive glass in vivo. Journal of Non-Crystalline Solids, 1990. 119(3): p. 290-296.
    44. Vogel, W., et al., Development of machineable bioactive glass ceramics for medical uses. Journal of Non-Crystalline Solids, 1986. 80(1–3): p. 34-51.
    45. Kokubo, T., M. Shigematsu, Y. Nagashima, M. Tashiro, T. Nakamura, T. Yamamuro, S. Higashi, Apatite- and Wollastonite Containg Glass-Ceramics for Prosthetic Application Bull. Inst. Chem. Res., Kyoto Univ, 1982. 60(3-4): p. 260–268.
    46. Meliegy, E.E. and R.V. Noort, Glasses and Glass Ceramics for Medical Applications. 2012, New York, Dordrecth Heidelberg London Springer.
    47. Hench, L.L. and J. Wilson, Introduction, in An Introduction to Bioceramics, L.L. Hench, Editor. 2013, Imperial College Press: London. p. 1-26.
    48. Hench, L.L., The story of Bioglass®. Journal of Materials Science: Materials in Medicine, 2006. 17(11): p. 967-978.
    49. Ohtsuki, C., T. Kokubo, and T. Yamauro, Compositional dependence of bioactivity of glasses in the system CaO-SiO2-Al2O3: itsin vitro evaluation. Journal of Materials Science: Materials in Medicine, 1992. 3(2): p. 119-125.
    50. Ohtsuki, C., T. Kokubo, and T. Yamamuro, Mechanism of apatite formation on CaO-SiO2-P2O5 glasses in a simulated body fluid. Journal of Non-Crystalline Solids, 1992. 143(1): p. 84-92.
    51. Mays, S., The archaeology of human bones, ed. S. EDITION. 2010: Routledge.
    52. Khan, A.F., et al., Bioactive behavior of silicon substituted calcium phosphate based bioceramics for bone regeneration. Materials Science and Engineering: C, 2014. 35: p. 245-252.
    53. Liu, Y., J. Lim, and S.-H.J.B.a. Teoh, Development of clinically relevant scaffolds for vascularised bone tissue engineering. Biotechnology Advances, 2013. 31(5): p. 688-705.
    54. Luz, G.M. and J.F.J.J.o.n.r. Mano, Nanoengineering of bioactive glasses: hollow and dense nanospheres. Journal of Nanoparticle Research, 2013. 15(2): p. 1457.
    55. Meiszterics, A., K. Havancsák, and K. Sinkó, Catalysis, nanostructure and macroscopic property triangle in bioactive calcium-containing ceramic systems. Materials Science and Engineering: C, 2013. 33(3): p. 1371-1379.
    56. Li, A. and D. Qiu, Phytic acid derived bioactive CaO–P2O5–SiO2 gel-glasses. Journal of Materials Science: Materials in Medicine, 2011. 22(12): p. 2685-2691.
    57. Silva, R.F. and M.E. Zaniquelli, Aluminium-doped zinc oxide films prepared by an inorganic sol–gel route. Thin Solid Films, 2004. 449(1-2): p. 86-93.
    58. Shah, A.T., et al., Acid catalysed synthesis of bioactive glass by evaporation induced self assembly method. Journal of Non-Crystalline Solids, 2018. 479: p. 1-8.
    59. Lei, B., et al., Surface nanoscale patterning of bioactive glass to support cellular growth and differentiation. Biomedical Materials Research, 2010. 94A(4): p. 1091-1099.
    60. Chen, X., et al., Morphological control and in vitro bioactivity of nanoscale bioactive glasses. Journal of Non-Crystalline Solids, 2009. 355(13): p. 791-796.
    61. Sarkar, S.K., A. Sadiasa, and B.T. Lee, Synthesis of a novel bioactive glass using the ultrasonic energy assisted hydrothermal method and their biocompatibility evaluation. Journal of Materials Research, 2014. 29(16): p. 1781-1789.
    62. Rohr, N., et al., Influence of bioactive glass-coating of zirconia implant surfaces on human osteoblast behavior in vitro. Dental Materials, 2019.
    63. Freitas, D., H.A. Almeida, and P.J. Bártolo, Perfusion Bioreactor Fluid Flow Optimization. Procedia Technology, 2014. 16: p. 1238-1247.
    64. Rahaman, M.N., et al., Bioactive glass in tissue engineering. Acta biomaterialia, 2011. 7(6): p. 2355-2373.
    65. Dee, K.C., D. Puleo, and R. Bizios, Engineering of materials for biomedical applications. Materials Today, 2000. 3(1): p. 7-10.
    66. Gerhardt, L.-C. and A.R. Boccaccini, Bioactive Glass and Glass-Ceramic Scaffolds for Bone Tissue Engineering. Materials 2010. 3(7): p. 3867-3910.
    67. Deliormanlı, A.M. and M.N. Rahaman, Direct-write assembly of silicate and borate bioactive glass scaffolds for bone repair. Journal of the European Ceramic Society, 2012. 32(14): p. 3637-3646.
    68. Soares, S., et al., The controlled synthesis of complex hollow nanostructures and prospective applications. Proceedings of The Royal Society A Mathematical Physical and Engineering Sciences, 2019. 475.
    69. Sharma, M.K., et al., Polymer and Surfactant-Templated Synthesis of Hollow and Porous ZnS Nano- and Microspheres in a Spray Pyrolysis Reactor. Langmuir, 2015. 31(1): p. 413-423.
    70. Vallet-Regí, M. and F. Balas, Silica materials for medical applications. The open biomedical engineering journal, 2008. 2: p. 1-9.
    71. Yuan, H., et al., Bone induction by porous glass ceramic made from Bioglass®(45S5). Journal of Biomedical Materials Research, 2001. 58(3): p. 270-276.
    72. Al Ruhaimi, K.A.J.I.J.o.O. and M. Implants, Bone graft substitutes: a comparative qualitative histologic review of current osteoconductive grafting materials. International Journal of Oral & Maxillofacial Implants, 2001. 16(1).
    73. Hench, L.L. and Ö. Andersson, Bioactive glasses, in An introduction to bioceramics. 1993, World Scientific. p. 41-62.
    74. Le Guéhennec, L., P. Layrolle, and G.J.E.C.M. Daculsi, A review of bioceramics and fibrin sealant. European Cells and Materials, 2004. 8(13): p. 1e11.
    75. Kokubo, T., et al., Chemical reaction of bioactive glass and glass-ceramics with a simulated body fluid. Journal of Materials Science: Materials in Medicine, 1992. 3(2): p. 79-83.
    76. Kay, M.I., R. Young, and A.J.N. Posner, Crystal structure of hydroxyapatite. Nature, 1964. 204(4963): p. 1050-1052.
    77. Hadush Tesfay, A., et al., Control of Dopant Distribution in Yttrium-Doped Bioactive Glass for Selective Internal Radiotherapy Applications Using Spray Pyrolysis. 2019. 12(6): p. 986.
    78. Stoor, P., et al., Interactions between Bioactive Glass and Periodontal Pathogens. J Microbial Ecology in Health and Disease, 1996. 9(3): p. 109-114.
    79. Kim, T., et al., Antimicrobial effects of metal ions (Ag+, Cu2+, Zn2+) in hydroxyapatite. Journal of Materials Science: Materials in Medicine volume, 1998. 9(3): p. 129-134.
    80. Sharma, N., et al., Synthesis, characterisation and antimicrobial activity of manganese-and iron-doped zinc oxide nanoparticles. Journal of Experimental Nanoscience 2016. 11(1): p. 54-71.
    81. Beattie, J.H. and A.J.N.r.r. Avenell, Trace element nutrition and bone metabolism. Nutrition Research Reviews, 1992. 5(1): p. 167-188.
    82. Bae, Y.-J. and M.-H.J.B.t.e.r. Kim, Manganese supplementation improves mineral density of the spine and femur and serum osteocalcin in rats. Biological Trace Element Research, 2008. 124(1): p. 28-34.
    83. Barrioni, B.R., et al., Sol–gel-derived manganese-releasing bioactive glass as a therapeutic approach for bone tissue engineering. Journal of Materials Science, 2017. 52(15): p. 8904-8927.
    84. Creaven, B.S., et al., Synthesis, characterisation and antimicrobial activity of copper(II) and manganese(II) complexes of coumarin-6,7-dioxyacetic acid (cdoaH2) and 4-methylcoumarin-6,7-dioxyacetic acid (4-MecdoaH2): X-ray crystal structures of [Cu(cdoa)(phen)2]·8.8H2O and [Cu(4-Mecdoa)(phen)2]·13H2O (phen=1,10-phenanthroline). Journal of Inorganic Biochemistry, 2007. 101(8): p. 1108-1119.
    85. Shih, S.-J., et al., Characterization of Mesoporosity in Ceria Particles Using Electron Microscopy. Microsc. Microanal., 2010. 17(1): p. 54-60.
    86. Messing, G.L., S.-C. Zhang, and G.V. Jayanthi, Ceramic Powder Synthesis by Spray Pyrolysis. J. Am. Ceram. Soc., 1993. 76(11): p. 2707-2726.
    87. Clark, S.J., et al., First principles methods using CASTEP. Z Kristallogr Cryst Mater, 2005. 220(5/6): p. 567-570.
    88. Arenas, L.T., et al., Synthesis of silica xerogels with high surface area using acetic acid as catalyst. Journal of the Brazilian Chemical Society, 2007. 18(5): p. 886-890.
    89. Jung, D.S., et al., Recent progress in electrode materials produced by spray pyrolysis for next-generation lithium ion batteries. Advanced Powder Technology, 2014. 25(1): p. 18-31.
    90. Eslamian, M. and N.J.P.t. Ashgriz, Effect of precursor, ambient pressure, and temperature on the morphology, crystallinity, and decomposition of powders prepared by spray pyrolysis and drying. Powder Technology, 2006. 167(3): p. 149-159.
    91. Shih, S.-J., et al., Morphology and formation mechanism of ceria nanoparticles by spray pyrolysis. Journal of Nanoparticle Research, 2012. 14(5): p. 879.
    92. Bogovic, J., et al. Ultrasonic spray pyrolysis. in Proceedings of EMC. 2011.
    93. Kraemer, H.F. and H.F. Johnstone, Collection of Aerosol Particles in Presence of Electrostatic Fields. Industrial & Engineering Chemistry, 1955. 47(12): p. 2426-2434.
    94. Shih, S.-J., et al., Preparation and characterization of Eu-doped gehlenite glassy particles using spray pyrolysis. Ceramics International, 2016. 42(9): p. 11324-11329.
    95. Charlesworth, D. and W. Marshall Jr, Evaporation from drops containing dissolved solids. AIChE Journal, 1960. 6(1): p. 9-23.
    96. Gardner, T.J., D. Sproson, and G. Messing, Precursor chemistry effects on development of particulate morphology during evaporative decomposition of solutions. MRS Online Proceedings Library Archive, 1984. 32.
    97. Cullity, B. and S. Stock, Elements of X-ray diffraction. 3rd ed2001. ISBN No: 0-201-61091-4.
    98. Bragg, W.H. and W.L. Bragg, The reflection of X-rays by crystals. Proceedings of the Royal Society A, 1913. 88(605): p. 428-438.
    99. Goldstein, J., Practical scanning electron microscopy: electron and ion microprobe analysis. 2012: Springer Science & Business Media.
    100. Leng, Y., Materials characterization: introduction to microscopic and spectroscopic methods. 2009: John Wiley & Sons.
    101. Williams, D.B. and C.B. Carter, The transmission electron microscope, in Transmission electron microscopy. 1996, Springer. p. 3-17.
    102. King, P., P. McMillan, and G. Moore, Infrared spectroscopy of silicate glasses with application to natural systems. 2004. p. 93-133.
    103. Brunauer, S., P.H. Emmett, and E. Teller, Adsorption of gases in multimolecular layers. Journal of the American chemical society, 1938. 60(2): p. 309-319.
    104. Chou, Y.-J., et al., Preparation and in Vitro Bioactivity of Micron-sized Bioactive Glass Particles Using Spray Drying Method. Applied Sciences, 2018. 9(1): p. 19.
    105. Hadush Tesfay, A., et al., Control of Dopant Distribution in Yttrium-Doped Bioactive Glass for Selective Internal Radiotherapy Applications Using Spray Pyrolysis. Materials 2019. 12(6): p. 986.
    106. Liu, T., et al., Facile synthesis of hollow bioactive glass nanospheres with tunable size. Materials Letters, 2017. 190: p. 99-102.
    107. Lei, B., et al., Synthesis and bioactive properties of macroporous nanoscale SiO2–CaO–P2O5 bioactive glass. Journal of Non-Crystalline Solids, 2009. 355(52-54): p. 2678-2681.
    108. Zheng, K., et al., Aging time and temperature effects on the structure and bioactivity of gel‐derived 45S5 glass‐ceramics. Journal of the American Ceramic Society, 2015. 98(1): p. 30-38.
    109. Schoofs, G.R. and J.B. Benziger, Decomposition of acetic acid monomer, acetic acid dimer, and acetic anhydride on Ni (111). Surface science, 1984. 143(2-3): p. 359-368.
    110. Barrioni, B.R., et al., Effects of manganese incorporation on the morphology, structure and cytotoxicity of spherical bioactive glass nanoparticles. Journal of colloid and interface science, 2019. 547: p. 382-392.
    111. de Oliveira, A.A.R., et al., Synthesis, characterization and cytocompatibility of spherical bioactive glass nanoparticles for potential hard tissue engineering applications. Biomedical Materials, 2013. 8(2): p. 025011.
    112. Shih, S.-J., et al., One-Step Synthesis and Characterization of Nanosized Bioactive Glass. Journal of Medical and Biological Engineering, 2014. 34: p. 18-23.
    113. Shih, S.-J., et al., Morphology Control of Eu-Doped Amorphous Gehlenite Phosphors Prepared by Spray Pyrolysis. J. Nanoscience Nanotechnology 2018. 18: p. 5849-5853.
    114. Shih, S.-J., Y.-J. Chou, and K.B. Borisenko, Preparation method: structure–bioactivity correlation in mesoporous bioactive glass. Journal of Nanoparticle Research 2013. 15(6): p. 1763.
    115. Bakare, F.F., et al., Correlation of Morphology and In-Vitro Degradation Behavior of Spray Pyrolyzed Bioactive Glasses. Materials, 2019. 12(22): p. 3703.
    116. Nawaz, Q., et al., Synthesis and characterization of manganese containing mesoporous bioactive glass nanoparticles for biomedical applications. Materials Science: Materials in Medicine, 2018. 29(5): p. 64.
    117. Barrioni, B.R., et al., Osteogenic potential of sol–gel bioactive glasses containing manganese. Materials Science: Materials in Medicine, 2019. 30(7): p. 86.

    無法下載圖示 全文公開日期 2025/01/17 (校內網路)
    全文公開日期 2025/01/17 (校外網路)
    全文公開日期 2025/01/17 (國家圖書館:臺灣博碩士論文系統)
    QR CODE