簡易檢索 / 詳目顯示

研究生: 徐珮婷
Pei-Ting Syu
論文名稱: 利用單一步驟噴霧熱解法製備Cu@Ag核殼顆粒
Synthesis of Cu@Ag core-shell particles using one-step spray pyrolysis
指導教授: 施劭儒
Shao-Ju Shih
口試委員: 鄒年棣
Nien-Ti Tsou
梁元彰
Yuan-Chang Liang
王丞浩
Chen-Hao Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 117
中文關鍵詞: 噴霧熱解法核殼顆粒
外文關鍵詞: spray pyrolysis, core-shell particles, copper, silver
相關次數: 點閱:275下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 核殼結構粒子其獨特的性質與結構引起了材料科學領域的廣泛關注,因此它廣泛應用在於催化、醫藥、生物、光學、電化學等廣闊領域。本研究旨在發展銀金屬包覆銅金屬之核殼結構顆粒。銀金屬因為有優良的導熱性、導電性、催化、抗氧化性及抗菌性等諸多優異性能,但其價格不菲,相對銅金屬價格低廉以外,銅金屬亦具有良好的導熱性、導電性,惟抗氧化性質差,在空氣環境下容易受到氧化而影響其性能,因此將銅金屬粒子表面包覆一層銀金屬的外殼層,形成銅銀核殼結構粒子,將能同時發揮銀金屬與銅金屬的優點與克服其缺點。並且可以廣泛的應用在導電填料、催化劑、醫藥抗菌及其他領域。
    本實驗為採取單步驟連續式噴霧熱裂解法藉由改變不同前驅物及不同溫度嘗試製備銀金屬包覆銅金屬之核殼結構粒子,並且將試樣透過 X光繞射儀(X-ray diffraction analysis, XRD)對粉體進行相鑑定,以掃描式電子顯微鏡(Scanning electron microscopy, SEM)及穿透式電子顯微鏡(Transmission Electron Microscopy, TEM)對粉體的形貌和組成進行了詳細的分析,對於核殼結構材料之成型機制進行深入的探討。


    The core-shell structure has unique properties due to its special structure. Therefore, this structure widely applies on the various applications; for instance, catalysts, medicines, biology devices, optical materials, and electrical chemical applications. These applications of core-shell structure strongly demonstrate that inspires numbers of scientist interests. There are two important materials have been used surrounding our live that are silver (Ag) and copper (Cu). The Ag has a lot of excellent properties such as good thermal and electrical conductivity, catalysis, anti-oxidation, and antibacterial. However, the price of Ag almost hundred times higher than Cu. On the other hand, the Cu has most of above mention properties of Ag; unfortunately, Cu has insufficient anti-oxidation ability in atmosphere. Therefore, in order to overcome these disadvantages, this study tries to develop a core-shell structure material which is Ag coating on Cu using one-step spray pyrolysis method. Controlling different precursors and calcination temperatures synthesize core-shell (Ag coat on Cu) structure particles. The phase composition, morphology, and composition distribution of particles were characterized by X-ray diffraction, scanning electron microscopy, and transmission electron microscopy, respectively. The further core-shell formation mechanisms have been discussed in this study.

    摘要 i Abstract ii 致謝 iv 目錄 v 圖索引 viii 表索引 xvi 第1章、 緒論 1 第2章、 文獻回顧 3 2.1 核殼結構材料的定義 3 2.1.1 核殼結構材料的組成與結構 4 2.1.2 核殼結構材料的應用 11 2.2 銅粒子之複合化及其應用 16 2.2.1 銅粒子的性質 16 2.2.2 改善銅氧化的方法 19 2.2.3 銅粒子及銅銀複合粒子的應用 23 2.3 Cu@Ag核殼結構之製備方法 31 2.3.1 逐步還原法 31 2.3.2 置換反應法 32 2.3.3 電化學法 33 2.3.4 多元醇還原法 34 2.3.5 噴霧熱解法 35 2.4 探討噴霧熱解法製備核殼粒子之影響因素 38 2.4.1 單步驟連續式形成核殼顆粒 38 2.4.2 多步驟連續式機台結構設計 43 第3章、 實驗方法 47 3.1 實驗設計 47 3.2 實驗藥品與儀器 51 3.2.1 X光繞射儀 53 3.2.2 場發射掃描式電子顯微鏡 54 3.2.3 場發射穿透式電子顯微鏡 55 第4章、 實驗結果 57 4.1 不同前驅物噴霧熱解之粉末結果 57 4.1.1 粉末之XRD相鑑定 57 4.1.2 粉末之FESEM表面形貌 58 4.1.3 粉末之TEM粉體結構 60 4.2 不同溫度噴霧熱解之粉末結果 66 4.2.1 粉末之XRD相鑑定 66 4.2.2 粉末之FESEM表面形貌 68 4.2.3 粉末之TEM粉體結構 70 4.3 加入還原氣氛噴霧熱解之粉末結果 74 4.3.1 粉末之XRD相鑑定 74 4.3.2 粉末之FESEM表面形貌 75 4.3.3 粉末之TEM粉體結構 77 第5章、 實驗討論 79 5.1 不同銅銀前驅物所製備顆粒形成機制之探討 79 5.2 不同溫度所製備顆粒形成機制之探討 81 5.3 使用噴霧熱解法製備核殼顆粒機制之綜合探討 82 第6章、 結論 85 第7章、 參考文獻 86

    [1] S.J. Jeon, S.M. Koo, S. Am Hwang, Optimization of lead-and cadmium-free front contact silver paste formulation to achieve high fill factors for industrial screen-printed Si solar cells, Solar Energy Materials and Solar Cells, 93 (2009) 1103-1109.
    [2] M. Liu, H. Wang, H. Zeng, C.-J. Li, Silver (I) as a widely applicable, homogeneous catalyst for aerobic oxidation of aldehydes toward carboxylic acids in water—“silver mirror”: From stoichiometric to catalytic, Science advances, 1 (2015) e1500020.
    [3] T. Maneerung, S. Tokura, R. Rujiravanit, Impregnation of silver nanoparticles into bacterial cellulose for antimicrobial wound dressing, Carbohydrate polymers, 72 (2008) 43-51.
    [4] B. Crone, A. Dodabalapur, R. Sarpeshkar, R. Filas, Y.-Y. Lin, Z. Bao, J. O’Neill, W. Li, H. Katz, Design and fabrication of organic complementary circuits, Journal of Applied Physics, 89 (2001) 5125-5132.
    [5] J.M. Hoey, M.T. Reich, A. Halvorsen, D. Vaselaar, K. Braaten, M. Maassel, I.S. Akhatov, O. Ghandour, P. Drzaic, D.L. Schulz, Rapid prototyping RFID antennas using direct-write, Advanced Packaging, IEEE Transactions on, 32 (2009) 809-815.
    [6] H. Irving, R. Williams, Order of stability of metal complexes, Nature, 162 (1948) 746-747.
    [7] N.A. Luechinger, E.K. Athanassiou, W.J. Stark, Graphene-stabilized copper nanoparticles as an air-stable substitute for silver and gold in low-cost ink-jet printable electronics, Nanotechnology, 19 (2008) 445201.
    [8] 盧永坤, 奈米科技概論, 滄海書局2005.
    [9] G.X.L. Zhang, 奈米複合材料, 五南圖書出版股份有限公司2003.
    [10] L. Spanhel, H. Weller, A. Henglein, Photochemistry of semiconductor colloids. 22. Electron ejection from illuminated cadmium sulfide into attached titanium and zinc oxide particles, Journal of the American Chemical Society, 109 (1987) 6632-6635.
    [11] H.C. Youn, S. Baral, J.H. Fendler, Dihexadecyl phosphate, vesicle-stabilized and in situ generated mixed cadmium sulfide and zinc sulfide semiconductor particles: preparation and utilization for photosensitized charge separation and hydrogen generation, The Journal of Physical Chemistry, 92 (1988) 6320-6327.
    [12] A. Henglein, Small-particle research: physicochemical properties of extremely small colloidal metal and semiconductor particles, Chemical Reviews, 89 (1989) 1861-1873.
    [13] C.F. Hoener, K.A. Allan, A.J. Bard, A. Campion, M.A. Fox, T.E. Mallouk, S.E. Webber, J.M. White, Demonstration of a shell-core structure in layered cadmium selenide-zinc selenide small particles by x-ray photoelectron and Auger spectroscopies, The Journal of Physical Chemistry, 96 (1992) 3812-3817.
    [14] H. Zhou, H. Sasahara, I. Honma, H. Komiyama, J.W. Haus, Coated semiconductor nanoparticles: the CdS/PbS system's photoluminescence properties, Chemistry of materials, 6 (1994) 1534-1541.
    [15] V.V. Srdić, B. Mojić, M. Nikolić, S. Ognjanović, Recent progress on synthesis of ceramics core/shell nanostructures, Processing and Application of Ceramics, 7 (2013) 45-62.
    [16] S. Mornet, C. Elissalde, V. Hornebecq, O. Bidault, E. Duguet, A. Brisson, M. Maglione, Controlled growth of silica shell on Ba0. 6Sr0. 4TiO3 nanoparticles used as precursors of ferroelectric composites, Chemistry of materials, 17 (2005) 4530-4536.
    [17] X.Y. Yang, Y. Li, G. Van Tendeloo, F.S. Xiao, B.L. Su, One‐Pot Synthesis of Catalytically Stable and Active Nanoreactors: Encapsulation of Size‐Controlled Nanoparticles within a Hierarchically Macroporous Core@ Ordered Mesoporous Shell System, Advanced Materials, 21 (2009) 1368-1372.
    [18] Y. Yang, J. Liu, X. Li, X. Liu, Q. Yang, Organosilane-assisted transformation from core–shell to yolk–shell nanocomposites, Chemistry of Materials, 23 (2011) 3676-3684.
    [19] H. Xu, W. Wang, Template synthesis of multishelled Cu2O hollow spheres with a single‐crystalline shell wall, Angewandte Chemie International Edition, 46 (2007) 1489-1492.
    [20] M.P. Nikolić, K.P. Giannakopoulos, M. Bokorov, V.V. Srdić, Effect of surface functionalization on synthesis of mesoporous silica core/shell particles, Microporous and Mesoporous Materials, 155 (2012) 8-13.
    [21] M.T. Buscaglia, M. Viviani, Z. Zhao, V. Buscaglia, P. Nanni, Synthesis of BaTiO3 core-shell particles and fabrication of dielectric ceramics with local graded structure, Chemistry of materials, 18 (2006) 4002-4010.
    [22] N. Phonthammachai, J.C. Kah, G. Jun, C.J. Sheppard, M.C. Olivo, S.G. Mhaisalkar, T.J. White, Synthesis of contiguous silica-gold core-shell structures: Critical parameters and processes, Langmuir, 24 (2008) 5109-5112.
    [23] Y. Deng, D. Qi, C. Deng, X. Zhang, D. Zhao, Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicularly aligned mesoporous SiO2 shell for removal of microcystins, Journal of the American Chemical Society, 130 (2008) 28-29.
    [24] M. Wang, J. Han, H. Xiong, R. Guo, Yolk@ shell nanoarchitecture of Au@ r-GO/TiO2 hybrids as powerful visible light photocatalysts, Langmuir, 31 (2015) 6220-6228.
    [25] L. Cao, J. Luo, K. Tu, L.-Q. Wang, H. Jiang, Generation of nano-sized core–shell particles using a coaxial tri-capillary electrospray-template removal method, Colloids and Surfaces B: Biointerfaces, 115 (2014) 212-218.
    [26] Y. Ma, S. Xu, S. Wang, L. Wang, Luminescent molecularly-imprinted polymer nanocomposites for sensitive detection, TrAC Trends in Analytical Chemistry, 67 (2015) 209-216.
    [27] T.-S. Deng, F. Marlow, Synthesis of monodisperse polystyrene@ vinyl-SiO2 core–shell particles and hollow SiO2 spheres, Chemistry of Materials, 24 (2012) 536-542.
    [28] H. Wang, Q. Xu, X. Zheng, W. Han, J. Zheng, B. Jiang, Q. Xue, M. Wu, Synthesis mechanism, enhanced visible-light-photocatalytic properties, and photogenerated hydroxyl radicals of PS@ CdS core–shell nanohybrids, Journal of nanoparticle research, 16 (2014) 1-15.
    [29] R.B. Karabacak, M. Erdem, S. Yurdakal, Y. Çimen, H. Türk, Facile two-step preparation of polystyrene/anatase TiO2 core/shell colloidal particles and their potential use as an oxidation photocatalyst, Materials Chemistry and Physics, 144 (2014) 498-504.
    [30] X. Jiang, W. Yu, S. Ding, B.Q. Li, Key synthesis parameters on preparation of PS@ Au nanoshells with chitosan polyelectrolyte, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 436 (2013) 579-588.
    [31] P. Yang, P. Zhang, C. Shi, L. Chen, J. Dai, J. Zhao, The functional separator coated with core–shell structured silica–poly (methyl methacrylate) sub-microspheres for lithium-ion batteries, Journal of Membrane Science, 474 (2015) 148-155.
    [32] M.W. Kim, I.J. Moon, H. Choi, Y. Seo, Facile fabrication of core/shell structured SiO2/polypyrrole nanoparticles with surface modification and their electrorheology, RSC Advances, (2016).
    [33] J.Y. Wu, K.Y. Hsu, Controllable fabrication of SiO2–polypyrrole core–shell dimer and trimer spheres, Journal of Materials Science: Materials in Electronics, 26 (2015) 3148-3154.
    [34] D.-h. Shen, L.-t. Ji, L.-l. Fu, X.-l. Dong, Z.-g. Liu, Q. Liu, S.-m. Liu, Immobilization of metalloporphyrins on CeO2@SiO2 with a core-shell structure prepared via microemulsion method for catalytic oxidation of ethylbenzene, Journal of Central South University, 22 (2015) 862-867.
    [35] J. Zhen, X. Wang, D. Liu, Z. Wang, J. Li, F. Wang, Y. Wang, H. Zhang, Mass production of Co3O4@CeO2 core@shell nanowires for catalytic CO oxidation, Nano Research, 8 (2015) 1944-1955.
    [36] J.L. Hu, H.S. Qian, J.J. Li, Y. Hu, Z.Q. Li, S.H. Yu, Synthesis of mesoporous SiO2@TiO2 core/shell nanospheres with enhanced photocatalytic properties, Particle & Particle Systems Characterization, 30 (2013) 306-310.
    [37] P. Khurana, S. Thatai, P. Wang, P. Lihitkar, L. Zhang, Y. Fang, S. Kulkarni, Speckled SiO2@ Au core–shell particles as surface enhanced Raman scattering probes, Plasmonics, 8 (2013) 185-191.
    [38] A.M. Asadirad, N.R. Branda, Two Colors of Light Are Needed to Break Bonds and Release Small Molecules from the Surface of SiO2–Au Core–Shell Nanoparticles, Journal of the American Chemical Society, 137 (2015) 2824-2827.
    [39] X. Zhang, S. Ye, X. Zhang, L. Wu, Optical properties of SiO2@M (M= Au, Pd, Pt) core–shell nanoparticles: material dependence and damping mechanisms, Journal of Materials Chemistry C, 3 (2015) 2282-2290.
    [40] Z. Chen, S. Pan, H. Yin, L. Zhang, E. Ou, Y. Xiong, W. Xu, Facile synthesis of super hydrophobic TiO2/polystyrene core-shell microspheres, EXPRESS Polymer Letters, 5 (2011) 38-46.
    [41] N. Gan, X. Du, Y. Cao, F. Hu, T. Li, Q. Jiang, An ultrasensitive electrochemical immunosensor for HIV p24 based on Fe3O4@SiO2 nanomagnetic probes and nanogold colloid-labeled enzyme–antibody copolymer as signal tag, Materials, 6 (2013) 1255-1269.
    [42] H. Zheng, T. Zhai, M. Yu, S. Xie, C. Liang, W. Zhao, S.C.I. Wang, Z. Zhang, X. Lu, TiO2@ C core–shell nanowires for high-performance and flexible solid-state supercapacitors, Journal of Materials Chemistry C, 1 (2013) 225-229.
    [43] G. Sun, C. Zhu, J. Zheng, B. Jiang, H. Yin, H. Wang, S. Qiu, J. Yuan, M. Wu, W. Wu, Preparation of spherical and dendritic CdS@TiO2 hollow double-shelled nanoparticles for photocatalysis, Materials Letters, 166 (2016) 113-115.
    [44] V. Brunetti, H. Chibli, R. Fiammengo, A. Galeone, M.A. Malvindi, G. Vecchio, R. Cingolani, J.L. Nadeau, P.P. Pompa, InP/ZnS as a safer alternative to CdSe/ZnS core/shell quantum dots: in vitro and in vivo toxicity assessment, Nanoscale, 5 (2013) 307-317.
    [45] Q. Song, Z.J. Zhang, Controlled synthesis and magnetic properties of bimagnetic spinel ferrite CoFe2O4 and MnFe2O4 nanocrystals with core–shell architecture, Journal of the American Chemical Society, 134 (2012) 10182-10190.
    [46] Z. Deng, P. Guyot-Sionnest, Intraband Luminescence from HgSe/CdS Core/Shell Quantum Dots, ACS nano, 10 (2016) 2121-2127.
    [47] K. Asadpour-Zeynali, F. Mollarasouli, A novel and facile synthesis of TGA-capped CdSe@Ag2Se core-shell quantum dots as a new substrate for high sensitive and selective methyldopa sensor, Sensors and Actuators B: Chemical, (2016).
    [48] F. Carlà, G. Campo, C. Sangregorio, A. Caneschi, C. de Julián Fernández, L.I. Cabrera, Electrochemical characterization of core@ shell CoFe2O4/Au composite, Journal of nanoparticle research, 15 (2013) 1-16.
    [49] H. El-Sayed, Evidence on the presence of Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction in CoFe2O4@ Au nano structure, Superlattices and Microstructures, 91 (2016) 98-104.
    [50] N. Zhang, X. Yu, J. Hu, Synthesis of copper nanoparticle-coated poly (styrene-co-sulfonic acid) hybrid materials and its antibacterial properties, Materials Letters, 125 (2014) 120-123.
    [51] O. Amiri, M. Salavati-Niasari, M. Farangi, Enhancement of Dye-Sensitized solar cells performance by core shell Ag@organic (organic= 2-nitroaniline, PVA, 4-choloroaniline and PVP): Effects of shell type on photocurrent, Electrochimica Acta, 153 (2015) 90-96.
    [52] X. Wang, D. Liu, S. Song, H. Zhang, Pt@CeO2 multicore@shell self-assembled nanospheres: clean synthesis, structure optimization, and catalytic applications, Journal of the American Chemical Society, 135 (2013) 15864-15872.
    [53] D. Yu, Y. Zeng, Y. Qi, T. Zhou, G. Shi, A novel electrochemical sensor for determination of dopamine based on AuNPs@SiO2 core-shell imprinted composite, Biosensors and Bioelectronics, 38 (2012) 270-277.
    [54] D. Aguilar-García, A. Ochoa-Terán, F. Paraguay-Delgado, M.E. Díaz-García, G. Pina-Luis, Water-compatible core–shell Ag@SiO2 molecularly imprinted particles for the controlled release of tetracycline, Journal of Materials Science, 51 (2016) 5651-5663.
    [55] J. Li, S.K. Cushing, J. Bright, F. Meng, T.R. Senty, P. Zheng, A.D. Bristow, N. Wu, Ag@Cu2O core-shell nanoparticles as visible-light plasmonic photocatalysts, Acs Catalysis, 3 (2012) 47-51.
    [56] J.H. Joo, J.F. Hodelin, E.L. Hu, E.D. Haberer, Viral-assisted assembly and photoelectric response of individual Au/CdSe core–shell nanowires, Materials Letters, 89 (2012) 347-350.
    [57] E. Ha, L.Y.S. Lee, H.-W. Man, S.C.E. Tsang, K.-Y. Wong, Morphology-Controlled Synthesis of Au/Cu2FeSnS4 Core–Shell Nanostructures for Plasmon-Enhanced Photocatalytic Hydrogen Generation, ACS applied materials & interfaces, 7 (2015) 9072-9077.
    [58] A. Khanna, V. Shetty, Solar photocatalysis for treatment of Acid Yellow-17 (AY-17) dye contaminated water using Ag@TiO2 core–shell structured nanoparticles, Environmental Science and Pollution Research, 20 (2013) 5692-5707.
    [59] D. Duan, H. Liu, X. You, H. Wei, S. Liu, Anodic behavior of carbon supported Cu@Ag core–shell nanocatalysts in direct borohydride fuel cells, Journal of Power Sources, 293 (2015) 292-300.
    [60] H. Ataee‐Esfahani, M. Imura, Y. Yamauchi, All‐Metal Mesoporous Nanocolloids: Solution‐Phase Synthesis of Core–Shell Pd@Pt Nanoparticles with a Designed Concave Surface, Angewandte Chemie International Edition, 52 (2013) 13611-13615.
    [61] C. Li, Y. Yamauchi, Facile solution synthesis of Ag@Pt core–shell nanoparticles with dendritic Pt shells, Physical Chemistry Chemical Physics, 15 (2013) 3490-3496.
    [62] J. Zeng, Y. Cao, C.-H. Lu, X.-d. Wang, Q. Wang, C.-y. Wen, J.-B. Qu, C. Yuan, Z.-f. Yan, X. Chen, A colorimetric assay for measuring iodide using Au@Ag core–shell nanoparticles coupled with Cu 2+, Analytica chimica acta, 891 (2015) 269-276.
    [63] J. Wagner, T. Autenrieth, R. Hempelmann, Core shell particles consisting of cobalt ferrite and silica as model ferrofluids [CoFe2O4–SiO 2 core shell particles], Journal of magnetism and magnetic materials, 252 (2002) 4-6.
    [64] X. Xie, X. Zhang, H. Zhang, D. Chen, W. Fei, Preparation and application of surface-coated superparamagnetic nanobeads in the isolation of genomic DNA, Journal of magnetism and magnetic materials, 277 (2004) 16-23.
    [65] Z. Chen, Z. Wang, P. Zhan, J. Zhang, W. Zhang, H. Wang, N. Ming, Preparation of metallodielectric composite particles with multishell structure, Langmuir, 20 (2004) 3042-3046.
    [66] T. Amirthalingam, J. Kalirajan, A. Chockalingam, Use of silica-gold core shell structured nanoparticles for targeted drug delivery system, Journal of Nanomedicine & Nanotechnology, 2011 (2012).
    [67] K. Sparnacci, M. Laus, L. Tondelli, L. Magnani, C. Bernardi, Core–shell microspheres by dispersion polymerization as drug delivery systems, Macromolecular Chemistry and Physics, 203 (2002) 1364-1369.
    [68] J.L. West, N.J. Halas, Applications of nanotechnology to biotechnology: Commentary, Current opinion in Biotechnology, 11 (2000) 215-217.
    [69] L.M. Liz-Marzán, M. Giersig, P. Mulvaney, Synthesis of nanosized gold-silica core-shell particles, Langmuir, 12 (1996) 4329-4335.
    [70] Q. Zhang, I. Lee, J.B. Joo, F. Zaera, Y. Yin, Core–shell nanostructured catalysts, Accounts of chemical research, 46 (2012) 1816-1824.
    [71] N.M. Ahmed, Modified zinc oxide-phosphate core-shell pigments in solvent-based paints, Anti-Corrosion Methods and Materials, 56 (2009) 51.
    [72] YU-HSIEN PENG, CHIH-HAO YANG, CHING-HWA LEE, K.-T. CHEN, B.-S. TANG, Synthesizing Silver-Copper Composite Powder Using a
    Chemical Reduction Method, Journal of Science and Engineering Technology, 7 (2011) 45-57.
    [73] S. Oldenburg, R. Averitt, S. Westcott, N. Halas, Nanoengineering of optical resonances, Chemical Physics Letters, 288 (1998) 243-247.
    [74] C. Loo, A. Lin, L. Hirsch, M.-H. Lee, J. Barton, N. Halas, J. West, R. Drezek, Nanoshell-enabled photonics-based imaging and therapy of cancer, Technology in cancer research & treatment, 3 (2004) 33-40.
    [75] 陳元宗, 銥錳交換耦合之 (鈷鐵硼/氧化鋁/鈷) 磁穿隧元件的機械性, 電性及磁性研究, (2006).
    [76] H. Zeng, S. Sun, J. Li, J.P. Liu, Z.L. Wang, Tailoring magnetic properties of core/shell nanoparticles, Applied physics letters, 85 (2004) 792-794.
    [77] 姚品全, 淺談銅觸媒, 觸媒與製程, 2000.
    [78] D.G. Fink, H.W. Beaty, Standard handbook for electrical engineers, McGraw-Hill1987.
    [79] A. Krätschmer, I.O. Wallinder, C. Leygraf, The evolution of outdoor copper patina, Corrosion Science, 44 (2002) 425-450.
    [80] T. Graedel, K. Nassau, J. Franey, Copper patinas formed in the atmosphere—I. Introduction, Corrosion Science, 27 (1987) 639-657.
    [81] N. Greenwood, A. Earnshaw, Chemistry of the Elements 2nd Edition, Butterworth-Heinemann1997.
    [82] H.W. Richardson, Copper compounds, Ullmann's Encyclopedia of Industrial Chemistry, (2000).
    [83] A. Edelstein, R. Cammarata, Nanoparticles: Synthesis, Properties and Applications, Institute of Physical Publishing, Philadelphia, (1996) 170.
    [84] N. Ichinose, Y. Ozaki, S. Kashu, Superfine particle technology, Springer Science & Business Media2012.
    [85] C. Douglas, Chapter 25. Electric currents and resistance, Physics for Scientists and Engineers with Modern Physics, 658.
    [86] K. Woo, D. Kim, J.S. Kim, S. Lim, J. Moon, Ink-Jet printing of cu− ag-based highly conductive tracks on a transparent substrate, Langmuir, 25 (2008) 429-433.
    [87] Y.K. Cho, K.Y. Jung, H. Lee, S. Heo, Synthesis and characterization of C/Cu core–shell particles by hydrogen-free spray pyrolysis assisted with citric acid and sucrose, Materials Research Bulletin, 48 (2013) 3424-3430.
    [88] J. Li, C.-y. Liu, Carbon-coated copper nanoparticles: synthesis, characterization and optical properties, New Journal of Chemistry, 33 (2009) 1474-1477.
    [89] Y. Kobayashi, T. Sakuraba, Silica-coating of metallic copper nanoparticles in aqueous solution, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 317 (2008) 756-759.
    [90] W.M. Haynes, CRC handbook of chemistry and physics, CRC press2014.
    [91] M.D. Porter, T.B. Bright, D.L. Allara, C.E. Chidsey, Spontaneously organized molecular assemblies. 4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry, Journal of the American Chemical Society, 109 (1987) 3559-3568.
    [92] S. Chen, J.M. Sommers, Alkanethiolate-protected copper nanoparticles: spectroscopy, electrochemistry, and solid-state morphological evolution, The Journal of Physical Chemistry B, 105 (2001) 8816-8820.
    [93] T. Ang, T. Wee, W. Chin, Three-dimensional self-assembled monolayer (3D SAM) of n-alkanethiols on copper nanoclusters, The Journal of Physical Chemistry B, 108 (2004) 11001-11010.
    [94] P. Kanninen, C. Johans, J. Merta, K. Kontturi, Influence of ligand structure on the stability and oxidation of copper nanoparticles, Journal of colloid and interface science, 318 (2008) 88-95.
    [95] V. Engels, F. Benaskar, D.A. Jefferson, B.F. Johnson, A.E. Wheatley, Nanoparticulate copper–routes towards oxidative stability, Dalton Transactions, 39 (2010) 6496-6502.
    [96] S. Jeong, K. Woo, D. Kim, S. Lim, J.S. Kim, H. Shin, Y. Xia, J. Moon, Controlling the thickness of the surface oxide layer on Cu nanoparticles for the fabrication of conductive structures by ink‐jet printing, Advanced Functional Materials, 18 (2008) 679-686.
    [97] M. GROUCHKO, A. KAMYSHNY, S. MAGDASSI, Formation of air-stable copper―silver core―shell nanoparticles for inkjet printing, Journal of material chemistry, 19 (2009) 3057-3062.
    [98] C.-H. Tsai, S.-Y. Chen, J.-M. Song, I.-G. Chen, H.-Y. Lee, Thermal stability of Cu@ Ag core–shell nanoparticles, Corrosion Science, 74 (2013) 123-129.
    [99] J. Morales, L. Sanchez, F. Martin, J. Ramos-Barrado, M. Sanchez, Use of low-temperature nanostructured CuO thin films deposited by spray-pyrolysis in lithium cells, Thin Solid Films, 474 (2005) 133-140.
    [100] J. Morales, L. Sánchez, F. Martin, J.R. Ramos-Barrado, M. Sánchez, Nanostructured CuO thin film electrodes prepared by spray pyrolysis: a simple method for enhancing the electrochemical performance of CuO in lithium cells, Electrochimica Acta, 49 (2004) 4589-4597.
    [101] M. Chang, C.Y. Tai, Preparation and Application of Copper Oxide Nanoparticles, une, 13 (2016) 15.
    [102] Y. Jianfeng, Z. Guisheng, H. Anming, Y.N. Zhou, Preparation of PVP coated Cu NPs and the application for low-temperature bonding, Journal of Materials Chemistry, 21 (2011) 15981-15986.
    [103] R. Zhang, W. Lin, K.-s. Moon, C. Wong, Fast preparation of printable highly conductive polymer nanocomposites by thermal decomposition of silver carboxylate and sintering of silver nanoparticles, ACS applied materials & interfaces, 2 (2010) 2637-2645.
    [104] H. Jiang, K.-s. Moon, Y. Li, C. Wong, Surface functionalized silver nanoparticles for ultrahigh conductive polymer composites, Chemistry of Materials, 18 (2006) 2969-2973.
    [105] H. Ikeda, S. Sekine, R. Kimura, K. Shimokawa, K. Okada, H. Shindo, T. Ooi, M. Nagata, Nano-Function Paste for power semiconductors, Electronics Packaging and iMAPS All Asia Conference (ICEP-IACC), 2015 International Conference on, IEEE, 2015, pp. 482-485.
    [106] S. Sekine, R. Kimura, K. Okada, H. Shindo, T. Ooi, U. Itoh, M. Yoshida, H. Tokuhisa, New interconnection alloy metal for high bonding strength nano composite particles synthesized by nanomized method, Electronics Packaging (ICEP), 2014 International Conference on, IEEE, 2014, pp. 152-155.
    [107] S. Magdassi, M. Grouchko, A. Kamyshny, Copper nanoparticles for printed electronics: routes towards achieving oxidation stability, Materials, 3 (2010) 4626-4638.
    [108] S. Magdassi, M. Grouchko, A. Kamyshny, Conductive ink-jet inks for plastic electronics: Air stable copper nanoparticles and room temperature sintering, NIP & Digital Fabrication Conference, Society for Imaging Science and Technology, 2009, pp. 611-613.
    [109] M.J. Kammer, A. Muza, J. Snyder, A. Rae, S.J. Kim, C.A. Handwerker, Optimization of Cu–Ag Core–Shell Solderless Interconnect Paste Technology, Components, Packaging and Manufacturing Technology, IEEE Transactions on, 5 (2015) 910-920.
    [110] H. Kawakami, K. Yoshida, Y. Nishida, Y. Kikuchi, Y. Sato, Antibacterial properties of metallic elements for alloying evaluated with application of JIS Z 2801: 2000, ISIJ international, 48 (2008) 1299-1304.
    [111] H. Jing, Z. Yu, L. Li, Antibacterial properties and corrosion resistance of Cu and Ag/Cu porous materials, Journal of Biomedical Materials Research Part A, 87 (2008) 33-37.
    [112] G. Grass, C. Rensing, M. Solioz, Metallic copper as an antimicrobial surface, Applied and environmental microbiology, 77 (2011) 1541-1547.
    [113] H.J. Lee, S.H. Jeong, Bacteriostasis of nanosized colloidal silver on polyester nonwovens, Textile Research Journal, 74 (2004) 442-447.
    [114] A. Azam, A.S. Ahmed, M. Oves, M.S. Khan, S.S. Habib, A. Memic, Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study, Int J Nanomedicine, 7 (2012) 6003-6009.
    [115] N.M. Zain, A. Stapley, G. Shama, Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications, Carbohydrate polymers, 112 (2014) 195-202.
    [116] M. Guzman, J. Dille, S. Godet, Synthesis and antibacterial activity of silver nanoparticles against gram-positive and gram-negative bacteria, Nanomedicine: Nanotechnology, Biology and Medicine, 8 (2012) 37-45.
    [117] C. Rousse, J. Josse, V. Mancier, S. Levi, S. Gangloff, P. Fricoteaux, Synthesis of copper-silver bimetallic nanopowders for biomedical approach; study of their antibacterial properties, RSC Advances, (2016).
    [118] 林育右, 以化學還原法合成導電性銅奈米微粉之研究, (2003).
    [119] W.A. Johnson, R.F. Mehl, Reaction kinetics in processes of nucleation and growth, Trans. Aime, 135 (1939) 396-415.
    [120] M. Grouchko, A. Kamyshny, S. Magdassi, Formation of air-stable copper–silver core–shell nanoparticles for inkjet printing, Journal of Materials Chemistry, 19 (2009) 3057-3062.
    [121] 胡啟章, 電化學原理與方法, 五南圖書出版股份有限公司2002.
    [122] V. Mancier, C. Rousse-Bertrand, J. Dille, J. Michel, P. Fricoteaux, Sono and electrochemical synthesis and characterization of copper core–silver shell nanoparticles, Ultrasonics sonochemistry, 17 (2010) 690-696.
    [123] M. Figlarz, F. Fievet, J.-P. Lagier, Process for the reduction of metallic compounds by polyols, and metallic powders obtained by this process, Google Patents, 1985.
    [124] M. Tsuji, S. Hikino, R. Tanabe, M. Matsunaga, Y. Sano, Syntheses of Ag/Cu alloy and Ag/Cu alloy core Cu shell nanoparticles using a polyol method, CrystEngComm, 12 (2010) 3900-3908.
    [125] M. Tsuji, S. Hikino, Y. Sano, M. Horigome, Preparation of Cu@ Ag Core-Shell Nanoparticles Using a Two-step Polyol Process under Bubbling of N2 Gas, Chemistry Letters, 38 (2009) 518-519.
    [126] H.F. Kraemer, H. Johnstone, Collection of aerosol particles in presence of electrostatic fields, Industrial & Engineering Chemistry, 47 (1955) 2426-2434.
    [127] G.L. Messing, S.C. Zhang, G.V. Jayanthi, Ceramic powder synthesis by spray pyrolysis, Journal of the American Ceramic Society, 76 (1993) 2707-2726.
    [128] S.-J. Shih, Y.-Y. Wu, C.-Y. Chen, C.-Y. Yu, Morphology and formation mechanism of ceria nanoparticles by spray pyrolysis, Journal of Nanoparticle Research, 14 (2012) 1-9.
    [129] S.J. Shih, W.L. Tzeng, R. Jatnika, C.J. Shih, K.B. Borisenko, Control of Ag nanoparticle distribution influencing bioactive and antibacterial properties of Ag‐doped mesoporous bioactive glass particles prepared by spray pyrolysis, Journal of Biomedical Materials Research Part B: Applied Biomaterials, 103 (2015) 899-907.
    [130] S.-J. Shih, Y.-C. Lin, S.-H. Lin, P. Veteška, D. Galusek, W.-H. Tuan, Preparation and characterization of Eu-doped gehlenite glassy particles using spray pyrolysis, Ceramics International, 42 (2016) 11324-11329.
    [131] J.H. Kim, T.A. Germer, G.W. Mulholland, S.H. Ehrman, Size‐Monodisperse Metal Nanoparticles via Hydrogen‐Free Spray Pyrolysis, Advanced Materials, 14 (2002) 518-521.
    [132] Y.K. Cho, K.Y. Jung, H. Lee, S. Heo, Synthesis and characterization of C/Cu core-shell particles by hydrogen-free spray pyrolysis assisted with citric acid and sucrose, Materials Research Bulletin, 48 (2013) 3424-3430.
    [133] S.Y. Yang, S.G. Kim, Characterization of silver and silver/nickel composite particles prepared by spray pyrolysis, Powder Technol., 146 (2004) 185-192.
    [134] K.C. Pingali, S. Deng, D.A. Rockstraw, Synthesis and thermal stability of carbon-supported Ru-Ni core-and-shell nanoparticles, Powder Technol., 187 (2008) 19-26.
    [135] D.S. Jung, Y.N. Ko, Y.C. Kang, S.B. Park, Recent progress in electrode materials produced by spray pyrolysis for next-generation lithium ion batteries, Advanced Powder Technology, 25 (2014) 18-31.
    [136] K.C. Pingali, S. Deng, D.A. Rockstraw, Direct synthesis of Ru–Ni core-and-shell nanoparticles by spray-pyrolysis: Effects of temperature and precursor constituent ratio, Powder Technol., 183 (2008) 282-289.
    [137] D.S. Jung, H.Y. Koo, Y.C. Kang, Composite conducting powders with core-shell structure as the new concept of electrode material, Colloids and Surfaces a-Physicochemical and Engineering Aspects, 360 (2010) 69-73.
    [138] Y.S. Chung, S.B. Park, D.-W. Kang, Magnetically separable titania-coated nickel ferrite photocatalyst, Materials Chemistry and Physics, 86 (2004) 375-381.
    [139] S. Stopic, B. Friedrich, M. Schroeder, T.E. Weirich, Synthesis of TiO 2 core/RuO 2 shell particles using multistep ultrasonic spray pyrolysis, Materials Research Bulletin, 48 (2013) 3633-3635.
    [140] Y.J. Hong, M.Y. Son, J.-K. Lee, H.B. Lee, S.H. Lee, Y.C. Kang, Characteristics of stabilized spinel cathode powders obtained by in-situ coating method, Journal of Power Sources, 244 (2013) 625-630.
    [141] H. Meyers, H. Myers, Introductory solid state physics, CRC press1997.

    QR CODE