簡易檢索 / 詳目顯示

研究生: 黃雋元
Chun-Yuan Huang
論文名稱: 玻璃粉/銀粉之比例對於應用至微小熱澆道厚膜電阻層加熱性能之影響
The Application of Glass/Silver Powder of Different Ratio in Hot Sprue with Thick Film Resistor and The Influence on Its Heating Performance
指導教授: 林舜天
Shun-Tian Lin
口試委員: 周賢鎧
Shyan-kay Jou
林寬泓
Kuan-Hong Lin
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 71
中文關鍵詞: 熱澆道厚膜電阻層厚膜加熱電阻漿料
外文關鍵詞: hot sprue, thick film layer, resistor paste, heating performance
相關次數: 點閱:172下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 目前市面上之電子相關零組件,不論是金屬或塑膠射出成型,均往輕薄短小之方向發展,傳統之熱噴嘴直徑約在20~50mm之間[1]。本實驗中以厚膜電阻層應用至熱澆道上取代傳統螺旋加熱線圈,縮小直徑達12mm之熱噴嘴,進一步取代直徑20~50mm之傳統熱噴嘴。
    本實驗中將針對漿料燒結層進行分析,熱噴嘴的組成包含五大部分,依序為鋼材主體、絕緣層、電阻層、導電層(電極)以及包覆層,而實驗主要針對電阻漿料之調配以及燒結後微結構與電性分析。而其中主要以銀做為導電相(conductive phase)。首先將電阻漿料網印至不銹鋼試片上,於120℃下烘乾15分鐘,接著在預設之溫度下燒結(700、750℃),在峰值溫度持溫5至10分鐘後爐冷,其微結構將由scanning electron microscope(SEM)掃描式電子顯微鏡觀察,此外energy dispersive spectrometry(EDS)能量散射光譜儀則用做元素分析,藉由此兩種儀器可確實了解內部通路之形成。
    此外方阻(sheet resistivity)、電阻值(resistance)以及電阻溫度係數(temperature coefficient of resistance, TCR)隨著不同燒結溫度下與漿料成份比例產生之變化,也將在本實驗中看到。


    In the market of electronic components, whether it’s metal or plastic injection molding, both are developed into the trend of light, thin, short and miniature models, while the traditional hot sprue diameter is between 20 to 50mm . In this experiment, the thick film resistor layer applied to replace the traditional spiral heating coil on the hot sprue, narrowing the diameter of hot sprue up to 12mm, to replace a traditional hot nozzle of diameter of 20 to 50mm.
    The focus of this study is on the analysis of paste sinter layer; the composition of the nozzle consists of five parts, followed the main body of stainless steel, insulation layer, the resistive layer, the conductive layer (electrode) and coating, this experiment is to analyze the resistor paste deployment , the microstructure after sintering and the electrical properties.
    Using silver as the main conductive phase, first press resistor paste onto the stainless steel specimen, dry at 120 ℃ for 15 minutes. Second, sintered in default of temperature (700, 750℃), held in the peak temperature of the furnace for 5-10 minutes and then cooling to the room temperature. Finally, observe its micro-structure by scanning through scanning electron microscope(SEM). As for elemental analysis energy dispersive spectrometer(EDS) is used, with these two instruments the formation of the internal pathway can be fully understood. In addition, sheet resistivity, resistivity and the temperature coefficient of resistance (TCR) with different sintering temperature and the paste composition ratio change will also be shown in this experiment.

    總目錄 總目錄------------------------------------------------------------------------I~III 圖目錄------------------------------------------------------------------------IV~V 表目錄-----------------------------------------------------------------------VI~VII 誌謝---------------------------------------------------------------------------VIII 摘要---------------------------------------------------------------------------IX Abstract-----------------------------------------------------------------------X~XI 第一章 緒論---------------------------------------------------------------1 1.1 研究背景--------------------------------------------------------------1 1.2 研究目的--------------------------------------------------------------2~3 1.3 厚膜電阻導體材料--------------------------------------------------4 1.4 厚膜電阻材料--------------------------------------------------------4 1.5 無鉛玻璃使用--------------------------------------------------------5~6 第二章 理論---------------------------------------------------------------7 2.1 電阻加熱原理--------------------------------------------------------7 2.2 電阻溫度係數(TCR)------------------------------------------------7~8 2.3 厚膜電阻性質--------------------------------------------------------9~10 2.4 厚膜電阻導電機制--------------------------------------------------11 2.4.1 凝聚效應(percolation)--------------------------------------11 2.4.2 Pike and Seager’s model------------------------------------12~14 2.5 掃描式電子顯微鏡(SEM)及能量散射光譜儀(EDS)---------15 2.6 四點探針之電阻量測(Four-Point Probe)------------------------15~16 2.7 厚膜電阻--------------------------------------------------------------17~18 2.8 網版印刷--------------------------------------------------------------19 第三章 實驗流程與方法------------------------------------------------20 3.1 實驗材料--------------------------------------------------------------21 3.1.1 電阻漿料------------------------------------------------------21 3.1.2 基板材料------------------------------------------------------21 3.2 漿料調配--------------------------------------------------------------21~22 3.3 實驗設備--------------------------------------------------------------23 3.4 實驗參數設計--------------------------------------------------------24 3.5 實驗步驟--------------------------------------------------------------25 3.5.1 試片製作----------------------------------------------------25 3.5.2 漿料燒結後之電阻量測----------------------------------25~26 3.5.3 SEM微結構觀察分析------------------------------------27 3.5.4 電阻層加熱測試-------------------------------------------27~28 第四章 結果與討論------------------------------------------------------29 4.1 玻璃粉/銀粉比例及燒結溫度對電阻層電性之影響----------29 4.1.1 不同玻璃/銀粉比例及燒結溫度對電阻層方阻之影響------------------------------------------------------------------29~30 4.1.2 不同玻璃/銀粉比例及燒結溫度對加熱線路電阻值之影響------------------------------------------------------------------31~32 4.2 不同電阻值對於加熱性能之影響--------------------------------33~36 4.3 電阻溫度係數之變化(TCR)---------------------------------------37~38 4.4 微分計算--------------------------------------------------------------39 4.5 SEM微結構分析----------------------------------------------------40 4.5.1 燒結700℃試片之微結構分析---------------------------40~41 4.5.2 燒結750℃試片之微結構分析---------------------------42~43 4.5.3 燒結700℃與750℃試片之微結構分析(剖斷面)---44~46 4.6 EDS元素分析-------------------------------------------------------47 4.6.1 燒結700℃試片之EDS元素分析----------------------47~50 4.6.2 燒結750℃試片之EDS元素分析----------------------51~54 第五章 結論--------------------------------------------------------------56 參考文獻--------------------------------------------------------------------57~59  圖目錄 圖1-1完整試片剖面圖-------------------------------------------------4 圖2-1 凝聚效應示意圖------------------------------------------------12 圖2-2 Pike and Seager’s model----------------------------------------15 圖2-3 四點探針運作示意圖------------------------------------------17 圖2-4 網印成品示意圖------------------------------------------------20 圖3-1 實驗流程圖------------------------------------------------------21 圖3-2 自行設計線路之網板------------------------------------------24 圖3-3 網印機------------------------------------------------------------24 圖3-4 圓錠試片俯視圖------------------------------------------------26 圖3-5 加熱試片俯視圖------------------------------------------------27 圖3-6 四點探針儀------------------------------------------------------28 圖 3-7 DC電源供應器-------------------------------------------------29 圖4-1 方阻趨勢圖------------------------------------------------------31 圖4-2 電阻值趨勢圖---------------------------------------------------33 圖4-3 試片加熱性能趨勢圖------------------------------------------36 圖4-4 試片所需功率趨勢圖(最高溫)-------------------------------36 圖4-5 試片升溫速率圖(Ag30vol%)---------------------------------37 圖4-6 TCR趨勢圖------------------------------------------------------39 圖4-7 700℃燒結微結構圖--------------------------------------------41 圖4-8 750℃燒結微結構圖--------------------------------------------43 圖 4-9 Ag 60vol%試片之剖斷面(700℃)---------------------------45 圖 4-10 Ag 40vol%試片之剖斷面(700℃)--------------------------45 圖 4-11 Ag 20vol%試片之剖斷面(700℃)--------------------------45 圖 4-12 Ag 60vol%試片之剖斷面(750℃)--------------------------46 圖 4-13 Ag 40vol%試片之剖斷面(750℃)--------------------------46 圖 4-14 Ag 20vol%試片之剖斷面(750℃)--------------------------46  表目錄 表3-1 電阻漿配方比例參數-------------------------------------22 表 4-1 700℃時之方阻值-----------------------------------------29 表 4-2 750℃時之方阻值 ----------------------------------------30 表 4-3 700℃時之電阻值-----------------------------------------31 表 4-4 750℃時之方阻值-----------------------------------------31 表 4-5 700℃試片之加熱性能-----------------------------------34 表 4-6 750℃試片之加熱性能-----------------------------------34 表 4-7 700℃試片之TCR----------------------------------------37 表 4-8 700℃試片之TCR----------------------------------------38 表 4-9 700℃試片元素分析表(Ag60vol%)-------------------48 表 4-10 700℃試片元素分析表(Ag50vol%)-----------------48 表 4-11 700℃試片元素分析表(Ag40vol%)-----------------49 表 4-12 700℃試片元素分析表(Ag30vol%)-----------------49 表 4-13 700℃試片元素分析表(Ag20vol%)-----------------50 表 4-14 750℃試片元素分析表(Ag60vol%)-----------------52 表 4-15 750℃試片元素分析表(Ag50vol%)-----------------52 表 4-16 750℃試片元素分析表(Ag40vol%)-----------------53 表 4-17 750℃試片元素分析表(Ag30vol%)-----------------53 表 4-18 750℃試片元素分析表(Ag20vol%)------------------54

    [1] 映通股份有限公司-Anntong Hot Runner System,www.anntong.com.tw
    [2] Richard B. Tait, Robin Humphries, and Josef Lorenz, Thick Film Heater Elements and Temperature Sensors in Modem Domestic Appliances, IEEE Transactions on Industry Applications, Vol. 30, No. 3, May/June 1994
    [3] 陳昭榮,熱澆道應用於金屬粉末射出成型之研究(碩士論文),國立台灣科技大學機械所,2010
    [4] 凱紳產品設計開發公司,塑膠材料與成型,www.kasin.com.tw
    [5] G. Fu, N. H. Loh, S. B. Tor, B. Y.Tay, Y. Murakoshi, R. Maeda, A variotherm mold for micro metal injection molding, Microsyst Technol, vol 11, p.1267~1271, 2005
    [6] Dawei Cui, Jinlong Wang, Metal Injection Molding of High Nitrogen Stainless Steels, 2010 International Conference on Computer Application and System Modeling (ICCASM 2010)
    [7] R.W Vest, Materials Science of Thick Film Technology, Am. Ceram. Soc. Bull. Vol. 65, No. 4, p.631, 1986
    [8] Kenji Adachi, Hiroko Kuno, Effect of Glass Composition on the Electrical Properties of Thick Film Resistors, Journal of the American Ceramic Society, Vol. 83 [10], p.2441~2448, 2000
    [9] M. Prudenziati, F. Zanardi, B. Mortan, A. F. Guarltieri, Lead-Free Thick Film Resistors: An Explorative Investigation, Journal of Materials Science: Materials in Electronics 13, p.31~37, 2002
    [10] John. H. Lau, Impacts of RoHS on Electronics Products, Agilent Technologies, Inc, San Jose, CA, USA
    [11] Understanding the Requirements of the European RoHS Directive and its Impact on Your Business, MEC Innovation, www.MECInnovation.com
    [12] Robert W. Vest, A Model for Sheet Resistivity of RuO2, Thick Film Resistors, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 14, No. 2, June 1991
    [13] Konrad Kiełbasin´ ski, Małgorzata Jakubowska, Anna Mło_zniak, Marko Hrovat, Janez Holc, Darko Belavic, Investigation on electrical and microstructural properties of Thick Film Lead-Free resistor series under various firing conditions, J Mater Sci: Mater Electron 21, p.1099~1105, 2010
    [14] Osamu Abe, Yoshiaki Taketa, Miyoshi Haradome, The Effect of Various Factors on The Resistance and TCR of RuO2 Thick Film Resistors--Relation Between The Electrical Properties and Particle Size of Constituents, The Physical Properties of Glass and Firing Temperature, Active and Passive Elec. Comp., Vol. 13, pp. 67-83, 1988
    [15] Toshio Inokuma, Yoshiaki Taketa, Control of Electrical Properties of RuO2 Thick Film Resistors, Active and Passive Elec. Comp., Vol. 12, pp. 155-166, 1987
    [16] A. Kusy, Chains of Conducting Particles that Determine the Resistivity of Thick Resistive Films, Thin Solid Films, Vol. 43, p.243~250, 1977
    [17] A. Kusy, On the Structure and Conduction Mechanism of Thick Resistive Films, Thin Solid Films, p.281~302, 1976
    [18] A. Kusy and E. Listkiewicz, Percolation Network For Thick Film Resistive Films, Solid-State Electronics Vol. 31, No. 5, pp.821-830, 1988.
    [19] A. Cattaneo, M. Cocito, F. Forlani, M. Prudenziati, Influence of The Metal Migration From Screen-and-Fired Terminations on The Electrical Characteristics of Thick-Film Resistors, Electrocomponent Science and Technology , Vol. 4, pp. 205-211, 1977
    [20] G. E. Pike and C. H. Seager, Electrical Properties and Conduction Mechanisms of Ru-Based Thick-Film (Cermet) Resistors, J. Appl. Phys., 48(12), p.p.5152 ~ 5168, 1977.
    [21] Marko Hrovat, Zoran Samardziija, Janez Holc, Microstructural, XRD and electrical characterization of some thick film resistors, Journal of Materials Science: Materials in Electronics 11, p.199~208, 2000
    [22] R. M. Scarisbrick, Electrically Conducting Mixtures, J. Phys. D., 6, 2098-2110, 1973
    [23] J. W. Mayer and S. S. Lau, "Electronic Materials Science", Macmillian, pp. 34-35, 1990.
    [24] www.cleanroom.byu.edu/fourpointprobe.phtml , BYU
    [25] M. Hrovat, A. Bencˇan, D. Belavicˇ, J. Holc, G. Drazˇicˇ, A characterization of thick-film PTC resistors. Sens. Actuators A. Vol. 117, p, 256–266, 2005
    [26] R.W. Vest, in Ceramic Materials for Electronics, R.C. Buchanan, Ed., New York: Marcel Dekker Inc., 1991, p. 435.
    [27] Abhijit Kshirsagar, Sunit Rane∗, Uttamrao Mulik, Dinesh Amalnerkar, Microstructure and electrical performance of eco-friendly thick film resistor compositions fired at different firing conditions, Materials Chemistry and Physics 101, p. 492~498, 2007

    QR CODE