簡易檢索 / 詳目顯示

研究生: 蔡永坤
Yung-Kun Tsai
論文名稱: 應用於三維度主動式有機發光二極體顯示器新型畫素電壓補償電路
Novel Voltage Programming Pixel Circuit to Compensate for OLED Luminance Degradation in 3D AMOLED Displays
指導教授: 范慶麟
Ching-Lin Fan
口試委員: 顏文正
none
王錫九
none
李志堅
none
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 英文
論文頁數: 110
中文關鍵詞: 主動式有機發光二極體顯示器畫素補償電路三維度顯示器
外文關鍵詞: AMOLED pixel circuit, a-IGZO TFTs, 3D AMOLED display
相關次數: 點閱:437下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 主動式有機發光二極體(AMOLED)由於其優異的特性,近年來受到市場上相當的矚目,像是廣視角、快的反應速度、高對比、高色彩飽和度、和自發光性等等。而在有機發光二極體顯示器的尺寸日益增大,造成其電壓衰退增加。另外,有機發光二極體在長時間操作下會導致發光效率降低以及產品生命期縮短。因此,近幾年出現了有關應用金屬氧化物薄膜電晶體(a-IGZO TFT)於畫素電路以及補償有機發光二極體之發光效率之研究。
    由於低溫複晶矽薄膜電晶體(LTPS-TFT)其優異的電流驅動能力,可以使得畫素電路尺寸微縮,進而達到較大的開口率,提升顯示器品質。然而,低溫複晶矽薄膜電晶體製程過程中,在準分子雷射退火時會造成的電性差異,會使得在相同灰階情況下卻出現電流不一的情況,進而造成顯示器亮度之不均勻,所以開始出現許多補償電路之研究,而近年來此問題也被有效改善。
    近幾年,金屬氧化物薄膜電晶體(a-IGZO TFT)開始被重視,因為金屬氧化物薄膜電晶體具有介於低溫複晶矽薄膜電晶體(LTPS-TFT)和非晶矽薄膜電晶體(a-Si TFT)之間的電流驅動能力,且製程上有很高的均勻性,適合發展大尺寸的面板。然而,金屬氧化物薄膜電晶體在長時間操作下會造成電性差異,會使得在相同灰階情況下卻出現電流不一的情況,進而造成顯示器亮度之不均勻,所以開始出現許多改善不均勻性的補償電路之研究。因此,在本篇論文中,我們希望讓補償電路能補償薄膜電晶體的不均勻性,並且搭載同步顯示的高速操作(Simultaneous emission)3D驅動時脈。
    鑒於以上動機,我們提出了三個新型補償畫素電路,同時搭載了高品質的同步顯示(Simultaneous emission)3D驅動時脈,這三個電路分別為6T2C、4T2C及5T2C,皆經由AIM-SPICE模擬驗證並修改相關參數得到預期之結果。
    在6T2C畫素電路中,首先其高頻三維度驅動操作之特性已經由模擬軟體驗證。其平均電流錯誤率在驅動元件臨界電壓偏移±.0.33之情況下為1.67%,及在有機發光二極體及驅動元件臨界電壓同時偏移之最糟情況下為3.83%。還有在由寄生電阻造成的電源電壓下降狀況下,畫素電路也依然能維持穩定的電流供應。由以上敘述顯示,此新型成功的在三維度驅動操作下有效維持畫面均勻度,並且利用有機發光二極體之逆偏壓,進而改善有機發光二極體之生命期。
    在第二個4T2C畫素電路中,利用金屬氧化物薄膜電晶體(a-IGZO TFT)作為畫素電路的驅動元件,其高頻的驅動操作之特性已經由模擬軟體驗證。在驅動元件臨界電壓偏移±3並且有機發光二極體臨界電壓偏移+0.5之極端情況下之電流不均勻性小於7%。
    在第三個5T2C畫素電路中,我們考慮了有機發光二極體經長時間操作後亮度會衰減的現象去設計補償電路。利用有機發光二極體臨界電壓隨操作時間上升之特性回授補償電流,得已維持亮度。在驅動元件臨界電壓偏移±.0.5情況下之電流誤差率僅0.509%。
    由以上結果顯示,在高速驅動時脈下,補償驅動元件及有機發光二極體的能力有如我們所預期。因此,我們相信在此論文所發表的三個新型畫素電路是有著相當不錯的穩定電流驅動能力且也是相當適合於應用在大尺寸和高解析度的三維度主動式有激發光二極體顯示器面板中。


    Recently, active matrix organic light-emitting diode (AMOLED) has attracted a much attention due to its extraordinary properties, such as wide viewing angle, fast response time, high contrast ratio, high color saturation and self-emissive ability. Since the OLED TVs become more and more popular, the issue of voltage drop in power line will be increase. Moreover, luminance of AMOLED decayed after long time operation to lead OLED luminance degradation and short lifetime of product. Recently, using Metal Oxide TFT (a-IGZO TFT) for AMOLED pixel circuit and compensating for electric degradation of OLED are investigated.
    The low-temperature polycrystalline-silicon thin-film transistors (LTPS-TFTs) plays an important part due to its high current driving capability. However, the various characteristic of LTPS-TFTs due to the excimer laser annealing process, which will further cause the non-uniform driving current under same gray-scale. Hence, many pixel circuit researches are proposed and this issue is effectively ameliorated.
    Recently, Metal Oxide TFT (a-IGZO TFT) is paid much attention because a-IGZO TFT has the current driving capability between LTPS-TFT and a-Si TFT and has great uniformity to fabricate large size display on fabrication process. However, a-IGZO TFT has non-uniform of electrical characteristics under long time operation which will further cause the non-uniform driving current under same gray-scale. Hence, many pixel circuit researches are proposed and this issue is effectively ameliorated. Thus, in this thesis, we want to design novel pixel circuits that can compensate the non-uniformity of TFTs, the OLED luminance degradation and the stereo 3D effect is also applied in the circuits.
    Base on above reason, we proposed three compensating pixel circuits with high quality 3D simultaneously emission (SE) driving scheme, 6T2C, 4T2C and 5T2C respectively. Through the parameter modulation, these three circuits achieved the performances what we expected and verified by AIM-SPICE.
    In the 6T2C pixel circuit, first the high speed 3D driving is verified by simulator. The current error rate under various threshold voltage of TFT(ΔVTH_DTFT = ±0.33 V) is 1.67%. In a worst case of both various threshold voltage of OLED and TFTs, current error rate is only 3.83%. In power line I-R drop which was caused by intrinsic resistance, the proposed pixel circuit still offers a stable current. Consequently, this proposed 6T2C pixel circuit maintains the image uniformity effectively under high speed 3D driving, and the proposed 6T2C pixel circuit is also applied the reverse bias to ameliorate OLED lifetime.
    In the 4T2C pixel circuit, using a-IGZO TFTs for AMOLED pixel circuit the high speed 3D driving is verified by simulator. The current error rate of this pixel circuit under various threshold voltage of TFT(ΔVTH_DTFT = ±3 V) and OLED (ΔVTH_OLED = +0.5 V) is less than 7%. Furthermore, the current degradation error rate is less than 2% under the critical condition of VDD dropping 0.5 V
    In the 5T2C pixel circuit, OLED luminance degradation in long-term operation is in consideration. So we utilized the property that the threshold voltage of OLED will increases with operation time, to design a feedback structure. Due to this structure, the OLED current will increases with the threshold voltage of OLED. The current error rate of this pixel circuit under various threshold voltage of TFT(ΔVTH_DTFT = ±0.5 V) is 0.509%.
    Due to the above simulation results, under high speed driving, the capability of compensation is achieved as what we expected. Hence, we believed these three proposed pixel circuits have excellent current driving capability and it is suitable in large size and high resolution AMOLED displays.

    Content 論文摘要 I ABSTRACT IV 致謝 VII Content VIII Figure List X Table List XIV CHAPTER 1 INTRODUCTION 1 1.1 ORGANIC LIGHT EMITTING DIODE (OLED) 1 1.1.1 What is OLED? 1 1.1.2 OLED structure and operation 3 1.1.3 Advantages of OLED 6 1.2 STEREO DISPLAYS (THREE-DIMENSIONAL (3D) DISPLAYS) 12 1.2.1 Stereo vision 12 1.2.2 Stereo (3D) displays 13 1.3 MOTIVATION 24 1.4 THESIS ORGANIZATION 27 CHAPTER 2 AMOLED DRIVING 28 2.1 DRIVING DEVICE 28 2.1.1 LTPS TFT 28 2.1.2 a-IGZO TFT 30 2.1.3 AIM-SPICE and Device Model 32 2.2 DRIVING METHOD 34 2.2.1 Passive Matrix Addressing 34 2.2.2 Active Matrix Addressing 36 2.3 COMPENSATING METHOD 40 2.3.1 Compensating methods for AMOLED 40 2.3.2 Compensating Methods with a-IGZO TFTs 41 2.3.3 Compensation for voltage drop of power line 43 CHAPTER 3 PROPOSED 6T2C PIXEL CIRCUIT FOR 3D AMOLED USING REVERSE BIAS TO ALLEVIATE DEGRADATION OF OLED 45 3.1 INTRODUCTION 45 3.2 PROPOSED PIXEL CIRCUIT SCHEME & OPERATION 48 3.3 SIMULATION RESULTS 54 3.4 SUMMARY 64 CHAPTER 4 PROPOSED A-IGZO TFT PIXEL CIRCUIT FOR 3D AMOLED DISPLAYS WITH TOP EMISSION STRUCTURE 65 4.1 INTRODUCTION 65 4.2 PROPOSED PIXEL CIRCUIT SCHEME & OPERATION 67 4.3 SIMULATION RESULTS 73 4.4 SUMMARY 82 CHAPTER 5 PROPOSED 5T2C AMOLED PIXEL CIRCUIT FOR COMPENSATE OF OLED LUMINANCE DEGRADATION 83 5.1 INTRODUCTION 83 5.2 PROPOSED PIXEL CIRCUIT SCHEME & OPERATION 84 5.3 SIMULATION RESULTS 90 5.4 SUMMARY 96 CHAPTER 6 CONCLUSION & FUTURE WORK 97 6.1 CONCLUSION 97 6.2 FUTURE WORK 98 REFERENCES 99

    Chapter 1
    [1.1] C. W. Tang and S. A. VanSlyke, “Organic electroluminescent diodes,” Appl. Phys. Lett., vol. 51, 1987, pp. 913-915.
    [1.2] C. Hosokawa, M. Matsuura, M. Eida, K. Fukuoka, H. Tokailin, and T. Kusumoto, “Full-color organic EL display,” in SID Tech. Dig., 1998, pp.7–10.
    [1.3] C. W. Lin, D. Z. Peng, R. Lee, Y. F. Shih, C. K. Jan, M. H. Hsieh, S. C. Chang, and Y. M. Tsai, “Advanced poly-Si device and circuitry for AMOLED and high-integration AMLCD,” in Int. Display Manufacturing Conf., 2005, pp. 315–318.
    [1.4] H. Nakamura, C. Hosokawa, and T. Kusumoto, “Transient behavior of organic electroluminescent cells,” in Inorganic and Organic Electroluminescence/EL 96 Berlin, 1996, pp. 95.
    [1.5] S. H. Jung, W. J. Nam, and M. K. Han, “A new voltage-modulated AMOLED pixel design compensating for threshold voltage variation in poly-Si TFTs,” IEEE Electron Device Lett., vol. 25, no. 10, Oct. 2004, pp. 690–692.
    [1.6] Y. H. Tai, B. T. Chen, Y. J. Kuo, C. C. Tsai, K. Y. Chiang, Y. J. Wei, and H. C. Cheng, “A new pixel circuit for driving organic light emitting diodes with low temperature polycrystalline thin film transistors,” J. Display Technol., vol. 1, no. 1, Sep. 2005, pp. 100–104.
    [1.7] H. Y. Lu, P. T. Liu, T. C. Chang, and S. Chi, “Enhancement of brightness uniformity by a new voltage-modulated pixel design for AMOLED displays,” IEEE Electron Device Lett., Vol. 27, pp. 743–745 (2006).
    [1.8] C. L. Fan, Y. S. Lin, and Y. W. Liu, “Low Temperature Polycrystalline Silicon Thin Film Transistor Pixel Circuits for Active Matrix Organic Light Emitting Diodes,” IEICE Trans. Electron, Vol. E93-C, pp. 712 (2010).
    [1.9] C. L. Fan, Y. Y. Lin, B. S. Lin, J. Y. Chang, and H. C. Chang, “New Pixel Circuit Compensating Poly-si TFT Threshold-voltage Shift for Driving AMOLED,” Journal of the Korean Physical Society, Vol. 56, p. 1185 (2010).
    [1.10] C. L. Fan, Y. Y. Lin, J. Y. Chang, B. J. Sun, and Y. W. Liu, “New Low Temperature Polycrystalline Silicon Thin Film Transistor Pixel Circuit for Active Matrix Organic Light Emitting Diode,” Jpn. J. Appl. Phys., Vol. 49, (2010).
    [1.11] C. L. Fan, H. L. Lai, and J. Y. Chang, “Improvement in Brightness Uniformity by Compensating for the Threshold Voltages of Both the Driving Thin-Film Transistor and the Organic Light-Emitting Diode for Active-Matrix Organic Light-Emitting Diode Displays,” Jpn. J. Appl. Phys., Vol. 49 (2010).
    [1.12] J. H. Lee, W. J. Nam, S. H. Jung, and M. K. Han, “A new current scaling pixel circuit for AMOLED,” IEEE Electron Device Lett., Vol. 25, No. 5, pp. 280–282 (2004).
    [1.13] Y. He, R. Hattori, and J. Kanicki, “Four-Thin Film Transistor Pixel Electrode Circuits for Active-Matrix Organic Light-Emitting Displays,” Jpn. J. Appl. Phys., Vol. 40, pp. 1199–1208 (2001).
    [1.14] J. H. Lee, W. J. Nam, C. Y. Kim, H. S. Shin, C. D. Kim, and M. K. Han, “New Current-Scaling Pixel Circuit Compensating Non uniform Electrical Characteristics for Active Matrix Organic Light Emitting Diode,” Jpn. J. Appl. Phys., Vol. 45, pp. 4402–4406 (2006).
    [1.15] H. Lee, J. S. Yoo, C. D. Kim, I. J. Chung, and J. Kanicki, “Novel Current-Scaling Current-Mirror Hydrogenated Amorphous Silicon Thin-Film Transistor Pixel Electrode Circuit with Cascade Capacitor for Active-Matrix Organic Light-Emitting Devices,” Jpn. J. Appl. Phys., Vol. 46, pp. 1343–1349 (2007).
    [1.16] M. Mizukami, K. Inukai, H. Yamagata, T. Konuma, T. Nishi, J. Koyama, S. Yamazaki, and T. Tsutsui, “6-bit digital VGA OLED,” in Proc. SID Tech. Dig., PP. 912–915 (2000).
    [1.17] J. H. Lee, S. G. Park, J. H. Jeno, J. C. Goh, J. M. Huh, J. Choi, K. Chung, and M. K. Han, “New Fraction Time Annealing Method For Improving Organic Light Emitting Diode Current Stability of Hydorgenated Amorphous Silicon Thin-Film Transistor Based Active Matrix Organic Light Emitting Didode Backplane,” Jpn. J. Appl. Phys., Vol. 46, pp. 1350–1353 (2007).
    [1.18] C. K. Kang, S. M. Choi, Y. S. Park, et al., “A new pixel circuit for oxide TFT based AMOLED displays,” in IMID Symp. Dig., PP. 125–126 (2010).
    [1.19] S. M. Lee, C. I. Ryoo, J. W. Park, et al., “Control of threshold voltage in back channel etch type amorphous indium gallium zinc oxide thin film transistors,” in SID Tech. Dig., PP. 104–106 (2011).
    [1.20] C. L. Lin, W. Y. Chang, and C. C. Hung, “Compensating pixel circuit driving AMOLED display with a-IGZO TFTs,” IEEE Electron Device Lett., Vol. 34, No. 9, pp. 1166–1168, (2013).
    [1.21] Y. Kim, Y. Kim, and H. Lee, “A novel a-InGaZnO TFT pixel circuit for AMOLED display with the enhanced reliability and aperture ratio,” J. Display Technol., Vol. 10, No. 1, pp. 80-83 (2014).
    [1.22] C. Leng, L. Wang, and S. Zhang, “Two-Transistor Current-Biased Voltage-Programmed AMOLED pixel,” IEEE Electron Device Lett., Vol. 34, No. 10, pp. 1262 – 1264 (2013).
    [1.23] C. L. Lin and Y. C. Chen, “A novel LTPS-TFT pixel circuit compensating for TFT threshold-voltage shift and OLED degradation for AMOLED,” IEEE Electron Device Lett., Vol. 28, No. 2, pp. 129–131 (2007).
    [1.24] C. L. Lin, W. Y. Chang, C. C. Hung, and C. D. Tu, “LTPS-TFT pixel circuit to compensate for OLED luminance degradation in three-dimensional AMOLED display,” IEEE Electron Device Lett., Vol. 33, No. 5, pp. 700–702 (2012).
    [1.25] C. L. Lin, K. W. Chou, C. C. Hung, and C. D. Tu, “Lifetime amelioration for an AMOLED pixel circuit by using a novel ac driving scheme,” IEEE Trans. Electron Devices, Vol. 58, No. 8, pp. 2652–2659 (2011).
    [1.26] K. Y. Lee, Y. P. Hsu, and P. C. P. Chao, “A New 4T0.5C AMOLED Pixel Circuit With Reverse Bias to Alleviate OLED Degradation,” IEEE Electron Device Lett., Vol. 33, No. 7, pp. 1024–1026 (2012).
    Chapter 2
    [2.1] C. C. Wu, C W. Chen, C. L. Lin, and C. J. Yang, “Advanced organic light-emitting devices for enhancing display performances,” IEEE Journal of Display Technology, vol. 1, no. 2, pp. 248–266, Dec. 2005.
    [2.2] J. J. Lih, C. F. Sung, C. H. Li, T. H. Hsiao, and H. H. Lee, “Comparison of a-Si and poly-Si for AMOLEDs, in SID Tech. Dig., 2004, pp. 1504-1507.
    [2.3] Y. K. Lee, K. M. Kim, J. I. Ryu, Y. D. Kim, K. H. Yoo, J. Jang, H. Y. Jeong and D. J. Choo, “A comparison between a-Si:H TFT and poly-Si TFT for a pixel in AMOLED,” J. Korean Physical Soc., vol. 39, pp. S291-S295, 2001.
    [2.4] M. J. Powell, “Charge trapping instabilities in amorphous silicon-silicon nitride thin-film transistors ”, Appl. Phys. Lett. ,Vol.43, No.6, 1983, pp.597-599.
    [2.5] R. A. Street and C. C. Tsai, “Fast and slow states at the interface of amorphous silicon and silicon nitride,” Appl. Phys. Lett., Vol.48, No.24, 1986, pp.1672-1674.
    [2.6] R. E. I. Schropp and J. F. Verwey, “Instability mechanism in hydrogenated amorphous silicon thin-film transistors,” Appl. Phys. Lett., Vol.50, No.26, 1987, pp.185-187.
    [2.7] K. Nomura 1, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, and H. Hosono, “Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors,” Nature, Vol. 432, pp. 488–492 (2004).
    [2.8] S. M. Choi, O. K. Kwon, and H. K. Chung, “An improved voltage programmed pixel structure for large size and high resolution AM-OLED displays,” SID Int. Symp. Dig. Tech. Pap., Vol. 35, pp. 260–263 (2004).
    [2.9] H. Y. Lu, P. T. Liu, T. C. Chang, and S. Chi, “Enhancement of brightness uniformity by a newvoltage-modulated pixel design for AMOLED displays,” IEEE Electron Device Lett., Vol. 27, pp. 743–745 (2006).
    [2.10] J. H. Lee, S. G. Park, J. H. Jeno, J. C. Goh, J. M. Huh, J. Choi, K. Chung, and M. K. Han, “New Fraction Time Annealing Method For Improving Organic Light Emitting Diode Current Stability of Hydorgenated Amorphous Silicon Thin-Film Transistor Based Active Matrix Organic Light Emitting Didode Backplane,” Jpn. J. Appl. Phys., Vol. 46, pp. 1350–1353 (2007).
    [2.11] H. S. Shin, W. K. Lee, S. G. Park, S. H. Kuk, and M. K. Han, “Active-Matrix Organic Light Emission Diode Pixel Circuit for Suppressing and Compensating for the Threshold Voltage Degradation of Hydrogenated Amorphous Silicon Thin Film Transistors,” Jpn. J. Appl. Phys., Vol. 48, p. 03B023 (2009).
    [2.12] M. Mizukami, K. Inukai, H. Yamagata, T. Konuma, T. Nishi, J. Koyama, S. Yamazaki, and T. Tsutsui, “6-bit digital VGA OLED,” in Proc. SID Tech. Dig., PP. 912–915 (2000).
    [2.13] J. H. Lee, B. H. You, W. J. Nam, H. J. Lee, and M. K. Han, “A new a-Si:H TFT pixel design compensating threshold voltage degradation of TFT and OLED,” SID Int. Symp. Dig. Tech. Pap., Vol. 35, pp. 264–267 (2004).
    [2.14] C. L. Fan, Y. S. Lin, and Y. W. Liu, “Low Temperature Polycrystalline Silicon Thin Film Transistor Pixel Circuits for Active Matrix Organic Light Emitting Diodes,” IEICE Trans. Electron, Vol. E93-C, 2010, p. 712 (2010).
    [2.15] C. L. Fan, Y. Y. Lin, B. S. Lin, J. Y. Chang, and H. C. Chang, “New Pixel Circuit Compensating Poly-si TFT Threshold-voltage Shift for Driving AMOLED,” Journal of the Korean Physical Society, Vol. 56, p. 1185 (2010).
    [2.16] C. L. Fan, Y. Y. Lin, J. Y. Chang, B. J. Sun, and Y. W. Liu, “New Low Temperature Polycrystalline Silicon Thin Film Transistor Pixel Circuit for Active Matrix Organic Light Emitting Diode,” Jpn. J. Appl. Phys., Vol. 49 (2010).
    [2.17] C. L. Fan, H. L. Lai, and J. Y. Chang, “Improvement in Brightness Uniformity by Compensating for the Threshold Voltages of Both the Driving Thin-Film Transistor and the Organic Light-Emitting Diode for Active-Matrix Organic Light-Emitting Diode Displays,” Jpn. J. Appl. Phys., Vol. 49, pp. 05EB04-1 –05EB04-4 (2010).
    [2.18] J. H. Lee, W. J. Nam, S. H. Jung, and M. K. Han, “A new current scaling pixel circuit for AMOLED,” IEEE Electron Device Lett., Vol. 25, No. 5, pp. 280–282 (2004).
    [2.19] Y. He, R. Hattori, and J. Kanicki, “Four-Thin Film Transistor Pixel Electrode Circuits for Active-Matrix Organic Light-Emitting Displays,” Jpn. J. Appl. Phys., Vol. 40, pp. 1199–1208 (2001).
    [2.20] J. H. Lee, W. J. Nam, C. Y. Kim, H. S. Shin, C. D. Kim, and M. K. Han, “New Current-Scaling Pixel Circuit Compensating Non uniform Electrical Characteristics for Active Matrix Organic Light Emitting Diode,” Jpn. J. Appl. Phys., Vol. 45, pp. 4402–4406 (2006).
    [2.21] H. Lee, J. S. Yoo, C. D. Kim, I. J. Chung, and J. Kanicki, “Novel Current-Scaling Current-Mirror Hydrogenated Amorphous Silicon Thin-Film Transistor Pixel Electrode Circuit with Cascade Capacitor for Active-Matrix Organic Light-Emitting Devices,” Jpn. J. Appl. Phys., Vol. 46, pp. 1343–1349 (2007).
    [2.22] C. Chen, J. Kanicki, K. Abe, and H. Kumomi “AM-OLED pixel circuits based on a-InGaZnO thin film transistors,” in Proc. SID Tech. Dig., PP. 1128–1131 (2009).
    [2.23] Y. W. Jeon, S. Kim, S. Lee, et al., “Subgap density-of-states-based amorphous oxide thin film transistor simulator (DeAOTS),” IEEE Trans. Electron Devices, Vol. 57, No. 11, pp. 2988–3000 (2010).
    [2.24] Y. G. Mo, M. Kim, C. K. Kang, et al., “Amorphous oxide TFT backplane for large size AMOLED TVs,” in SID Tech. Dig., PP. 1037–1040 (2010).
    [2.25] M. Kimura and S. Imai, “Degradation evaluation of α-IGZO TFTs for application to AM-OLEDs,” IEEE Electron Device Lett., Vol. 31, No. 9, PP. 963–965 (2010).
    [2.26] T. Tanabe, S. Amano, H. Miyake, et al., “New threshold voltage compensation pixel circuits in 13.5-inch full high definition OLED display of crystalline In-Ga-Zn-Oxide FETs,” in SID Tech. Dig., PP. 88–91 (2012).
    [2.27] S. M. Lee, C. I. Ryoo, J. W. Park, et al., “Control of threshold voltage in back channel etch type amorphous indium gallium zinc oxide thin film transistors,” in SID Tech. Dig., PP. 104–106 (2011).
    Chapter 3
    [3.1] M. Stewart, R. S. Howell, L. Pires,M. K. Hatalis,W. Howard,and O. Prache, “Polysilicon VGA active matrix OLED displays—technology and performance,” IEEE International Electron Devices Meeting, pp. 871–874, December 1998
    [3.2] R. M. A. Dawson, Z. Shen, D. A. Furst, S. Connor, J. Hsu, M. G. Kane, R. G. Stewart, A. Ipri, C. N. King, P. J. Green, R. T. Flegal, S. Pearson, C. W. Tang, S. Van Slyke, F. Chen, J. Shi, M. H. Lu, and J. C. Sturm, “The impact of the transient response of organic light emitting diodes on the design of active matrix OLED displays,” in IEDM Tech. Dig.,1998, pp. 875–878.
    [3.3] C. L. Fan, Y. Y. Lin, B. S. Lin, J. Y. Chang, and H. C. Chang, “New Pixel Circuit Compensating LTPS poly-Si TFT Threshold-Voltage Shift for driving AMOLED,” Journal of the Korean Physical Society., vol. 56, pp. 1185-1189, 2010
    [3.4] C. L. Fan, Y. Y. Lin, B. S. Lin, J. Y. Chang, and H. C. Chang, “New Pixel Circuit Compensating LTPS poly-Si TFT Threshold-Voltage Shift for driving AMOLED,” Journal of the Korean Physical Society., vol. 56, pp. 1185-1189, 2010
    [3.5] H. Aziz, Z. D. Popovic, N.-X. Hu, A.-M. Hor, and G. Xu, “Degradation mechanism of small molecule-based organic light-emitting devices,” Science ., vol. 283, pp. 1900-1902, 1999
    [3.6] J. H. Lee, B. H. You, W. J. Nam, H. J. Lee, M. K. Han, “A new a-Si:H TFT pixel design compensating threshold voltage degradation of TFT and OLED,” In SID Tech Dig., 2004, pp. 264–267.
    [3.7] S. H. Jung, W. J. Nam, and M. K. Han, “A New Voltage-Modulated AMOLED Pixel Design Compensating for Threshold Voltage Variation in Poly-Si TFTs,” Proc. IEEE Electron Device Lett. Vol. 25, pp. 690-692, 2004.
    [3.8] Y. C. Lin and H. P. D. Shsieh, “Improvement of brightness uniformity by AC driving scheme for AMOLED display,” IEEE Electron Device Lett., vol. 25, no. 11, Nov. 2004, pp. 728–730.
    [3.9] C.L Lin, Y.C Chen “A Novel LTPS-TFT Pixel Circuit Compensating for TFT Threshold-Voltage Shift and OLED Degradation for AMOLED,” IEEE Electron Device Lett., vol. 28, no. 2, pp. 129–131, Feb. 2007
    [3.10] J. S. Yoon, J. M. Lee, Y. H. Lee, D. H. Oh, T. G. Kim, K. H. Oh, and B.S. Kim, “31_inch FHD AMOLED 3-D TV using emission-switch control method,” in SID Tech. Dig., 2011, pp. 353–356.
    [3.11] C. L. Lin, W.Y. Chang, C.C. Hung, and C. Da. Tu, “LTPS-TFT Pixel Circuit to Compensate for OLED Luminance Degradation in Three-Dimensional AMOLED Display,” IEEE Electron Device Lett., vol. 33, no. 5, pp. 700–702, May. 2012
    [3.12] C. L. Lin, C. C. Hung, P. Y. Kuo, and M. H. Cheng, “New LTPS Pixel Circuit With AC Driving Method to Reduce OLED Degradation for 3D AMOLED Displays, ” J. Display Technol., vol. 8, no. 12 Dec. 2012
    [3.13] S. J. Ashtiani, G. R. Chaji, and A. Nathan, “AMOLED pixel circuit with electronic compensation of luminance degradation,” J. Display Technol., Vol. 3, No. 1, pp. 36–39 (2007).
    [3.14] H. J. In and O. K. Kwon, “External compensation of nonuniform electrical characteristics of thin-film transistors and degradation of OLED devices in AMOLED displays,” IEEE Electron Device Lett., Vol. 30, No. 4, pp. 377–379 (2009).
    [3.15] Y. C. Lin and H. P. D. Shieh, “Improvement of brightness uniformity by AC driving scheme for AMOLED display,” IEEE Electron Device Lett., Vol. 25, No. 11, pp. 728–730 (2004).
    [3.16] Y. Si, L. Lang, Y. Zhao, X. Chen, and S. Liu, “Improvement of pixel electrode circuit for active-matrix OLED by application of reversed-biased voltage,” IEEE Trans. Circuits Syst. II, Exp. Briefs, Vol. 52, No. 12, pp. 856–859 (2005).
    [3.17] C. L. Lin, K. W. Chou, C. C. Hung, and C. D. Tu, “Lifetime amelioration for an AMOLED pixel circuit by using a novel ac driving scheme,” IEEE Trans. Electron Devices, Vol. 58, No. 8, pp. 2652–2659 (2011).
    [3.18] B.W. Lee, I. H. Ji, S. M. Han, S. D. Sung, K. S. Shin, J. D. Lee, B. H. Kim, B. H. Berkeley, and S. S. Kim, “Novel simultaneous emission driving scheme for crosstalk-free 3DAMOLED TV,” in Proc. SID Tech. Dig., 2010, pp. 758–761.

    Chapter 4
    [4.1] C. Chen, J. Kanicki, K. Abe, and H. Kumomi “AM-OLED pixel circuits based on a-InGaZnO thin film transistors,” in Proc. SID Tech. Dig., PP. 1128–1131 (2009).
    [4.2] Y. W. Jeon, S. Kim, S. Lee, et al., “Subgap density-of-states-based amorphous oxide thin film transistor simulator (DeAOTS),” IEEE Trans. Electron Devices, Vol. 57, No. 11, pp. 2988–3000, (2010).
    [4.3] Y. G. Mo, M. Kim, C. K. Kang, et al., “Amorphous oxide TFT backplane for large size AMOLED TVs,” in SID Tech. Dig., PP. 1037–1040 (2010).
    [4.4] M. Kimura and S. Imai, “Degradation evaluation of α-IGZO TFTs for application to AM-OLEDs,” IEEE Electron Device Lett., Vol. 31, No. 9, pp. 963–965 (2010).
    [4.5] S. M. Lee, C. I. Ryoo, J. W. Park, et al., “Control of threshold voltage in back channel etch type amorphous indium gallium zinc oxide thin film transistors,” in SID Tech. Dig., PP. 104–106 (2011).
    [4.6] T. Tanabe, S. Amano, H. Miyake, et al., “New threshold voltage compensation pixel circuits in 13.5-inch full high definition OLED display of crystalline In-Ga-Zn-Oxide FETs,” in SID Tech. Dig., PP. 88–91 (2012).
    [4.7] B. W. Lee, I. H. Ji, S. M. Han, S. D. Sung, K. S. Shin, J. D. Lee, B. H. Kim, B. H. Kim, B. H. Berkeley, and S. S. Kim, “Novel simultaneous emission driving scheme for crosstalk-free 3D AMOLED TV,” in SID Tech. Dig., PP. 758–761 (2010).
    [4.8] C. L. Lin, W. Y. Chang, and C. C. Hung, “Compensating pixel circuit driving AMOLED display with a-IGZO TFTs,” IEEE Electron Device Lett., Vol. 34, No. 9, pp. 1166–1168 (2013).
    [4.9] Y. Kim, Y. Kim, and H. Lee, “A novel a-InGaZnO TFT pixel circuit for AMOLED display with the enhanced reliability and aperture ratio,” J. Display Technol., Vol., 10, No. 1, pp. 80-83 (2014).
    [4.10] Y. Kim, J. Kanicki, and H. Lee, “An a-InGaZnO TFT pixel circuit Compensating Threshold Voltage and Mobility Variations in AMOLEDs,” J. Display Technol., Vol., 10, No. 5, pp. 402-406 (2014).
    [4.11] C. L. Lin, W. Y. Chang, C. C. Hung, and C. D. Tu, “LTPS-TFT pixel circuit to compensate for OLED luminance degradation in three-dimensional AMOLED display,” IEEE Electron Device Lett., Vol. 33, No. 5, pp. 700–702 (2012).
    Chapter 5
    [5.1] S. Ono, K. Miwa, Y. Maekawa, and T. Tsujimura, “VT compensation circuit for AMOLED displays composed of two TFTs and one capacitor,” IEEE Trans. Electron Devices, vol. 54, no. 3, pp. 462–467, Mar. 2007.
    [5.2] H. Y. Lu, T. T. Chang, Y. H. Tai, P. T. Liu, and S. Chi, “A new pixel circuit compensating for brightness variation in large size and high resolution AMOLED displays,” J. Display Technol., vol. 3, no. 4, pp. 398–403, Dec. 2007.
    [5.3] C. L. Lin and T. T. Tsai, “A novel voltage driving method using 3-TFT pixel circuit for AMOLED,” IEEE Electron Device Lett., vol. 28, no. 6, pp. 489–491, Jun. 2007.
    [5.4] M. Bagheri, S. J. Ashtiani, and A. Nathan, “Fast voltage-programmed pixel architecture for AMOLED displays,” J. Display Technol., vol. 6, no. 5, pp. 191–195, May 2010.
    [5.5] Y. S. Son, Y. J. Jeon, and G. H. Cho, “Transient charge feedforward driver for high-speed current-mode data driving in active-matrix OLED displays,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 57, no. 3, pp. 539– 547, Mar. 2010.
    [5.6] P. E. Burrow, S. R. Forrest, T. X. Zhou, and L. Michalski, “Operating lifetime of phosphorescent organic light emitting devices,” Appl. Phys. Lett., vol. 76, no. 18, pp. 2493–2495, May 2000.
    [5.7] S. Yujuan, Z. Yi, C. Xinfa, and L. Shiyong, “A simple and effective ac pixel driving circuit for active matrix OLED,” IEEE Trans. Electron Devices, vol. 50, no. 4, pp. 1137–1141, Apr. 2003.
    [5.8] G. R. Chaji, C. Ng, A. Nathan, A.Werner, J. Birnstock, O. Schneider, and J. B. Nimoth, “Electrical compensation of OLED luminance degradation,” IEEE Electron Device Lett., vol. 28, no. 12, pp. 1108–1110, Dec. 2007.
    [5.9] C. L. Lin, W. Y. Chang, C. C. Hung and C. D. Tu, “LTPS-TFT Pixel Circuit to Compensate for OLED Luminance Degradation in Three-Dimensional AMOLED Display,” IEEE Electron Device Lett., vol. 33, no. 5, pp. 700–702, May. 2012.
    [5.10] H. J. In and O. K. Kwon, “External compensation of nonuniform electrical characteristics of thin-film transistors and degradation of OLED devices in AMOLED displays,” IEEE Electron Device Lett., vol. 30, no. 4, pp. 377– 379, Apr. 2009.
    Chapter 6
    [6.1] J. P. Lee, H. S. Jeon, D. S. Moon, and B. S. Bae “Threshold Voltage and IR Drop Compensation of an AMOLED Pixel Circuit Without a VDD Line,” IEEE Electron Device Lett., Vol. 35, No. 1, pp. 72–74, (2014).
    [6.2] C. L. Lin, W. Y. Chang, C. C. Hung, and C. D. Tu “LTPS-TFT Pixel Circuit to Compensate for OLED Luminance Degradation in Three-Dimensional AMOLED Display,” IEEE Electron Device Lett., Vol. 33, No. 5, pp. 700–702, (2012).
    [6.3] C. L. Lin, W. Y. Chang, and C. C. Hung, “Compensating pixel circuit driving AMOLED display with a-IGZO TFTs,” IEEE Electron Device Lett., Vol. 34, No. 9, pp. 1166–1168, (2013).

    無法下載圖示 全文公開日期 2020/07/29 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE