簡易檢索 / 詳目顯示

研究生: 趙家興
Chia-Hsing Chao
論文名稱: 達到OLED亮度高均勻性之新式三維主動式畫素電路設計
Novel Pixel Circuit to Achieve High Uniform OLED Luminance for 3D AMOLED displays
指導教授: 范慶麟
Ching-Lin Fan
口試委員: 李志堅
Lee, Chih-Chien
徐世祥
Shih-Hsiang Hsu
顏文正
Wen-Jeng Yan
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 88
中文關鍵詞: 主動式有機發光二極體顯示器畫素補償電路三維度顯示器
外文關鍵詞: AMOLED pixel circuit, a-IGZO TFTs, 3D AMOLED display
相關次數: 點閱:318下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 主動式有機發光二極體(AMOLED)被視為次世代的顯示技術,由於其廣視角、快的反應速度、高對比、高色彩飽和度、和自發光性等特性,已經可以與發展成熟的TFT-LCD相比擬了,使其近年來受到市場上相當的矚目。由於OLED是一電流驅動元件而其電流是由電源線以及TFT背板所產生的,因此在經過長時間的操作下,畫面是否能維持正常全都取決於驅動電流的精度,這也意謂著背板技術的重要性。在許多的背板技術中,低溫多晶矽(LTPS)所製成的薄膜電晶體便具有高載子飄移率,使得畫素電路尺寸微縮,進而達到較大的開口率,提升顯示器品質。然而,低溫多晶矽薄膜電晶體製程過程中,在準分子雷射退火時會造成的電性差異,導致整體顯示器的不均勻性。因此,金屬氧化物薄膜電晶體(a-IGZO TFT)開始被重視,許多研究指出氧化銦鎵鋅(IGZO)有不錯的電特性、大面積製程上較為均勻以及製程成本較低的優點,使其在顯示器技術上有相當的優勢。然而,在長時間操作下其電特性會偏移,造成電流分布不均勻進而降低顯示器品質。因此,近幾年出現了有關於畫素電路補償之研究。然而,以近三年畫素電路補償設計的文獻得知[9]-[16],TFT數量與電容數量明顯偏多,使開口率下降,因此第一個畫素電路設計是以精簡的TFT數量與電容數量來達到與文獻中所提之補償電路具有相同補償能力,另外,模擬結果顯示,在薄膜電晶體的臨界電壓飄移正負2V時,此電路的平均電流錯誤率僅有1.475%。
    從目前近三年文獻可以得知[9]-[16],在OLED老化抑制與mobility變化的補償無法有效將兩者整合在同一電路內,因此,第二個電路提出了一種新的整合方式,其具備上下發光結構的特點。並且透過使用兩種不同的信號模式,即A和B模式,在A與B模式中皆補償driving TFT的閥值電壓,VDD電源線造成的電壓下降和OLED的閥值電壓,而A模式和B模式的區別在於A模式是透過輸入反向偏壓來抑制OLED老化,而B模式主要是用於補償driving TFT mobility變化,從模擬結果顯示,在A模式中,電晶體的臨界電壓飄移正負±1.5V時,其電流錯誤率小於1.5%,而VDD的下降1V與OLED閥值增加1V時,相對最大電流錯誤率分別為4.66%和4.53%;在B模式中,電晶體的臨界電壓飄移正負±1.5V時的相對電流錯誤率小於5.5%,而VDD下降1V與OLED閥值增加1V時的相對最大電流錯誤率皆小於0.2%,另外在driving TFT mobility變化±50%所造成的最大電流錯誤率小於10%。


    AMOLED is considered a next-generation display technology because its wide viewing angle, short response time, high contrast ratio, high color saturation, and self-emission make it comparable to mature TFT-liquid crystal displays and popular in the market. However, an OLED is a current driving device, with the driving current generated by a power line and a TFT backplane; therefore, whether a display can function properly for a prolonged period depends on the precision of the current. This highlights the importance of TFT backplane technologies. Among TFT backplane technologies, TFTs developed with low-temperature polycrystalline silicon possess a high carrier mobility, which slightly reduces the size of the pixel circuit and increases aperture ratio as a result, thereby improving display quality. However, the production of such TFTs involves an excimer-laser annealing process that leads to an electrical property contrast and, in turn, non-uniformity across the display. Emphasis has therefore been shifted to amorphous indium-gallium-zinc-oxide (a-IGZO) TFTs. Many researchers have argued that IGZO—which has robust electrical properties, allows for uniform large-area processing, and is cheaper to produce—is a widely favored material for displays. However, once the display is used for a long period of time, the electrical properties of IGZO begin to shift, rendering the distribution of currents non-uniform and affecting the display’s quality. Studies on pixel circuit compensation have been conducted to address this limitation, although the related studies in the past three years [9]-[16] have suggested that TFTs and capacitors tend to be too numerous, resulting in decreased aperture ratios. This argument led one function of a proposed 3T2C pixel circuit being designed, which involved using a reduced number of TFTs and capacitors to perform compensations comparable to those performed by the compensatory circuits described in the literature. Furthermore, simulation results suggested that when the VTH shifted to ± 2 V, the proposed pixel circuit achieved an average current error rate of only 1.475%.
    Related studies in the past three years [9]-[16] have indicated the OLED aging suppression and mobility variation compensation cannot effectively integrate both into the same circuit. Thus, the second 3T1C pixel circuit is presented to satisfy this requirement. The proposed 3T1C pixel circuit has the characteristics of upper and lower luminescence structures. Additionally, integration is achieved by using two different signal modes, namely modes A and B. Modes A and B compensate for threshold voltage (VTH) variations of TFTs, VDD IR drops, and VTH_OLED variations of OLEDs. The difference between mode A and B is that OLED aging is suppressed through reverse bias in mode A, whereas the mobility shift of the DTFT is compensated for in mode B. The simulation results shows that in mode A, the relative OLED current error rates with threshold voltage shifts ±1.5V are less than 1.5%. The relative maximum current error rate of VDD drops 1V and the 1V shift of threshold voltage of the OLED is 4.66% and 4.53%, respectively. In mode B, the relative current error rates with ±1.5 V variations in threshold voltage of DTFT are less than 5.5%. The relative maximum current error rate of VDD drops 1V and the threshold voltage of OLED shifts 1 V are less than 0.2%. The maximum current error rate caused by the ±50% error rate of DTFT mobility is less than 10%.

    口試委員會審定書 # Acknowledgement (in Chinese) i Abstract (in Chinese) ii Abstract iv List of Figures viii List of Tables xii Chapter 1 Introduction 1 1.1 Development and Classification of FPD 1 1.2 OLED Structure and Operation 3 1.2.1 Mechanism of OLED Emission 4 1.2.2 PMOLED and AMOLED 6 1.3 Three-dimension Displays 7 1.3.1 Overview of 3D Technology 7 1.3.2 Stereoscopic Displays 8 1.3.3 Emission Driving Scheme 9 1.4 Background and Motivation 10 Chapter 2 Driving Device and Compensation Method for AMOLED Pixel Circuit 13 2.1 Driving Device 13 2.1.1 a-Si TFT 13 2.1.2 LTPS TFT 13 2.1.3 a-IGZO TFT 14 2.2 AIM-SPICE and TFT Model Fitting 15 2.2.1 AIM-SPICE 15 2.2.2 TFT Model Fitting 17 2.3 Compensation for AMOLED 17 2.3.1 Threshold Voltage 19 2.3.2 Mobility 21 2.3.3 OLED Degradation 22 2.3.4 Voltage Drop of the Power Line 23 Chapter 3 A New simple 3T2C pixel circuit to Compensate for the non-uniformity of the OLED Luminance 25 3.1 Introduction 25 3.2 Circuit Scheme and Operation 26 3.3 Simulation Results and Discussion 31 3.4 Summary 39 Chapter 4 A Novel 3T1C pixel circuit with novel switchable driving scheme to achieve uniform OLED Luminance 41 4.1 Introduction 41 4.2 Circuit Scheme and Operation 42 4.3 Simulation Results and Discussion 52 4.4 Summary 66 Chapter 5 Future Work 68 5.1 Conclusion 68 5.2 Future Work 69 REFERENCE 70

    [1] R. Mertens, The OLED Handbook A Guide to OLED Technology, Industry & Market, 2013.
    [2] C. W. Tang and S. A. VanSlyke, "Organic electroluminescent diodes," Applied Physics Letters, vol. 51, no. 12, pp. 913-915, 1987.
    [3] L. Pereira, Organic Light-Emitting Diodes, 2012, pp. 69-83.
    [4] N. S. Holliman , N. A. Dodgson, G. E. Favalora and L. Pockett, "Three-Dimensional Displays: A Review and Applications Analysis," IEEE Transactions on Broadcasting, vol. 57, no. 2, pp. 362-371, Apr 2011.
    [5] H. Urey , K. V. Chellappan, E. Erden and P. Surman, "State of the Art in Stereoscopic and Autostereoscopic Displays," Proceedings of the IEEE, vol. 99, no. 4, pp. 540-555, Apr 2011.
    [6] J. Hong, Y. Kim, H. J. Choi, J. Hahn, J. H. Park, H. Kim, S. W. Min, N. Chen and B. Lee, "Three-dimensional display technologies of recent interest Principles, status, and issues," Applied Optics, vol. 50, no. 34, pp. 87-115, 2011.
    [7] E. Lueder, 3D Displays, 2012, pp. 22-25.
    [8] B. W. Lee, I. H. Ji, S. M. Han, S. D. Sung, K. D. Shin, J. D. Lee, B. H. Kim, B. H. Berkeley and S. S. Kim, "Novel Simultaneous Emission Driving Scheme for Crosstalk-free 3D AMOLED TV," Society for Information Display, vol. 41, no. 1, pp. 758-761, 2010.
    [9] C. L. Lin, P. S. Chen, P.C. Lai, T. C. Chu, M. X. Wang, and C. L. Lee, "Novel Pixel Circuit With Compensation for Normally-OFF/ON a-IGZO TFTs and OLED Luminance Degradation," J. Display Technol., vol. 12, no. 12, pp. 1664-1667, Dec. 2016.
    [10] C. L. Lin, P. C. Lai, P.C. Lai, P. S. Chen, and W. L. Wu, "Pixel Circuit With Parallel Driving Scheme for Compensating Luminance Variation Based on a-IGZO TFT for AMOLED Displays," J. Display Technol., vol. 12, no. 12, pp. 1681-1687, Dec. 2016.
    [11] D. Kim, Y. Kim, S. Lee, M. S. Kang, D. H. Kim, and H. J. Lee, "High Resolution a-IGZO TFT Pixel Circuit for Compensating Threshold Voltage Shifts and OLED Degradations," IEEE J. Electron Devices Soc., vol. 5, pp. 372-377, Sep. 2017.
    [12] W. C. Chiu, P. S. Chen, C. M. Lu, M. X. Wang, C. C. Hung, and C. L. Lin, "Novel Design of Auto-Compensation for TFT VTH and High-Speed Driving in Active-Matrix OLED Displays," Active-Matrix Flatpanel Displays and Devices (AM-FPD '17), pp. 54-57, Aug. 2017.
    [13] C. C. Hsu, C. M. Lu, P. C. Lai, P. Chen, and C. L. Lin, "Pixel Circuit with External Current Source to Achieve Fast Compensation for Variations of LTPS TFTs for AMOLED Displays," Active-Matrix Flatpanel Displays and Devices (AM-FPD '17), pp. 147-150, Aug. 2017.
    [14] C. L. Lin, P. S. Chen, M. Y. Deng, C. E. Wu, W. C. Chiu, and Y. Sheng Lin, "UHD AMOLED Driving Scheme of Compensation Pixel and Gate Driver Circuits Achieving High-Speed Operation," IEEE J. Electron Devices Soc., vol. 6, pp. 26-33, Oct. 2017.
    [15] Z. Huang, L. Tian, H. Wang, and S. Feng, "A novel voltage-programmed pixel circuit with poly-Si TFTs for AMOLED displays," J. Circuits Syst. Comput., Apr. 2018.
    [16] N. H. Keum, S. K. Hong, C. C. Chai, and O. K. Kwon, "An AMOLED pixel circuit for high image quality of 1000 ppi mobile displays in AR and VR applications," J. Soc. Inf. Disp., (2018).
    [17] J. J. Lih, C. F. Sung, C. H. Li, T. H. Hsiao and H. H. Lee, "Comparison of a-Si and Poly-Si for AMOLED displays," Society for Information Display, vol. 12, no. 4, pp. 367-371, 2004.
    [18] Y. K. Lee, K. M. Kim, J. I. Ryu and D. J. Choo, "A comparison between a-Si : H TFT and poly-Si TFT for a pixel in AMOLED," Journal- Korean Physical Society, vol. 39, pp.S291-S295, 2001.
    [19] S. W. Lee and S. K. Joo, "Low temperature poly-si thin-film transistor fabrication by metal-induced lateral crystallization," IEEE Electron Device Letters, vol. 17, no. 4, pp.160-162, 1996.
    [20] E. Fortunato, P. Barquinha and R. Martins, "Oxide Semiconductor Thin-Film Transistors A Review of Recent Advances," Advanced Materials, vol. 24, no. 22, pp. 2945-2986, May 2012.
    [21] K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano and H. Hosono, "Amorphous oxide semiconductors for high-performance flexible thin-film transistors," Japanese Journal of Applied Physics, vol. 45, no. 5 B, pp. 4303-4308, May 2006.
    [22] T. Kamiya, K. Nomura and H. Hosono, "Present status of amorphous In-Ga-Zn-O thin film transistors," Science and Technology of Advanced Materials, vol. 11, no. 4, Aug 2010.
    [23] J. H. Lee, J. H. Kim and M. K. Han, "A new a-Si:H TFT pixel circuit compensating the threshold voltage shift of a-Si:H TFT and OLED for active matrix OLED," IEEE Electron Device Letters, vol. 26, no. 12, pp. 897-899, Dec 2005.
    [24] A. Nathan, G. R. Chaji and S. J. Ashtiani, "Driving schemes for a-Si and LTPS AMOLED displays," IEEE/OSA Journal of Display Technology, vol. 1, no. 2, pp. 267-277, Dec 2005.
    [25] S. H. Jung, W. J. Nam and M. K. Han, "A new voltage-modulated AMOLED pixel design compensating for threshold voltage variation in Poly-Si TFTs," IEEE Electron Device Letters, vol. 25, no. 10, pp. 690-692, Oct 2004.
    [26] C. L. Lin, C. C. Hung, P. C. Lai and W. Y. Chang, "A New a-IGZO AMOLED Pixel Circuit Design to Improve the OLED Luminance Degradation in 3D Displays," Society for Information Display, vol. 44, no. 1, pp. 1107-1109, Jul 2013.
    [27] H. Jung, Y. Kim, Y. Kim, C. Chen, J. Kanicki and H. Lee, "a-IGZO TFT Based Pixel Circuits for AM-OLED Displays," Society for Information Display, vol. 43, no. 1, pp.1097-1100, Jun 2012.
    [28] R. M. A. Dawson , Z. Shen, D. A. Furst, S. Connor, J. Hsu, M. G. Kane, R. G. Stewart, A. Ipri, C. N. King, P. J. Green, R. T. Flegal, S. Pearson, W. A. Barrow, E. Dickey, K. Ping, S. Robinson, C. W. Tang, S. Van Slyke, F. Chen, J. Shi, M. H. Lu and J. C. Sturm, "The impact of the transient response of organic light emitting diodes on the design of active matrix OLED displays," International Electron Devices Meeting Technical Digest, pp. 875-878, 1998.
    [29] G. Gu and S. R. Forrest, "Design of flat-panel displays based on organic lightemitting devices," IEEE Journal on Selected Topics in Quantum Electronics, vol. 4, no. 1, pp. 83-99, Jan 1998.
    [30] S. Ono, K. Miwa, K. Maekawa and T. Tsujimura, "VT Compensation Circuit for AMOLED Displays Composed of Two TFTs and One Capacitor," IEEE Transactions on Electron Devices, vol. 54, no. 3, pp. 462-467, Mar 2007.
    [31] C. S. Chiang, J. Kanicki and K. Takechi, "Electrical Instability of Hydrogenated Amorphous Silicon Thin-Film Transistors for Active-Matrix Liquid-Crystal Displays, "Japanese Journal of Applied Physics, vol. 37, no. 11, pp. 4704-4710, 1998.
    [32] M. J. Powell, C. Van Berkel and J. R. Hughes, "Time and temperature dependence of instability mechanisms in amorphous silicon thin ‐ film transistors," Applied Physics Letters, vol. 54, no. 14, pp. 1323-1325, Apr 1989.
    [33] S. Sambandan and A. Nathan, "Equivalent Circuit Description of Threshold Voltage Shift in a-Si:H TFTs From a Probabilistic Analysis of Carrier Population Dynamics," IEEE Transactions on Electron Devices, vol. 53, no. 9, pp. 2306-2311, Aug 2006.
    [34] C. L. Lin, F. H. Chen, Y. T. Liu, C. M. Lu, and W. L. Wu, "New Voltage- Programmed AMOLED Pixel Circuit Employing In-Pixel Compensation Scheme for Mobility Variation" SID 2016 DIGEST, pp.1254-1256.
    [35] B. Geffroy, P. le Roy and C. Prat, "Organic light-emitting diode (OLED) technology: materials, devices and display technologies," Polymer International, vol. 55, no. 6, pp.572-582, Jun 2006.
    [36] J. Shen, D. Wang, E. Langlois, W. A. Barrow, P. J. Green, C. W. Tang and J. Shi, "Degradation mechanisms in organic light emitting diodes," Synthetic Metals, Vols. 111-112, pp. 233-236, Jun 2000.
    [37] W. Brütting, J. Frischeisen, T. D. Schmidt, B. J. Scholz and C. Mayr, "Device efficiency of organic light-emitting diodes Progress by improved light outcoupling," physica status solidi (a), vol. 210, no. 1, pp. 44-65, Jan 2013.
    [38] D. Zou, . M. Yahiro and T. Tsutsui, "Study on the degradation mechanism of organic light-emitting diodes (OLEDs)," Synthetic Metals, vol. 91, no. 1-3, pp. 191-193, 1997.
    [39] C. L. Lin, K. W. Chou, C. C. Hung, and C. D. Tu, "Lifetime amelioration for an AMOLED pixel circuit by using a novel ac driving scheme, " IEEE Trans. Electron Devices, 58 (2011) 2652–2659.
    [40] Y. C. Lin and H. P. D. Shieh, "Improvement of brightness uniformity by AC driving scheme for AMOLED display," IEEE Electron Devices Society, vol. 25, no. 11, pp. 728-730, Nov 2004.
    [41] J. P. Lee, H. S. Jeon, D. S. Moon and B. S. Bae, "Threshold voltage and ir drop compensation of an AMOLED pixel circuit without a VDD Line," IEEE Electron Devices Society, vol. 35, no. 1, pp. 72-74, Nov 2013.
    [42] C. L. Fan, M. C. Shang, W. C. Lin, H. C. CHang, K. C. Chao and B. L. Guo, "LTPS-TFT pixel circuit compensating for TFT threshold voltage shift and IR-drop on the power line for AMOLED displays," Advances in Materials Science and Engineering, May 2012.
    [43] C. Chen, J. Kanicki, K. Abe, and H. Kumomi, “AM-OLED pixel circuits based on a-InGaZnO thin film transistors,” in Proc. SID Tech. Dig., PP. 1128–1131 (2009).
    [44] Y. W. Jeon, S. Kim, S. Lee, et al., “Subgap density-of-states-based amorphous oxide thin film transistor simulator (DeAOTS),” IEEE Trans. Electron Devices, Vol. 57, No. 11, pp. 2988–3000, (2010).
    [45] Y. G. Mo, M. Kim, C. K. Kang, et al., “Amorphous oxide TFT backplane for large size AMOLED TVs,” in SID Tech. Dig., PP. 1037–1040 (2010).
    [46] M. Kimura and S. Imai, “Degradation evaluation of α-IGZO TFTs for application to AM-OLEDs,” IEEE Electron Device Lett., Vol. 31, No. 9, pp. 963–965 (2010).
    [47] T. Tanabe, S. Amano, H. Miyake, et al., “New threshold voltage compensation pixel circuits in 13.5-inch full high definition OLED display of crystalline In-Ga-Zn-Oxide FETs,” in SID Tech. Dig., PP. 88–91 (2012).
    [48] C. L. Lin, W. Y. Chang, and C. C. Hung, “Compensating pixel circuit driving AMOLED display with a-IGZO TFTs,” IEEE Electron Device Lett., Vol. 34, No. 9, pp. 1166–1168 (2013).
    [49] Y. Kim, Y. Kim, and H. Lee, “A novel a-InGaZnO TFT pixel circuit for AMOLED display with the enhanced reliability and aperture ratio,” J. Display Technol., Vol., 10, No. 1, pp. 80-83 (2014).
    [50] H. Y. Lu, T. T. Chang, Y. H. Tai, P. T. Liu, and S. Chi, "A new pixel circuit compensating for brightness variation in large size and high resolution AMOLED displays, " J. Display Technol., vol. 3, no. 4, pp. 398–403, Dec. 2007.
    [51] Y. C. Lin and H. P. D. Shieh, “Improvement of brightness uniformity by AC driving scheme for AMOLED display,” IEEE Electron Device Lett., Vol. 25, No. 11, pp. 728–730 (2004).
    [52] Y. Si, L. Lang, Y. Zhao, X. Chen, and S. Liu, “Improvement of pixel electrode circuit for active-matrix OLED by application of reversed-biased voltage,” IEEE Trans. Circuits Syst. II, Exp. Briefs, Vol. 52, No. 12, pp. 856–859 (2005).
    [53] C. L. Lin, K. W. Chou, C. C. Hung, and C. D. Tu, “Lifetime amelioration for an AMOLED pixel circuit by using a novel ac driving scheme,” IEEE Trans. Electron Devices, Vol. 58, No. 8, pp. 2652–2659 (2011).
    [54] C. L. Lin, F. H. Chen, Y. T. Liu, C. M. Lu, and W. L. Wu, "New Voltage-Programmed AMOLED Pixel Circuit Employing In-Pixel Compensation Scheme for Mobility Variation," SID 2016 DIGEST, pp. 1254-1256.
    [55] S. J. Song and H. Nam, "In-pixel mobility compensation scheme for AMOLED pixel circuits," J. Display Technol., vol. 11, no. 2, pp. 209–213, Feb. 2015.
    [56] Nathan, A. Kumar, K. Sakariya, P. Servati, S. Sambandan, and D. Striakhilev, "Amorphous silicon thin film transistor circuit integration for organic LED displays on glass and plastic, " IEEE J. Solid-State Circuits, vol. 39, no. 9, pp. 1477-1486, Sep. 2004.
    [57] M. Kimura, I. Yudasaka, S. Kanbe, H. Kobayashi, H. Kiguchi, S. I. Seki, S. Miyashita, T. Shimoda, T. Ozawa, K. Kitawada, T. Nakazawa, W. Miyazawa, and H. Ohshima, "Low-temperature polysilicon thin-film transistor driving with integrated driver for high-resolution light emitting polymer display, " IEEE Trans.Electron Devices, vol. 46, no. 12, pp. 2282-2288, Dec. 1999.
    [58] A. Nathan, G. R. Chaji, and S. J. Ashtiani, “Driving scheme for a-Si and LTPS AMOLED Displays,” J. Display Technol., vol. 1, no. 2, pp. 267-277, Dec. 2005.
    [59] C. L. Lin and Y. C. Chen, “A novel LTPS-TFT pixel circuit compensating for TFT threshold-voltage shift and OLED degradation for AMOLED,” IEEE Electron Device Lett., vol. 28, no. 2, pp. 129-131, Feb. 2007.
    [60] Y. Morimoto, T. Jinno, K. Hirai, H. Ogata, T. Yamada, and K. Yoneda, "Influence of grain boundaries and intragrain defects on the performance of poly-si thin film transistors, " J. Electrochem. Soc., vol. 144, no. 7, 1997.
    [61] C. L. Lin, W. Y. Chang, and C. C. Hung, "Compensating pixel circuit driving AMOLED display with a-IGZO TFTs, " IEEE Electron Device Lett., vol. 34, no. 9,pp. 1166–1168, Sep. 2013.
    [62] J. P. Lee, H. S. Jeon, D. S. Moon, and B. S. Bae, "Threshold voltage and IR drop compensation of an AMOLED pixel circuit without a VDD line, " IEEE Electron Device Lett., vol. 35, no. 1, pp. 72-74, Jan. 2014
    [63] W. J. Wu, L. Zhou, M. Xu, L. R. Zhang, R. H. Yao and J. B. Peng, "An AC Driving Pixel Circuit Compensating for TFTs Threshold-Voltage Shift and OLED Degradation for AMOLED," Journal of Display Technology, vol. 9, no. 7, pp. 572-576, Jul 2013.
    [64] C. L. Lin, K. W. Chou, C. C. Hung, and C. D. Tu, "Lifetime amelioration for an AMOLED pixel circuit by using a novel ac driving scheme, " IEEE Trans. Electron Devices, vol.58, no. 8, pp. 2652-2659, Aug. 2011.
    [65] Y. Kim, C. Chen, J. Kanicki, and H. Lee, "An a-InGaZnO TFT pixel circuit compensating threshold voltage and mobility variations in AMOLEDs," J. Display Technol., vol. 10, no. 5, pp. 402-406, May. 2014.
    [66] S. J. Song, H. Nam. Chaji, and S. J. Ashtiani, "In-pixel mobility compensation scheme for AMOLED pixel circuits, " J. Display Technol., vol. 11, no. 2, pp. 209–213, Feb. 2015.
    [67] C. L. Lin, P. C. Lai, P. C. Lai, P. S. Chen, and W. L. Wu, "Pixel Circuit With Parallel Driving Scheme for Compensating Luminance Variation Based on a-IGZO TFT for AMOLED Displays," J. Disp. Technol., vol. 12, no. 12, pp. 1681–1687, Dec. 2016.
    [68] C. L. Fan, C. Y. Chen, F. P. Tseng, C. C. Yang, K. E. Chien, and Y. H. Hsiao, "3T0.5C Compensating pixel circuit with all p-type LTPS-TFTs for AMOLED displays," Displays., vol. 53, pp.8-13, Jul. 2018.

    無法下載圖示 全文公開日期 2023/07/23 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE