簡易檢索 / 詳目顯示

研究生: 曾禹荃
Yu-Chuan Tseng
論文名稱: 互動式主動有機發光二極體之新式電壓編碼畫素電路及其顯示與感測電路整合設計
Novel Voltage Programming pixel circuit and integration with Sensing Pixel Circuit Design for AMOLED Displays
指導教授: 范慶麟
Ching-Lin Fan
口試委員: 李志堅
Chih-Chien Lee
徐世祥
Shih-Hsiang Hsu
顏文正
Wen-Jeng Yan
范慶麟
Ching-Lin Fan
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 91
中文關鍵詞: 主動式有機發光二極體顯示器畫素補償電路三維度顯示器顯示與感測整合電路
外文關鍵詞: LTPS TFTs, Integration pixel circuit
相關次數: 點閱:477下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 主動式有機發光二極體(AMOLED)由於其自發光性、廣視角、快的反應速度、輕薄等優勢,被視為是極具潛力的下一世代的顯示器技術。而在驅動主動式有機發光二極體之畫素電路部分,薄膜電晶體扮演非常重要的角色,由於薄膜電晶體材料特性的不同,優勢與適用的顯示器尺寸也不相同。非晶矽(a-Si)技術已相當成熟,適用於大尺寸顯示器,但是其較低的載子遷移率,使其無法進行高速的操作。低溫多晶矽(LTPS)具有高載子遷移率使其可進行高速操作,但是在低溫多晶矽的薄膜電晶體製造過程中,在準分子雷射退火時會造成電性差異,會使得在相同灰階下,電流不一的情況。氧化銦鎵鋅(IGZO)有著不錯的載子遷移率,在大面積製程較均勻及製成溫度較低的優點。然而,在實際的AMOLED顯示器上,電晶體除了製程上造成電性的差異外,元件經過長時間的操作也會造成劣化。
    此外,互動式顯示器為一種結合顯示器與光感測器之快速發展的應用型顯示器,在傳統互動式螢幕的影像輸入及輸出是藉由獨立的顯示器搭配額外的攝影機所完成,環境光源經由攝影機內的感光元件轉換成電子訊號,經過影像處理之後光感測器所接受到的畫面可以直接輸入至顯示螢幕上,因此互動式螢幕具有即時顯示的優點。傳統互動式螢幕的顯示裝置與感測裝置無法整合的原因之一,在於顯示器與感測器所使用的基板不同,顯示器所使用的電子元件及基板為薄膜電晶體及玻璃基板,攝影機內部的感光元件使用的電子元件及基板是光電二極體搭配互補式金屬氧化物半導體(CMOS)放大電路及矽基板,由於矽基板是不透明的,造成整體的開口率大幅下降。
    因此,第一個電路畫素電路是以低溫多晶矽組成的4T2C畫素電路,其特點為使用新式步階發光方式,縮短了元件的操作時間。除了補償驅動電晶體的臨界電壓變化外,同時補償因製程或長時間操作造成的載子遷移率的變化。值得一提的是,若OLED在發光階段以外的操作階段發光,會造成閃爍,導致畫面的不均勻。此電路只在發光階段進行發光,避免畫免閃爍。模擬結果顯示,在驅動薄膜電晶體的臨界電壓飄移正負0.33V時,電路的平均錯誤率僅為2%。
    第二個電路為使用氧化銦鎵鋅(IGZO)的7T2C顯示感測整合型畫素電路,電路中使用的IGZO 模型為從實驗室所得的數據,利用AIM-SPICE進行擬合,並使用OLED之有機層做為吸光層,達到整合之目的。模擬結果證實了此電路的可行性,並藉由電路設計,達到補償驅動薄膜電晶體之臨界電壓飄移之效果。模擬結果顯示,在驅動薄膜電晶體的臨界電壓飄移正負0.5V時,電路的平均錯誤率僅在5.5% 以下。


    Active matrix organic light emitting diode (AMOLED) display has become the most potential display for the next generation of visual technologies due to its self-illuminating, wide viewing angle, fast response time. When it comes to the pixel circuit of the AMOLED, thin film transistors (TFTs) play a very important role. Owing to different material properties, the advantages and suitable size for displays are different. The manufacture process of amorphous silicon (a-Si) is very mature, which provides good uniformity for large size display. However, the poor mobility makes it difficult for high speed operation. Low temperature poly-silicon (LTPS) offers high mobility to carry out high speed displays, while the excimer laser annealing (ELA) for LTPS crystallization influences the electrical properties of the TFT, which cause the non-uniformity of the gray scale. Indium Gallium Zinc Oxide (IGZO) provides low cost due to the fabrication in room temperature, relatively good mobility and uniformity over large area display. However, in the actual AMOLED displays, not only the fabrication process but also long time operation cause deteriorate of the device.
    In addition to the display technology, bi-directional displays is the rapid growth application in displays. In the traditional interactive displays, the image input and output are done with an independent display screen with an extra camera. The ambient light source is converted into an electronic signal via a photosensitive element in the camera, after the image processing, the light source received by the photo sensor can be directly input to the display screen. Therefore, the interactive display have the advantage of real-time display. One of the main reasons of the display and the sensing part of the traditional interactive display cannot be integrated is that the substrate used in the display and the sensor is different. The electronic components and the substrate used in the display part are the thin film transistors (TFTs) and the glass substrate, while the sensing part are photodiodes with CMOS amplifier circuits and Silicon wafers. Causes the decrease of the aperture ratio at the pixel.
    Therefore, the first 4T2C pixel circuit consists of LTPS, which characterizes the new voltage programming method and reduces the operating time. The proposed circuit not only compensates the threshold voltage but also the mobility shift of the driving TFT. Moreover, when the OLED lighten up before the emission period, flicker occurs, which leads to non-uniformity of the image. This circuit avoids flicker through the design, the OLED only emits in the emission period. The simulation results show the OLED current error rate only 2% while the threshold voltage shifts ±0.33V.
    The second circuit is the 7T2C integrated sensing and displaying pixel circuit utilizes IGZO. The IGZO model used in this circuit is extracted from the laboratory and fitted by AIM-SPICE. The OLED is used as the emitting and the absorption layer for displaying and sensing. The simulation results verified the feasibility of the proposed circuit and the compensation function via design. While the threshold voltage shifts ±0.5V, the OLED current rate still under 5.5%.

    Contents Abstract (in Chinese) I Abstract III Acknowledgement VI Contents VII List of Figures X List of Tables XIV Chapter 1 Introduction 1 1.1 Research Background 1 1.2 AMOLED Structure and Operation 3 1.2.1 Mechanism of OLED Emission 5 1.2.2 PMOLED 7 1.2.3 AMOLED 8 1.3 Three-Dimension Displays 9 1.3.1 Overview of 3D Technology 9 1.3.2 Stereoscopic Displays 11 1.3.3 Emission Driving Scheme 13 1.4 Image Sensors and Operation 14 1.4.1 Charge-Coupled Device (CCD) Image Sensors 15 1.4.2 Photodiodes 17 1.4.3 Phototransistors 18 1.4.4 Conventional Sensor Circuit 21 1.5 Interactive Displays 23 1.6 Motivations 24 Chapter 2 AMOLED Pixel Circuit Driving Method 26 2.1 Driving Device 26 2.1.1 a-Si TFT 26 2.1.2 LTPS TFT 27 2.1.3 a-IGZO TFT 27 2.2 Compensation for AMOLED Displays 28 2.2.1 Threshold Voltage 30 2.2.2 Mobility 32 2.2.3 OLED Degradation 34 2.2.4 Voltage Drop of the Power Line 36 2.3 TFT Model Fitting Flow 37 Chapter 3 A Novel 4T2C LTPS Pixel Circuit Compensate for Mobility and Threshold Voltage Shift for AMOLED Displays 40 3.1 Introduction 40 3.2 Circuit Scheme and Operation 42 3.3 Simulation Results and Discussion 47 3.4 Summary 53 Chapter 4 A New Integrated Sensing and Display Pixel for Compensating Threshold Voltage Shifts for AMOLED Interactive Displays 54 4.1 Introduction 54 4.2 Circuit Scheme and Operation 55 4.3 Simulation Results and Discussion 61 4.4 Summary 67 Chapter 5 Conclusions and Future Work 68 5.1 Conclusions 68 5.2 Future Work 70 REFERENCE 71 List of Figures Fig. 1- 1 The classification of Displays 1 Fig. 1-2 The structure difference between TFT-LCD and OLED 3 Fig. 1-3 Transition process of photogenerated excitons 4 Fig. 1-4 Schematic of Multi-layer of OLED emission structure and energy level illustration 6 Fig. 1-5 Passive matrix method for OLED displays 8 Fig.1-6 Active matrix method for OLED displays 9 Fig. 1-7 Classification of 3D Displays 12 Fig. 1-8 Illustration of Area Division and Time Division 12 Fig. 1-9 3D Implementation (a) by PE and (b) by SE 14 Fig. 1-10 Schematic structure of typical CCD image sensor 16 Fig. 1-11 MOS capacitors 16 Fig. 1-12 Charge transmit in MOS capacitors 16 Fig. 1-13 The operating principle of the photodiode 17 Fig. 1-14. Schematic diagram of bottom-gate, top contact thin-film phototransistor (photo-TFT). 20 Fig. 1-15 Detection mechanism of silicon and metal-oxide semiconductor materials. 21 Fig. 1-16 The conventional 3T sensor circuit 23 Fig. 1-17 Applications of interactive displays 24 Fig. 2- 1 N-type / P-type of 2T1C Pixel Circuit 29 Fig. 2-2 (a)and(b) Methods for detecting threshold voltage of driving TFT 31 Fig. 2-3 Transfer characteristics of the TFT models for the mobility doubling 33 Fig. 2-4 Mobility compensation operation 33 Fig. 2-5 Luminance (L) / initial luminance (Lo) and driving voltage (V)/initial driving voltage (VO) versus time of a mixed emitting layer OLED and a standard bilayer OLED 35 Fig. 2-6 (a) Experimental results of the normalized luminance in the constant dc and ac bias for over 14400 s of continuous operation. (b) Normalized luminance as a function of the duty cycle, in which the duty cycle of 100% represents the dc condition. (c) Brightness degradation of the OLED at the 20% ac condition can be diminished with an increased reversed-bias voltage 35 Fig. 2-7 The equivalent mechanism of IR Drop in 30-inch display 36 Fig. 2-8 a-IGZO Model Fitting Flow 38 Fig. 2-9 Measured and Simulated a-IGZO TFT (a) Transfer and (b)output curve 38 Fig. 2-10 The Equivalent Circuit for OLED 38 Fig. 2-11 Transfer Curve of Poly-Si TFT Model PSIA2 (Level 16) 39 Fig. 3-1 (a) Conventional and (b) parallel addressing schemes for voltage-programmed AMOLED displays 41 Fig. 3-2 The proposed 4T2C LTPS pixel circuit and time diagram 43 Fig. 3-3 The equivalent LTPS circuit at each state in operation 46 Fig. 3-4 Simulated transient waveform of proposed pixel circuit at VDATA = -1V 47 Fig. 3-5 Transient waveform of source voltage (Node A) in different data voltage ((a) from -0.2V to -2.6V. (b) -3V for row 1 and 3, -1V for row 2 and 4). 49 Fig. 3-6 (a) The OLED current of proposed pixel circuit with driving TFT threshold voltage shift 51 Fig. 3-7 (b) The OLED current of conventional 2T1C pixel circuit with driving TFT threshold voltage shift 51 Fig. 3-8 OLED current error rate as the mobility shifts from 0 to 50% for the proposed circuit and the conventional 2T1C pixel circuit 52 Fig. 4- 1 (a) Schematic circuit diagram and (b) operational waveforms of the proposed pixel circuit 56 Fig. 4-2 The operation scheme of the display part of the proposed circuit 59 Fig. 4-3 The operation scheme of the sensing part of the proposed circuit 61 Fig. 4-4 Simulated transient waveforms of node A and B of the proposed circuit in four display operation phases for threshold voltage shift of DTFT at the same VDATA. 63 Fig. 4-5 (a) OLED current and (b) relative current error rates of proposed pixel circuit with threshold voltage shift of DTFT (ΔVTH = 0.5V) 64 Fig. 4-6 OLED current variations as a function of (a) ΔVTH_OLED and (b) the IR drop in the power line from 0 to 0.5V 65 Fig. 4-7 Simulated output current in different photocurrent with the threshold voltage variation of DTFT 66 Fig. 4-8 Simulated transient waveforms of node B and C of the proposed circuit in the display and sensing part with threshold voltage shift of DTFT 67 List of Tables Table 2-1 Different Backplane Technologies 28 Table 2-2 Comparison Between Two Programming Method 30 Table 3-1 Design Parameters of The Pixel Circuit 43 Table 3-2 Comparison of Similar Pixel Circuits 53 Table 4-1 Design Parameters of the Pixel Circuit 63

    REFERENCE
    [1] G. Shapiro, "Consumer electronics association's five technology trends to watch:
    exploring new tech that will impact our lives, " IEEE Consumer Electronics Magazine, vol. 2, no. 1, pp. 32–35, Jan. 2013.
    [2] R. Mertens, The OLED Handbook A Guide to OLED Technology, Industry & Market, 2013.
    [3] C. W. Tang and S. A. VanSlyke, "Organic electroluminescent diodes," Applied Physics Letters, vol. 51, no. 12, pp. 913-915, 1987.
    [4] A. Ko¨hler and H. Ba¨ssler, Electronic Processes in Organic Semiconductors: An Introduction, John Wiley & Sons, 2015.
    [5] F. Templier, OLED Microdisplays, 2014, pp. 124-125.
    [6] Brian Bowers, Sir Charles Wheatstone FRS: 1802–1875 (2nd ed.), IET, 2001, pp. 207–208. ISBN 978-0-85296-103-2.
    [7] David Sir Brewster, The Stereoscope; its History, Theory, and Construction, with its Application to the fine and useful Arts and to Education: With fifty wood Engravings, 1856.
    [8] N. S. Holliman, N. A. Dodgson, G. E. Favalora and L. Pockett, "Three- Dimensional Displays: A Review and Applications Analysis," IEEE Transactions on Broadcasting, vol.57, no. 2, pp. 362-371, Apr 2011.
    [9] H. Urey, K. V. Chellappan, E. Erden and P. Surman, "State of the Art in Stereoscopic and Autostereoscopic Displays," Proceedings of the IEEE, vol. 99, no. 4, pp. 540-555, Apr 2011.
    [10] J. Hong, Y. Kim, H. J. Choi, J. Hahn, J. H. Park, H. Kim, S. W. Min, N. Chen and B. Lee, "Three-dimensional display technologies of recent interest Principles, status, and issues," Applied Optics, vol. 50, no. 34, pp. 87-115, 2011.
    [11] E. Lueder, 3D Displays, 2012, pp. 22-25.
    [12] B. W. Lee, I. H. Ji, S. M. Han, S. D. Sung, K. D. Shin, J. D. Lee, B. H. Kim, B. H. Berkeley and S. S. Kim, "Novel Simultaneous Emission Driving Scheme for Crosstalk-free 3D AMOLED TV," Society for Information Display, vol. 41, no. 1, pp. 758-761, 2010.
    [13] W. S. Boyle and G. E. Smith, "Charge coupled semiconductor devices, "The Bell System Technical Journal, vol. 49, pp. 587-593, Apr 1970.
    [14] G. F. Amelio, M. F. Tompsett and G. E. Smith, "Experimental verification of the charge coupled device concept," The Bell System Technical Journal, vol. 49, pp. 593-600, Apr 1970.
    [15] https://3smarket-info.blogspot.com/2015/08/cmos-ccd.html
    [16] X. Liu, X. Yang, M. Liu, Z. Tao, Q. Dai, L Wei, C. Li, X. Zhang, B. Wang and A. Nathan," Photo-modulated thin film transistor based on dynamic charge transfer within quantum-dots-InGaZnO interface," Applied Physics Letters, vol. 104, pp. 113501, Mar 2014.
    [17] P. Noble, "Self-scanned silicon image detector arrays," IEEE Transactions on Electron Devices, vol. 15, pp. 202-209, Apr 1968.
    [18] L. E. Antonuk, J. Boudry, C. W. Kim, M. Longo, E. J. Morton, J. Yorkston and R. A. Street, “Signal, noise, and readout considerations in the development of amorphous silicon photodiode arrays for radiotherapy and diagnostic x-ray imaging.” Proc SPIE 1443, pp. 108-119, 1991.
    [19] Y. Nakanishi, T. Fujii, K. Kiatjima, Y. Sato and H Koike, “Vision-Based Face Tracking System for Large Displays.” in International Conference on Ubiquitous Computing. LNCS, pp. 152-159, 2002.
    [20] J. Naber, C. Krupitzer and C. Becker, “Transferring an Interactive Display Service to the Virtual Reality.” in IEEE International Conference on Smart Computing (SMARTCOMP), pp. 1-8, 2017.
    [21] C. Großmann, M. Pertenaïs, G. Notni and A. Tünnermann, “A Novel Concept of a Vein Viewer Based on a Bidirectional OLED Microdisplay.” Journal of the Society for Information Display, vol. 44, pp. 142-145, Jul 2013.
    [22] T. N. Ng, I. Fujieda, R. A. Street and J. Veres, “Persistent photoconductivity effects in printed n-channel organic transistors.” J. Appl. Phys., 113, 094506, 2013.
    [23] B. Richter, U. Vogel, R. Herold, K. Fehse, S. Brenner, L. Kroker and J. Baumgarten,” Bidirectional OLED Microdisplay: Combining Display and Image Sensor Functionality into a Monolithic CMOS Chip.” in IEEE Int. Solid-State Circuits Conf. Dig. Tech. Papers, pp. 314-316, 2011.
    [24] E. Lee, A. Benayad, T. Shin, H. Lee, D. S. Ko, T. S. Kim, K. S. Son, M, Ryu, S, Jeon and G. S. Park,” Nanocrystalline ZnON; High mobility and low band gap semiconductor material for high performance switch transistor and image sensor application.” Scientific Reports, vol. 4, p. 4948, 2014.
    [25] R. M. A. Dawson, Z. Shen, D. A. Furst, S. Connor, J. Hsu, M. G. Kane, R. G.
    Stewart, A. Ipri, C. N. King, P. J. Green, R. T. Flegal, S. Pearson, W. A. Barrow, E. Dickey, K. Ping, S. Robinson, C. W. Tang, S. Van Slyke, F. Chen, J. Shi, M. H. Lu and J. C. Sturm, "The impact of the transient response of organic light emitting diodes on the design of active matrix OLED displays." International Electron Devices Meeting Technical Digest, pp. 875-878, 1998.
    [26] G. Gu and S. R. Forrest, "Design of flat-panel displays based on organic light-emitting devices." IEEE Journal of Selected Topics in Quantum Electronics., vol. 4, no. 1, pp. 83-99, 1998.
    [27] S. Ono, K. Miwa, K. Maekawa and T. Tsujimura, "VT Compensation Circuit for
    AMOLED Displays Composed of Two TFTs and One Capacitor." IEEE Transactions on Electron Devices, vol. 54, no. 3, pp. 462-467, 2007.
    [28] J. J. Lih, C. F. Sung, C. H. Li, T. H. Hsiao and H. H. Lee, "Comparison of a-Si and Poly- Si for AMOLED displays," Society for Information Display, vol. 12, no. 4, pp. 367-371, 2004.
    [29] Y. K. Lee, K. M. Kim, J. I. Ryu and D. J. Choo, "A comparison between a-Si : H TFT andpoly-Si TFT for a pixel in AMOLED," Journal- Korean Physical Society, vol. 39, pp.S291-S295, 2001.
    [30] S. W. Lee and S. K. Joo, "Low temperature poly-si thin-film transistor fabrication by metal-induced lateral crystallization," IEEE Electron Device Letters, vol. 17, no. 4, pp. 160-162, 1996.
    [31] E. Fortunato, P. Barquinha and R. Martins, "Oxide Semiconductor Thin-Film Transistors a Review of Recent Advances," Advanced Materials, vol. 24, no. 22, pp. 2945-2986, May 2012.
    [32] K. Nomura, A. Takagi, T. Kamiya, H. Ohta, M. Hirano and H. Hosono, "Amorphousoxide semiconductors for high-performance flexible thin-film transistors," Japanese Journal of Applied Physics, vol. 45, no. 5 B, pp. 4303-4308, May 2006.
    [33] T. Kamiya, K. Nomura and H. Hosono, "Present status of amorphous In-Ga-Zn-O thin film transistors," Science and Technology of Advanced Materials, vol. 11, no. 4, Aug 2010.
    [34] J. H. Lee, J. H. Kim and M. K. Han, "A new a-Si:H TFT pixel circuit compensating the threshold voltage shift of a-Si:H TFT and OLED for active matrix OLED," IEEE Electron Device Letters, vol. 26, no. 12, pp. 897-899, Dec 2005.
    [35] Nathan, G. R. Chaji and S. J. Ashtiani, "Driving schemes for a-Si and LTPS AMOLED displays," IEEE/OSA Journal of Display Technology, vol. 1, no. 2, pp. 267-277, Dec 2005.
    [36] R. M. A. Dawson and M. G. Kane, "Pursuit of active matrix organic light emitting diode displays," in SID Tech. Dig., pp. 372–375, 2001.
    [37] S. H. Jung, W. J. Nam and M. K. Han, "A new voltage-modulated AMOLED pixel design compensating for threshold voltage variation in Poly-Si TFTs," IEEE Electron Device Letters, vol. 25, no. 10, pp. 690-692, Oct 2004.
    [38] C. L. Lin, C. C. Hung, P. C. Lai and W. Y. Chang, "A New a-IGZO AMOLED Pixel Circuit Design to Improve the OLED Luminance Degradation in 3D Displays," Society for Information Display, vol. 44, no. 1, pp. 1107-1109, Jul 2013.
    [39] Y. Morimoto, T. Jinno, K. Hirai, H. Ogata, T. Yamada, and K. Yoneda, "Influence of grain boundaries and intragrain defects on the performance of poly-si thin film transistors. " Journal of the Electrochemical Society, vol. 144, no. 7, 1997.
    [40] C. L. Lin, C. C. Hung, P. C. Lai and W. Y. Chang, "A New a-IGZO AMOLED Pixel Circuit Design to Improve the OLED Luminance Degradation in 3D Displays," Society for Information Display, vol. 44, no. 1, pp. 1107-1109, Jul 2013.
    [41] H. Jung, Y. Kim, Y. Kim, C. Chen, J. Kanicki and H. Lee, "a-IGZO TFT Based Pixel Circuits for AM-OLED Displays," Society for Information Display, vol. 3, no. 1, pp. 1097-1100, Jun 2012.
    [42] J. Y. Kwon, D. J. Lee, and K. B. Kim, "Transparent amorphous oxide semiconductor thin film transistor," Electronic Materials Letters, vol. 7, pp. 1-11, 2011.
    [43] J. H. Lee, W. J. Nam, S. H. Jung and M. K. Han, "A new current scaling pixel circuit for AMOLED," IEEE Electron Device Letters, vol. 25, no. 5, pp. 280-282, May 2004.
    [44] J. H. Lee, W. J. Nam, B. K. Kim, H. S. Choi, Y. M. Ha and M. K. Han, "A new poly-Si TFT current-mirror pixel for active matrix organic light emitting diode," IEEE Electron Device Letters, vol. 27, no. 10, pp. 830-833, 2006.
    [45] J. H. Lee, W. J. Nam, S. H. Jung and M. K. Han, "A new current scaling pixel circuit for AMOLED," IEEE Electron Device Letters, vol. 25, no. 5, pp. 280-282, May 2004.
    [46] J. H. Lee, W. J. Nam, B. K. Kim, H. S. Choi, Y. M. Ha and M. K. Han, "A new poly-Si TFT current-mirror pixel for active matrix organic light emitting diode," IEEE Electron Device Letters, vol. 27, no. 10, pp. 830-833, 2006.
    [47] J. Y. Jeon, Y. J. Jeon, Y. S. Son and G. H. Cho, "A direct fast feedback current driver using an inverting amplifier for high-quality AMOLED displays, "IEEE Transactions on Circuits and Systems-II: Express Briefs, vol. 59, no. 7, pp. 414-417, Jul 2012.
    [48] C. L. Lin, W. Y. Chang, C. C. Hung and C. D. Tu, "LTPS-TFT pixel circuit to compensate for OLED luminance degradation in three-dimensional AMOLED display," IEEE Electron Device Letters, vol. 33, no. 5, pp. 700-702, May 2012.
    [49] C. L. Fan, Y. Y. Lin, B. S. Lin, J. Y. Chang and H. C. Chang, "New pixel circuit
    compensating poly-si TFT threshold-voltage shift for a driving AMOLED," Journal of the Korean Physical Society, vol. 55, no. 4, pp. 1185-1189, Apr 2010.
    [50] C. L. Fan, F. P. Tseng, H. L. Lai, B. J. Sun, K. C. Chao and Y. C. Chen, "A novel LTPS TFT pixel circuit to compensate the electronic degradation for active-matrix organic light emitting diode displays," International Journal of Photoenergy, 2013.
    [51] C. L. Fan, Y. C. Chen, C. C. Yang, Y. K. Tsai and B. R. Huang, "Novel LTPS-TFT Pixel Circuit with OLED Luminance Compensation for 3D AMOLED Displays," Journal of Display Technology, vol. 12, no. 5, pp. 425-428, May 2016.
    [52] C. S. Chiang, J. Kanicki and K. Takechi, "Electrical Instability of Hydrogenated
    Amorphous Silicon Thin-Film Transistors for Active-Matrix Liquid-Crystal Displays, "Japanese Journal of Applied Physics, vol. 37, no. 11, pp. 4704-4710, 1998.
    [53] M. J. Powell, C. Van Berkel and J. R. Hughes, "Time and temperature dependence of instability mechanisms in amorphous silicon thin ‐ film transistors," Applied Physics Letters, vol. 54, no. 14, pp. 1323-1325, Apr 1989.
    [54] S. Sambandan and A. Nathan, "Equivalent Circuit Description of Threshold Voltage Shift in a-Si:H TFTs from a Probabilistic Analysis of Carrier Population
    Dynamics," IEEE Transactions on Electron Devices, vol. 53, no. 9, pp. 2306-2311, Aug 2006.
    [55] T. Tanabe, S. Amano, H. Miyake, A. Suzuki, R. Komatsu, J. Koyama, S. Yamazaki, K. Okazaki, M. Katayama, H. Matsukizono, Y. Kanzaki and T. Matsuo, "New threshold voltage compensation pixel circuits in 13.5-inch full high definition OLED display of crystalline In-Ga-Zn-Oxide FETs, " in SID Tech. Dig., vol. 43, pp. 88-91, Jun 2012.
    [56] Y. Sohn, G. Moon, K. Choi, Y. Kim and K. Park, "Effects of TFT mobility variation in the threshold voltage compensation circuit of the OLED display, "Journal of Information Display, vol. 18, no. 1, pp. 25-30, 2017.
    [57] C. L. Lin, C. C. Hung, P. S. Chen, P. C. Lai and M. H. Cheng, "New Voltage-Programmed AMOLED Pixel Circuit to Compensate for Nonuniform Electrical Characteristics of LTPS TFTs and Voltage Drop in Power Line, "IEEE Transactions on Electron Devices, vol. 61, no. 7, pp. 2454-2458, Jul 2014.
    [58] B. Geffroy, P. le Roy and C. Prat, "Organic light-emitting diode (OLED) technology: materials, devices and display technologies," Polymer International, vol. 55, no. 6, pp.572-582, Jun 2006.
    [59] H. Aziz, Z. D. Popovic, N. X. Hu, A. M. Hor and C. Xu, "Degradation Mechanism of Small Molecule-Based Organic Light-Emitting Devices," Science, vol. 283, pp. 1900-1902, Mar 1999.
    [60] J. Shen, D. Wang, E. Langlois, W. A. Barrow, P. J. Green, C. W. Tang and J. Shi, "Degradation mechanisms in organic light emitting diodes," Synthetic Metals, vols. 111-112, pp. 233-236, Jun 2000.
    [61] W. Brütting, J. Frischeisen, T. D. Schmidt, B. J. Scholz and C. Mayr, "Device efficiency of organic light-emitting diodes Progress by improved light outcoupling," physica status solidi (a), vol. 210, no. 1, pp. 44-65, Sep 2012.
    [62] D. Zou, M. Yahiro and T. Tsutsui, "Study on the degradation mechanism of organic light-emitting diodes (OLEDs)," Synthetic Metals, vol. 91, no. 1-3, pp. 191-193, 1997.
    [63] C. L. Lin, K. W. Chou, C. C. Hung and C. D. Tu, "Lifetime Amelioration for an AMOLED Pixel Circuit by Using a Novel AC Driving Scheme," IEEE Transactions on Electron Devices, vol. 58, no. 8, pp. 2652-2659, Aug 2011.
    [64] Y. C. Lin and H. P. D. Shieh, "Improvement of brightness uniformity by AC driving scheme for AMOLED display," IEEE Electron Devices Society, vol. 25, no. 11, pp. 728-730, Nov 2004.
    [65] J. P. Lee, H. S. Jeon, D. S. Moon and B. S. Bae, "Threshold voltage and IR drop compensation of an AMOLED pixel circuit without a VDD Line," IEEE Electron Devices Society, vol. 35, no. 1, pp. 72-74, Nov 2013.
    [66] C. L. Fan, M. C. Shang, W. C. Lin, H. C. Chang, K. C. Chao and B. L. Guo, "LTPS-TFT pixel circuit compensating for TFT threshold voltage shift and IR-drop on the power line for AMOLED displays," Advances in Materials Science and Engineering, May 2012.
    [67] M. Kimura, I. Yudasaka, S. Kanbe, H. Kobayashi, H. Kiguchi, S. I. Seki, S. Miyashita, T. Shimoda, T. Ozawa, K. Kitawada, T. Nakazawa, W. Miyazawa, and H. Ohshima, "Low-temperature polysilicon thin-film transistor driving with integrated driver for high-resolution light emitting polymer display, " IEEE Transactions on Electron Devices, vol. 46, no. 12, pp. 2282-2288, Dec 1999.
    [68] G. R. Chaji and A. Nathan, "Parallel Addressing Scheme for Voltage-Programmed Active-Matrix OLED Displays, " IEEE Transactions on Electron Devices, vol. 54, no. 5, pp. 1095-1100, May 2007.
    [69] Y. Kim, Y. Kim, and H. Lee, "A novel p-type LTPS TFT pixel circuit compensating for threshold voltage and mobility variations," Journal of Display Technology, vol. 10, pp. 995–999, Dec. 2014.
    [70] W. J. Wu, L. Zhou, M. Xu, L. R. Zhang, R. H. Yao and J. B. Peng, "An AC Driving Pixel Circuit Compensating for TFTs Threshold-Voltage Shift and OLED Degradation for AMOLED," Journal of Display Technology, vol. 9, no. 7, pp. 572-576, Jul 2013.
    [71] Y. Kim, Y. Kim, and H. Lee, "A Novel p-Type LTPS TFT Pixel Circuit Compensating for Threshold Voltage and Mobility Variations," Journal of Display Technology, vol. 10, pp. 995-1000, Jun. 2014.
    [72] C. L. Fan, Y. C. Chen, C. C. Yang, Y. K. Tsai and B. R. Huang, "Novel LTPS-TFT Pixel Circuit with OLED Luminance Compensation for 3D AMOLED Displays," Journal of Display Technology, vol. 12, no. 5, pp. 425-428, May 2016.
    [73] C. L. Lin, C. C. Hung, P. Y. Kuo and M. H. Cheng, "New LTPS Pixel Circuit with AC Driving Method to Reduce OLED Degradation for 3D AMOLED Displays," Journal of Display Technology, vol. 8, no. 12, pp. 681-683, Dec 2012.
    [74] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M.Hirano and H. Hosono, "Roomtemperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors," Nature, vol. 432, pp. 488-492, 2004.
    [75] Y. G. Mo, M. Kim, C. K. Kang, J. H. Jeong, Y. S. Park, C. G. Choi, H. D. Kim and S. S. Kim,” Amorphous-oxide TFT backplane for large-sized AMOLED TVs.” Journal of the Society for Information Display, vol. 19, pp. 16-20, 2011.
    [76] A. Nathan, S. Lee, S. Jeon and J. Robertson,” Amorphous Oxide Semiconductor TFTs for Displays and Imaging,” Journal of Display Technology, vol. 10, no. 11, pp. 917-926, Nov 2014.
    [77] S. Lee, S. Jeon, R. Chaji and A. Nathan,” Transparent Semiconducting Oxide Technology for Touch Free Interactive Flexible Displays,” Proceedings of the IEEE, vol. 103, no. 4, pp. 644-664, Apr 2015.
    [78] Y. J. Tak, D. J. Kim, W. G. Kim, J. H. Lee, S. J. Kim, J. H. Kim and H. J. Kim,” Boosting Visible Light Absorption of Metal-Oxide-Based Phototransistors via Heterogeneous In−Ga−Zn−O and CH3NH3PbI3 Films,” ACS Applied Materials & Interfaces, vol. 10, pp. 12854-12861, Mar 2018.
    [79] B. H. Kang, W. G. Kim, J. Chung, J. H. Lee and H. J. Kim,” Simple Hydrogen Plasma Doping Process of Amorphous Indium Gallium Zinc Oxide-Based Phototransistors for Visible Light Detection,” ACS Applied Materials & Interfaces, vol. 10, pp. 7223-7230, Feb 2018.
    [80] S. Jeon, S. E. Ahn, I. Song, C. J. Kim, U. I. Chung, E. Lee, I. Yoo, A. Nathan, S. Lee, K. Ghaffarzadeh, J. Robertson and K. Kim,” Gated three-terminal device architecture to eliminate persistent photoconductivity in oxide semiconductor photosensor arrays,” Nature Materials, vol. 11, pp. 301-305, 2012.
    [81] S. Jeon, S. E. Ahn, I. Song, Y. Jeon, Y. Kim, S. Kim, H. Choi, H. Kim, E. Lee, S. Lee, A. Nathan, J. Robertson, C. Kim, U. I. Chung, I. Yoo and K. Kim,” Dual Gate Photo-Thin Film Transistor with High Photoconductive Gain for High Reliability, and Low Noise Flat Panel Transparent Imager.” in IEDM, pp. 14.3.1-14.3.4, 2011.
    [82] X. Liu, Z. Tao, W. Kuang, Q. Huang, Q. Li, J. Chen and W. Lei,” Dual-Gate Phototransistor with Perovskite Quantum Dots-PMMA Photosensing Nanocomposite Insulator.” IEEE Electron Device Letters, vol. 38, no. 9, Jul 2017.
    [83] J. Yang, H. Kwak, Y. Lee, Y. Kang, M. Cho, J. H. Cho, Y. Kim, S. Jeong, S. Park, H. Lee and H. Kim,” MoS2−InGaZnO Heterojunction Phototransistors with Broad Spectral Responsivity,” ACS Applied Materials & Interfaces, vol. 8, pp. 8576-8582, Mar 2016.

    無法下載圖示 全文公開日期 2023/07/23 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE