簡易檢索 / 詳目顯示

研究生: 朱正均
Jheng-Jun Jhu
論文名稱: 聚丙烯高分子之結構異構性與塑化劑遷移效率之探討,聚己內酯於腸胃道降解之研究
The study between the structural heterogeneity of polypropylene and plasticizer migration efficiency, Biodegradation study of Polycaprolactone film in the gastrointestinal tract of SD rat
指導教授: 蔡協致
Hsieh-Chih Tsai
口試委員: 張浩銘
Hao-Ming Chang
高震宇
none
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 應用科技研究所
Graduate Institute of Applied Science and Technology
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 71
中文關鍵詞: 聚丙烯塑化劑結構異構性聚己內酯生物可降解腸胃道
外文關鍵詞: polypropylene, plasticizer, structural heterogeneity, polycaprolactone, Biodegradation, gastrointestinal tract
相關次數: 點閱:443下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著人口老化問題,台灣之洗腎人口有逐年往上攀升之趨勢,其中腎衰竭患者選用腹膜透析比例由逐年增加之趨勢,而目前腹膜透析中電解液聚氯乙烯袋,僅能依賴國外進口,台灣並無法生產。傳統製程上,為了讓塑膠材料具彈性及柔軟,產業上常使用磷苯二甲酸酯類之塑化劑,且對於聚氯乙烯而言,添加量更要高達到重量比例30%至50%,才能讓原本性質剛硬聚氯乙烯軟化,且塑化劑亦可能從高分子基材外移於電解液中,可能危害腎臟病患病情。因此本研究將先選用僅含碳氫原子之聚丙烯為基材,探討不同異構性之聚丙烯高分子添加塑化劑後,聚丙烯之材料特性以及塑化劑遷移之程度。由紅外線光譜結果顯示添加塑化劑後聚氯乙烯明顯出現一羰基峰為鄰苯二甲酸酯官能基,在熱重分析結果中高分子量全同立構聚丙烯有一明顯轉折點落於68%,此與配置之聚丙烯/磷苯二甲酸酯高分子樣品濃度相當,紫外線光譜結果顯示同溫度下塑化劑遷移程度之比較,低分子量全同立構聚丙烯最高、低分子量不定形聚丙烯次之、高分子量全同立構聚丙烯最低,此結果與液相層析質譜儀所分析相似,以塑化劑遷移程度比較顯示出高分子量全同立構聚丙烯混參塑化劑後,塑化劑能較穩定留在於高分子基材內。
    為了將聚己內酯(PCL)應用作為生物可降解性的腸胃道植入物,我們研究具生物可降解性的聚己內酯在生物體內的降解行為,以溶劑澆鑄的方式製造聚己內酯膜以及選擇Sprague Dawley大鼠作為生物模型,藉由手術將聚己內酯分別放入胃部以及腸道。掃描式電子顯微鏡結果顯示放置於胃中的聚己內酯表面呈現全面性的糜爛,而放置於腸道中的聚己內酯則是局部性侵蝕;使用示差掃描量熱分析及膠體滲透層析儀辨別分子量及結晶度降低與聚己內酯膜降解行為的關係,聚己內酯膜的降解在有含有酶情況下是不同於水解降解,透過重量損失分析可知道置於腸道中聚己內酯的降解速率比置於胃中聚己內酯的降解速率快。


    Chronic kidney disease is a large and growing problem among aging populations in Taiwan. Peritoneal dialysis (PD) is one of treatment for patients with chronic kidney disease worldwide. However, the currently dialysis bag used in peritoneal dialysis, which was made form polyvinyl chloride (PVC) blended with plasticizers. The plasticizer might be migrated from aqueous fluid and accumulated in the patient. In this project, two tacticity polypropylenes were selected instead of PVC materials for investigating the migration of plasticizer from polymer. Plasticizer, Bis(2-ethylhexyl) phthalate (DEHP), blended with isotactic and atactic polypropylene and then immersed in hot and room temperature water to study the migration of plasticizer. FT-IR result showed that the carbonyl band from DEHP exhibited in polypropylene blended samples indicated that DEHP was successfully mixed with polypropylene. From thermal gravimetric analysis, the results indicated that 32% of DEHP blended in high-molecular isotactic PP. From UV results, it also indicate that the amount of DEHP migrated from low-molecular isotactic PP more than that of low-molecular atactic PP and high-molecular isotactic PP. In conclusion, high-molecular isotactic polymer will be recommended as packing material due to low migration amount of DEHP in water.
    To realize the biodegradable properties of poly(ε-caprolactone) (PCL) gastrointestinal tract, the PCL films was separately implanted in stomach and intestine of rat. The PCL films was prepared from solvent casting in this study. The various PCL films were surgically implanted in Sprague Dawley rats for one month and then the biodegraded PCL films were took out for further analysis. Through weight-loss analysis of implanted PCL film at different time period, the degradation rate of PCL implanted in intestine faster than the degradation rate of PCL implanted in stomach. In addition, scanning electron microscopy results showed that the surface of PCL films implanted in stomach is rough, however the surface of PCL films implanted in intestine exhibited partial erosion. The effects of molecular weight and degree of crystallinity on the degraded PCL film were also evaluated by differential scanning calorimetry and Gel Permeation Chromatography. In stomach, since there is lack of enzyme, the degradation of PCL film was dominantly in hydrolysis process. However, the degradation of PCL film in intestine involved both hydrolysis and enzymatic process. From the analysis of molecule weight in biodegraded PCL films, the enzymatic degradation of PCL film is different from the hydrolysis degradation of PCL films.

    總目錄 I 圖目錄 III 表目錄 V 聚丙烯高分子之結構異構性與塑化劑遷移效率之探討 1 摘要 2 Abstract 3 第一章 前言 4 1.1研究動機與目的 4 第二章 文獻回顧 5 2.1聚丙烯介紹 5 2.1.1 聚丙烯特性 5 2.1.2 聚丙烯結構 5 2.1.3 二級相轉移 7 2.2塑化劑介紹 8 2.2.1塑化劑功能 8 2.2.2塑化劑種類 9 2.2.3塑化劑與高分子之作用 10 2.2.4 塑化劑遷移 11 2.3醫療器材中塑化劑及高分子之選用 12 2.4 聚氯乙烯中塑化劑遷延的相關研究 13 2.4.1聚氯乙烯中塑化劑遷移特性 13 2.4.2 聚氯乙烯中塑化劑遷移之影響 15 第三章 實驗方法 19 3.1 實驗藥品及耗材 19 3.2 實驗儀器 19 3.3 實驗設計 21 3.3.1 聚丙烯/鄰苯二甲酸二(2-乙基己基)酯(PP/DEHP)試料準備 21 3.3.2 塑化劑遷移實驗設計 21 第四章 結果與討論 22 4.1紅外線光譜分析 22 4.2聚丙烯試料之掃描式電子顯微鏡分析 25 4.3聚丙烯試料之熱重分析 27 4.4紫外線光譜分析 30 4.5液相層析串聯質譜儀之分析 31 第五章 結論 33 第六章 參考文獻 34 聚己內酯於腸胃道降解之研究 37 摘要 38 Abstract 39 第七章 前言 40 7.1研究動機與目的 40 第八章 文獻回顧 41 8.1 生醫高分子介紹 41 8.1.1 生物可降解性高分子 41 8.1.2 生物降解性 42 8.1.3 聚己內酯 43 8.2 聚己內酯降解性質之相關研究 45 8.3 消化系統介紹 51 8.3.1 消化系統 51 8.3.2 唾液 51 8.3.3胃液 51 8.3.4 小腸液 52 第九章 實驗方法 53 9.1 實驗藥品及耗材 53 9.2 實驗儀器 53 9.3 實驗設計 55 9.3.1 PCL膜製備 55 9.3.3 動物實驗 56 第十章 結果與討論 57 10.1重量損失分析 57 10.2掃描式電子顯微鏡分析 58 10.3紅外線光譜分析 60 10.4 示差掃描量熱分析 62 10.5膠體滲透層析儀 64 第十一章 結論 67 第十二章 參考文獻 68

    [1] Kranich, S. K., H. Frederiksen, et al. (2014). "Estimated Daily Intake and Hazard Quotients and Indices of Phthtalate Diesters for Young Danish Men." Environmental Science & Technology 48(1): 706-712.
    [2] Tickner, J. A., T. Schettler, et al. (2001). "Health risks posed by use of di-2-ethylhexyl phthalate (DEHP) in PVC medical devices: A critical review." American Journal of Industrial Medicine 39(1): 100-111.
    [3] Rowland, I. R. (1974). "Metabolism of di-(2-ethylhexyl) phthalate by the contents of the alimentary tract of the rat." Food Cosmet Toxicol 12(3): 293-303.
    [4] Jaeger, R. J. and R. J. Rubin (1970). "Plasticizers from plastic devices extraction, metabolism, and accumulation by biological systems." Science 170(3956): 460-462.
    [5] Murphy J. Additives for plastics handbook, 2nd ed. New York: Elsevier, 2001.
    [6] Swan, S. H. (2008). "Environmental phthalate exposure in relation to reproductive outcomes and other health endpoints in humans." Environ Res 108(2): 177-184.
    [7] Malpass, D. B., E. I. Band (2012). Introduction to industrial polypropylene : properties, catalysts, processes. Hoboken, N.J.
    [8] De Rosa, C., F. Auriemma (2006). "Structure and physical properties of syndiotactic polypropylene: A highly crystalline thermoplastic elastomer." Progress in Polymer Science 31(2): 145-237.
    [9] Rosen S.L. Fundamental principles of polymeric materials, 2nd ed. New York: Wiley, 1993.
    [10] Stevens M.P. Polymer chemistry—an introduction, 3rd ed.New York: Oxford University Press, 1999.
    [11] Gachter, R., Muller H, editors. Plastics additives handbook. 3rd ed. New York: Carl Hanser, 1990.
    [12] Fedorko, P., D. Djurado, et al. (2003). "Insulator-metal transition in polyaniline induced by plasticizers." Synthetic Metals 135(1-3): 327-328.
    [13] Frados J, editor. Plastics engineering handbook. 4th ed. New York: Van Nostrand Reinhold, 1976.
    [14] Rahman, M., C. S. Brazel (2004). "The plasticizer market: an assessment of traditional plasticizers and research trends to meet new challenges." Progress in Polymer Science 29(12): 1223-1248.
    [15] Bodmeier, R., O. Paeratakul (1997). "Plasticizer uptake by aqueous colloidal polymer dispersions used for the coating of solid dosage forms." International Journal of Pharmaceutics 152(1): 17-26.
    [16] Tsumura, Y., S. Ishimitsu, et al. (2002). "Phthalates, adipates, citrate and some of the other plasticizers detected in Japanese retail foods: a survey." Journal of Health Science 48(6): 493-502.
    [17] J. Wickson, Handbook of Polyvinyl Chloride Formulating, Wiley, New York, 1993.
    [18] Marcilla, A., S. Garcia, et al. (2008). "Migrability of PVC plasticizers." Polymer Testing 27(2): 221-233.
    [19] W. Titow, PVC Technology, fourth ed., Elsevier Applied Science, 1986.
    [20] Ito, R., N. Miura, et al. (2008). "Determination of tris(2-ethylhexyl)trimellitate released from PVC tube by LC-MS/MS." International Journal of Pharmaceutics 360(1-2): 91-95.
    [21] Messadi, D., J.L. Taverdet, et al. (1983). "lasticizer migration from plasticized poly(vinyl chloride) into liquids. Effect of several parameters on the transfer" Ind. Eng. Chem. Res. 22 142–146.
    [22] Castle, L., A.J.Mercer, et al. (1998). "Migration from plasticized films into foods 3. Migration of phthalate, sebacate citrate and phosphate esters from films used for retail food packaging." Food Addit. Contam. 5 (1) 9–20.
    [23] Fiala, F., I. Steiner, et al. (2000). "Migration of di-(2-ethylhexyl)phthalate (DEHP) and diisononyl phthalate (DINP) from PVC articles." Deutsche Lebensmittel-Rundschau 96(2): 51-57.
    [24] Kim, J. H., S. H. Kim, et al. (2003). "DEHP migration behavior from excessively plasticized PVC sheets." Bulletin of the Korean Chemical Society 24(3): 345-349.
    [25] Marcilla, A., S. Garia, et al. (2004). "Study of the migration of PVC plasticizers." Journal of Analytical and Applied Pyrolysis 71(2): 457-463.
    [26] Demertzis, P.G., K.A. Riganakos , et al. (1991) "Gas chromatographic studies on polymer-plasticizer compatibility: interactions between food-grade PVC and epoxidized soybean oil. " European Polymer Journal 27(3): 231–235
    [27] Bueno-Ferrer, C., M.C. Garrigós, et al. (2010) "Characterization and thermal stability of poly(vinyl chloride) plasticized with epoxidized soybean oil for food packaging." Polymer Degradation and Stability 95(11) 2207–2212
    [28] ISO 3826, “Plastics Collapsible Containers for Human Blood and Blood Components”, 1993.
    [29] Sarath Josh, M. K., S. Pradeep, (2012) " Temperature- and solvent-dependent migrations of di(2-ethylhexyl)phthalate, the hazardous plasticizer from commercial PVC blood storage bag." Journal of Polymer 19:9915
    [30] Haishima, Y., Seshimo F., Higuchi T., et al. (2005) " Development of a simple method for predicting the levels of di (2-ethylhexyl) phthalate migrated from PVC medical devices into pharmaceutical solutions." International Journal of Pharmaceutics 298(1): 126–142
    [31] Duvis, T., G. Karles, et al. (1991) "Plasticized PVC films/petroleum oils: the effect of ultraviolet irradiation on plasticizer migration." Journal of Applied Polymer Science 42(15): 191–198
    [32] Tüzüm Demir, A. P., S. Ulutan. (2013) "Migration of phthalate and non-phthalate plasticizers out of plasticized PVC films into air." Journal of Applied Polymer Science 128(35): 1948–1961
    [33] Ljunggren L. (1984) "Plasticizer migration from blood lines in hemodialysis." Artificial Organs 8(1): 99–102
    [34] Kalliyana Krishnan, V., A. Jayakrishnan. (1991) "Radiation grafting of hydrophilic monomers on to plasticized poly (vinyl chloride) sheets: II. Migration behaviour of the plasticizer from N-vinyl pyrrolidone grafted sheets." Biomaterials 12(5): 489–492
    [35] Zoller, A., A. Marcilla. (2011) "Soft PVC Foams: Study of the Gelation, Fusion, and Foaming Processes. I. Phthalate Ester Plasticizers." Journal of Applied Polymer Science 121(3): 1495-1505..
    [36] Jayakrishnan, A., M. C. Sunny, et al. (1995) "Photocrosslinking of azidated poly(vinyl chloride) coated onto plasticized PVC surface: Route to containing plasticizer migration." Journal of Applied Polymer Science 56(106): 1187–1195
    [37] Höglund, A., M. Hakkarainen, et al. (2010) "Migration and Hydrolysis of Hydrophobic Polylactide Plasticizer." Biomacromolecules 11(1): 277–283
    [38] Popa, M.I., S. Pernevan, et al. (2013) "Mechanical Properties and Weathering Behavior of Polypropylene-Hemp Shives Composites." Journal of Chemistry 8
    [39] Bourdeaux, D.,V. Sautou-Miranda, et al. (2004) "Analysis by liquid chromatography and infrared spectrometry of di(2-ethylhexyl)phthalate released by multilayer infusion tubing." Journal of Pharmaceutical and Biomedical Analysis 35(1):57-64.
    [40] Sundell, T., H. Fagerholm. (1996) "Isotacticity determination of polypropylene using FT-Raman spectroscopy." Polymer Vol. 37(15): 3227-3231
    [41] Castilla-Cortázar, I., J. Más-Estellés, et al. (2012) "Hydrolytic and enzymatic degradation of a poly(ε-caprolactone) network." Polymer Degradation and Stability 97(8): 1241–1248
    [42] Chen, D.R., J.Z. Bei , et al. (2000) "Polycaprolactone microparticles and their biodegradation.", Polymer Degradation and Stability 67(3) 455-459
    [43] Raymond G. Lau, Michael Radin, Collin E. Brathwaite and Louis Ragolia. Understanding the Effects of Roux-en-Y Gastric Bypass (RYGB) Surgery on Type 2 Diabetes Mellitus. edited by Kazuko Masuo, ISBN 978-953-51-1171-9
    [44] Buchwald, H.,Y. Avidor, et al. (2005) "Bariatric surgery: a systematic review and meta-anlysis." JAMA 292(14):1724-1737
    [45] Pen˜a, J., T. Corrales, et al. (2006) "Long term degradation of poly(ε-caprolactone) films in biologically related fluids." Polymer Degradation and Stability 91:1424-1432.
    [46] Muñoz, R., J.S. Carmody, et al. (2012) "Isolated duodenal exclusion increases energy expenditure and improves glucose homeostasis in diet-induced obese rats." J Physiol Regul Integr Comp Physiol 303(10): 985–993
    [47] Klinke, H.B., A.B. Thomsen, et al. (2004) "Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass." Appl Microbiol Biotechnol 66(1):10-26
    [48] Sudesh, K., H. Abe, Y. Doi. (2000) "Synthesis, structure and properties of polyhydroxyalkanoates: biological polyesters." Progress in Polymer Science 25(10): 1503–1555
    [49] Chandra, R., R. Rustgi. (1998) "Biodegradable polymers. "Progress in Polymer Science 23 1273–1335
    [50] Mehta, R., V. Kumar, et al. (2005) "Synthesis of Poly(Lactic Acid): A Review." Journal of Macromolecular Science 45(4) 325-349
    [51] Salgado, C.L., E.M. Sanchez, et al. (2012) "Biocompatibility and biodegradation of polycaprolactone-sebacic acid blended gels." J Biomed Mater Res A 100(1):243-51
    [52] Labet, M., W. Thielemans. (2009) "Synthesis of polycaprolactone: a review." Chem. Soc. Rev 38, 3484-3504
    [53] Hedrick J.L., T. Magbitang, et al. (2002) "Application of Complex Macromolecular Architectures for Advanced Microelectronic Materials." Chemistry 8(15): 3308-19.
    [54] Joshi, P., G. Madras. (2008) "Degradation of polycaprolactone in supercritical fluids." Polymer Degradation and Stability 93 (10) 1901–1908
    [55] Izquierdo, R.,M.T. Rodriguez, et al. (2008) "Biodegradable PCL scaffolds with an interconnected spherical pore network for tissue engineering." J Biomed Mater Res A. 85(1): 25-35.
    [56] Gross, R.A., B. Kalra. (2002) "Biodegradable polymers for the environment." Science. 297(5582):803-7
    [57] Pitt, C.G., F.I. Chasalow, et al. (1981) "Aliphatic polyesters I.: the degradation of poly(caprolactone) in vivo." Journal of Applied Polymer Science 11 3779–3787
    [58] An, J., C.K. Chua, et al. (2012) "Solvent-free fabrication of three dimensionally aligned poly caprolactone microfibers for engineering of anisotropic tissues." Biomedical Microdevices 14 863–872
    [59] Jung, J.H., M. Ree, et al. (2006) "Acid- and base-catalyzed hydrolyses of aliphatic polycarbonates and polyesters." Catalysis Today 115 283–287
    [60] Hernández, A.R., O. C. Contreras, et al. (2013) "Poly(ε-caprolactone) Degradation Under Acidic and Alkaline Conditions." American Journal of Polymer Science 3(4): 70-75
    [61] Tokiwa, Y., T. Suzuki (1977) "Hydrolysis of polyesters by lipases." Nature 270:76–78
    [62] Steinbüchel, A., H.E. Valentin. (1995) "Diversity of bacterial polyhydroxyalkanoates." FEMS Microbiol Lett 128:219–228
    [63] Mergaert, J., A. Wouters , et al. (1995) "In situ biodegradation of poly(3-hydroxybutyrate) and poly(3-hydroxybutyrate- co -3-hydroxyvalerate) in natural waters." J Microbiol 41154–159
    [64] Premraj, R., D. Mekush. (2005) "Biodegradation of polymer." J Biotec. 4 186-193
    [65] Fukuzaki, H., M. Yoshida, et al. (1990) "Synthesis of low-molecular-weight copoly(l-lactic acid epsilon-caprolactone) by direct copolycondensation in the absence of catalysts, and enzymatic degradation of the polymers." Polymer, 31 2006–2014
    [66] Gan, Z., D. Yu, et al. (1999) "Enzymatic degradation of poly(ε-caprolactone)/ poly(DL-lactide) blends in phosphate buffer solution." Polymer 40 2859–2862
    [67] Harrison, K., M. Jenkins. (2004) "The effect of crystallinity and water absorption on the dynamic mechanical relaxation behaviour of polycaprolactone." Polym Int, 53(9) 1298–1304
    [68] Boxberg, Y., M. Schnabelrauch, et al. (2006) "Effect of hydrophilicity on the properties of a degradable polylactide." J Polym Sci B: Polym Phys 44: 656-64
    [69] Eldsaぴter, C., B. Erlandsson, et al. (2000) The biodegradation of amorphous and crystalline regions in film-blown poly(ε-caprolactone). Polymer 41 1297–1304
    [70] Anthea Maton. Human biology and health. Prentice Hall 1993. ISBN 0-13-981176-1 .
    [71] David L. Nelson and Michael M. Cox, Lehninger Principles of Biochemistry 6th Edition
    [72] R. Greger, U. Windhorst (Eds.) Comprehensive Human Physiology, Vol.2 Springer-Verlag Berlin Heidelberg 1996
    [73] Han, J., C. J. Branford-White, et al. (2010) "Preparation of poly(ε-caprolactone)/ poly(trimethylene carbonate) blend nanofibers by electrospinning." Carbohydrate Polymers 79 214–218
    [74] Elzein, T., M. Nasser-Eddine, et al. (2004) "FTIR study of polycaprolactone chain organization at interfaces." Journal of Colloid and Interface Science 273 381–387
    [75] Chang, H.M., H.C. Tsai, et al. (2014) "Ex vivo evaluation of biodegradable poly(ε-caprolactone) films indigestive fluids" Applied Surface Science 313 828–833
    [76] Gan, Z., Q. Liang, et al. (1997) "Enzymatic degradation of poly(ε-caprolactone) film in phosphate buffer solution containing lipases." Polymer Degradation and Stubility 56 209-213
    [77] Loh, X.J. (2013) "The Effect of pH on the Hydrolytic Degradation of Poly(e-caprolactone)-Block-Poly(ethylene glycol) Copolymers." Journal of Applied Polymer Science 127(3) 2046–2056
    [78] He, Y., Y. Inoue. (2000) "Novel FTIR method for determining the crystallinity of poly(ε-caprolactone)." Polymer International 49(6) 623–626
    [79] Gaona, L.A., J.L. Gómez Ribelles, et al. (2012) “Hydrolytic degradation of PLLA/PCL microporous membranes prepared by freeze extraction”. Polymer Degradation and Stability 97 1621-1632

    QR CODE