簡易檢索 / 詳目顯示

研究生: 郭哲成
Jhe-Cheng Guo
論文名稱: 聚己內酯/海藻酸摻合支架於骨組織工程之性質與應用研究
Applications and characterizations of Polycaprolactone/Alginate blended scaffolds for bone tissue engineering
指導教授: 陳建光
Jem-Kun Chen
口試委員: 周百謙
Pai-Chien Chou
鄭智嘉
Chih-Chia Cheng
李勝吉
Sheng-Ji Li
黃昭蓮
Jau-Langh Hwang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 156
中文關鍵詞: 海藻酸聚己內酯骨組織工程生物支架高分子摻合高分子半結晶態週期性動態培養
外文關鍵詞: Alginic acid, polycaprolactone, bone tissue engineering, biological scaffold, polymer blending, polymer semi-crystalline state, Cyclic stretching test
相關次數: 點閱:281下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究運用再結晶法來製備聚己內酯/海藻酸(PCL/ALG)摻合支架,利用ALG無定形態的高分子鏈混摻插排到PCL-diol的半結晶態高分子中,並進行冷凍乾燥來固定形貌,再利用鈣交聯反應製備出三維多孔隙支架。而我們將探討PCL/ALG摻合支架不同比例的形貌,並透過傅立葉轉換紅外線光譜儀(FT-IR)探討兩種高分子摻合狀態與ALG氫鍵轉移至PCL的變化。再從熱性質分析PCL在經過摻合後的相對結晶度下降32.5%,進而證實摻合支架的良好分散性與互溶性,而支架中高分子分散性的差異將改善PCL/ALG摻合支架的機械性質與降解率,使摻合支架提升30%的機械強度與25%的延展性,同時改善原本ALG及PCL過低的降解率特性,將降解率提高到17.2%。
    而為了進一步了解PCL/ALG摻合支架在骨組織工程的應用,我們將摻合支架進行人類成骨肉瘤MG-63細胞培養後的生物活性分析、成骨礦化分析及細胞在支架上的形貌與OCN、OPN蛋白質表徵。藉由這些分析驗證PCL/ALG摻合支架對於骨細胞的增殖與分化有明顯的幫助。最後,我們執行週期性動態培養測試,讓細胞在生長時接受外在力量刺激,並利用摻合支架的機械穩定性讓整體支架所受的應力相同,使應變均勻地對組織之結構、形態和功能產生影響,使其在提升細胞活性及分化能力表現更為顯著。


    In this study, we designed and fabricated the polycaprolactone / alginic acid (PCL/ALG) blended scaffolds by recrystallization method. ALG amorphous polymers were mixed dislocated PCL-diol semi-crystalline polymers. The PCL/ALG blended scaffolds freeze-dried and crosslinked with calcium ions (Ca2+) to form the PCL /ALG blended scaffolds.
    The morphology of PCL/ALG blended scaffolds in different proportions can be oberserved by Scanning electron microscope (SEM). The change in hydrogen bond transfer and compatibility of the two polymers by Fourier transform infrared spectroscopy (FT-IR). The analysis on thermal behaviors of PCL/ALG blended scaffolds is addressed to study. Because of low degree of relative crystallinity, it shows the good dispersion and miscibility of the blended scaffold. Furthmore, the difference in dispersion will improve the mechanical properties and degradation rate of PCL/ALG blended scaffolds.
    The growth behavior of MG-63 cells on the PCL / ALG blended scaffolds can be confirmed by biological activity analysis, osteogenic mineralization analysis, analysis of OCN、OPN protein characterization and cell morphology on the scaffold. In these results, the PCL/ALG blended scaffold promotes both cell proliferation and differentiation, and the morphology of cell aggregation and growth can also be clearly observed under the microscope. Lastly, we applied cyclic mechanical stretching to MG-63 cells on blended scaffolds and investigate the growth behavior of MG-63 cells. Because of the CS-P2A1 blended scaffold has good mechanical properties to make the stress distribute evenly, it shows more significant in enhancing cell activity and differentiation ability.

    摘要 II Abstract IV 致謝 VI 目錄 1 圖目錄 7 表目錄 11 第1章 緒論 13 1.1 研究背景 13 1.2 研究動機與目的 15 第2章 理論與文獻回顧 19 2.1 再生醫學 19 2.2 組織工程學 20 2.2.1 起源與定義 20 2.2.2 組織工程的特性與應用 21 2.3 骨組織工程(BTE) 24 2.4 骨骼的構造與形成 25 2.5 骨組織細胞的種類與作用 28 2.5.1 骨組織細胞的種類 28 2.5.2 骨重塑 30 2.6 機械刺激骨組織之影響 31 2.7 支架材料之選擇 33 2.7.1 天然聚合物 34 2.7.2 合成聚合物 35 2.7.3 海藻酸Alginic acid 35 2.7.4 聚己內酯Poly (ε-caprolactone) 36 2.8 高分子摻合 37 2.9 高分子再結晶理論 39 2.9.1 高分子結晶結構 40 2.9.2 成核理論 41 2.9.3 Avrami方程式 42 2.9.4 晶體成長 43 2.9.5 PCL/ALG摻合再結晶理論 44 第3章 儀器原理 45 3.1 高解析度場發射掃描式電子顯微鏡 45 3.2 傅立葉轉換紅外線光譜儀 47 3.3 X光繞射分析儀 52 3.4 熱重量分析儀 55 3.5 差掃描熱量分析儀 58 3.6 冷光影像照相分析儀 60 第4章 實驗流程與方法 63 4.1 實驗流程圖 63 4.2 實驗藥品 64 4.3 實驗儀器 67 4.4 實驗步驟 70 4.4.1 PCL/ALG摻合支架製備 70 4.4.2 PCL/ALG摻合支架之結構形貌分析 72 4.4.3 PCL/ALG摻合支架之性質分析 73 4.4.4 PCL/ALG摻合支架之熱性質與結晶狀態分析 74 4.4.5 PCL/ALG摻合支架之機械性質與降解率分析 77 4.4.6 人類成骨肉瘤細胞MG-63細胞培養 79 4.4.7 MG-63細胞活性測試 81 4.4.8 PCL/ALG摻合支架之成骨分化能力分析 84 4.4.9 MG-63於支架上生長之蛋白質表徵 87 4.4.10 PCL/ALG摻合支架上MG-63細胞成長形貌觀察 94 4.4.11 週期性動態培養測試(Cyclic stretching test) 95 第5章 結果與討論 97 5.1 PCL/ALG摻合支架之結構形貌分析 97 5.1.1 SEM表面型貌分析 97 5.2 PCL/ALG摻合支架之性質分析 103 5.2.1 EDX元素比例分析 103 5.2.2 FT-IR定性及氫鍵變化分析 105 5.3 PCL/ALG摻合支架之熱性質與結晶狀態分析 108 5.3.1 TGA及DSC檢測分析 108 5.3.2 XRD檢測分析 113 5.4 PCL/ALG摻合支架之機械性質與降解率分析 115 5.4.1 UTM壓縮試驗分析 115 5.4.2 降解率分析 118 5.5 PCL/ALG摻合支架之生物相容性分析 121 5.5.1 摻合支架之細胞活性測試 121 5.6 PCL/ALG摻合支架之成骨分化能力分析 123 5.6.1 摻合支架之細胞鹼性磷酸酶活性(ALP)分析 123 5.6.2 摻合支架之細胞礦化分析 124 5.7 PCL/ALG摻合支架上細胞生長之表徵 128 5.7.1 MG-63細胞於支架上生長之蛋白質表徵 128 5.7.2 MG-63細胞於支架上生長形貌觀察 131 5.8 週期性動態培養測試 132 第6章 結論 137 參考資料 139

    參考資料
    1. Brennan-Olsen, S.L., et al., Prevalence of arthritis according to age, sex and socioeconomic status in six low and middle income countries: analysis of data from the World Health Organization study on global AGEing and adult health (SAGE) Wave 1. BMC Musculoskelet Disord, 2017. 18(1): p. 271.
    2. Sabir, M.I., X. Xu, and L. Li, A review on biodegradable polymeric materials for bone tissue engineering applications. Journal of Materials Science, 2009. 44(21): p. 5713-5724.
    3. Kim, M.S. and G. Kim, Three-dimensional electrospun polycaprolactone (PCL)/alginate hybrid composite scaffolds. Carbohydrate Polymers, 2014. 114: p. 213-221.
    4. Mason, C. and P. Dunnill, A brief definition of regenerative medicine. 2008.
    5. Akter, F., Chapter 1 - What is Tissue Engineering?, in Tissue Engineering Made Easy, F. Akter, Editor. 2016, Academic Press. p. 1-2.
    6. Suh, H., Tissue restoration, tissue engineering and regenerative medicine. Yonsei Med J, 2000. 41(6): p. 681-4.
    7. Akter, F., Chapter 2 - Principles of Tissue Engineering, in Tissue Engineering Made Easy, F. Akter, Editor. 2016, Academic Press. p. 3-16.
    8. Olson, J.L., A. Atala, and J.J. Yoo, Tissue engineering: current strategies and future directions. Chonnam medical journal, 2011. 47(1): p. 1-13.
    9. Utracki, L.A., Economics of polymer blends. Polymer Engineering & Science, 1982. 22(17): p. 1166-1175.
    10. Brivanlou, A.H., et al., Setting Standards for Human Embryonic Stem Cells. Science, 2003. 300(5621): p. 913-916.
    11. Vasita, R. and D.S. Katti, Growth factor-delivery systems for tissue engineering: a materials perspective. Expert review of medical devices, 2006. 3(1): p. 29-47.
    12. Badylak, S.F., The extracellular matrix as a biologic scaffold material. Biomaterials, 2007. 28(25): p. 3587-3593.
    13. Blais, M., et al., Concise review: tissue‐engineered skin and nerve regeneration in burn treatment. Stem cells translational medicine, 2013. 2(7): p. 545-551.
    14. Amini, A.R., C.T. Laurencin, and S.P. Nukavarapu, Bone tissue engineering: recent advances and challenges. Critical Reviews™ in Biomedical Engineering, 2012. 40(5).
    15. Chung, C. and J.A. Burdick, Engineering cartilage tissue. Advanced drug delivery reviews, 2008. 60(2): p. 243-262.
    16. Kasten, P., et al., Porosity and pore size of β-tricalcium phosphate scaffold can influence protein production and osteogenic differentiation of human mesenchymal stem cells: an in vitro and in vivo study. Acta biomaterialia, 2008. 4(6): p. 1904-1915.
    17. Blunk, T., et al., Differential effects of growth factors on tissue-engineered cartilage. Tissue engineering, 2002. 8(1): p. 73-84.
    18. Akter, F. and J. Ibanez, Chapter 8 - Bone and Cartilage Tissue Engineering, in Tissue Engineering Made Easy, F. Akter, Editor. 2016, Academic Press. p. 77-97.
    19. Clarke, B., Normal bone anatomy and physiology. Clinical journal of the American Society of Nephrology, 2008. 3(Supplement 3): p. S131-S139.
    20. Gilbert, S.F., J.M. Opitz, and R.A. Raff, Resynthesizing evolutionary and developmental biology. Developmental biology, 1996. 173(2): p. 357-372.
    21. Kahn, A. and D. Simmons, Investigation of cell lineage in bone using a chimaera of chick and quail embryonic tissue. Nature, 1975. 258(5533): p. 325-327.
    22. In Vitro Osteogenic Differentiation of Human ES Cells. Cloning and Stem Cells, 2003. 5(2): p. 149-155.
    23. Huang, Z., et al., The sequential expression profiles of growth factors from osteroprogenitors to osteoblasts in vitro. Tissue engineering, 2007. 13(9): p. 2311-2320.
    24. Jaiswal, N., et al., Osteogenic differentiation of purified, culture‐expanded human mesenchymal stem cells in vitro. Journal of cellular biochemistry, 1997. 64(2): p. 295-312.
    25. Robert Proulx Heaney , G.D.W. Bone: Remodeling,growth and development,Bone remodeling. Encyclopædia Britannica,2019 March 19; Available from: https://www.britannica.com/science/bone-remodeling.
    26. Rucci, N., Molecular biology of bone remodelling. Clinical cases in mineral and bone metabolism : the official journal of the Italian Society of Osteoporosis, Mineral Metabolism, and Skeletal Diseases, 2008. 5(1): p. 49-56.
    27. The Sequential Expression Profiles of Growth Factors from Osteroprogenitors to Osteoblasts In Vitro. Tissue Engineering, 2007. 13(9): p. 2311-2320.
    28. Jaalouk, D.E. and J. Lammerding, Mechanotransduction gone awry. Nature reviews Molecular cell biology, 2009. 10(1): p. 63-73.
    29. Palomares, K.T.S., et al., Mechanical stimulation alters tissue differentiation and molecular expression during bone healing. Journal of Orthopaedic Research, 2009. 27(9): p. 1123-1132.
    30. Boerckel, J.D., et al., In vivo model for evaluating the effects of mechanical stimulation on tissue-engineered bone repair. Journal of biomechanical engineering, 2009. 131(8).
    31. Chu, J., et al., Biphasic regulation of myosin light chain phosphorylation by p21-activated kinase modulates intestinal smooth muscle contractility. J Biol Chem, 2013. 288(2): p. 1200-13.
    32. Slack, C., M.H. Flint, and B.M. Thompson, The effect of tensional load on isolated embryonic chick tendons in organ culture. Connect Tissue Res, 1984. 12(3-4): p. 229-47.
    33. Boerckel, J.D., et al., In Vivo Model for Evaluating the Effects of Mechanical Stimulation on Tissue-Engineered Bone Repair. Journal of Biomechanical Engineering, 2009. 131(8).
    34. Zhang, L., J. Hu, and K.A. Athanasiou, The role of tissue engineering in articular cartilage repair and regeneration. Critical Reviews™ in Biomedical Engineering, 2009. 37(1-2).
    35. Neidlinger‐Wilke, C., H.J. Wilke, and L. Claes, Cyclic stretching of human osteoblasts affects proliferation and metabolism: a new experimental method and its application. Journal of Orthopaedic Research, 1994. 12(1): p. 70-78.
    36. Stanford, C., J. Morcuende, and R. Brand, Proliferative and phenotypic responses of bone‐like cells to mechanical deformation. Journal of Orthopaedic Research, 1995. 13(5): p. 664-670.
    37. Matsuda, N., et al., Proliferation and differentiation of human osteoblastic cells associated with differential activation of MAP kinases in response to epidermal growth factor, hypoxia, and mechanical stressin vitro. Biochemical and biophysical research communications, 1998. 249(2): p. 350-354.
    38. Tanaka, S.M., et al., Effects of broad frequency vibration on cultured osteoblasts. Journal of biomechanics, 2003. 36(1): p. 73-80.
    39. You, L., et al., A model for strain amplification in the actin cytoskeleton of osteocytes due to fluid drag on pericellular matrix. Journal of biomechanics, 2001. 34(11): p. 1375-1386.
    40. Romualdo J. Segurola, Jr., M. Ira, and E.S. Bauer, Strain-Induced Dual Alignment of L6 Rat Skeletal Muscle Cells. In Vitro Cellular & Developmental Biology. Animal, 1998. 34(8): p. 609-612.
    41. Chen, Y.-J., et al., Mechanoregulation of osteoblast-like MG-63 cell activities by cyclic stretching. Journal of the Formosan Medical Association, 2014. 113(7): p. 447-453.
    42. Tonda-Turo, C., et al., Biomimetic polyurethane–Based fibrous scaffolds. Materials Letters, 2016. 167: p. 9-12.
    43. Suesca, E., et al., Multifactor analysis on the effect of collagen concentration, cross-linking and fiber/pore orientation on chemical, microstructural, mechanical and biological properties of collagen type I scaffolds. Materials Science and Engineering: C, 2017. 77: p. 333-341.
    44. Asadi, N., et al., Common Biocompatible Polymeric Materials for Tissue Engineering and Regenerative Medicine. Materials Chemistry and Physics, 2019: p. 122528.
    45. Albuquerque, P., et al., Approaches in biotechnological applications of natural polymers. 2016.
    46. Seal, B., T. Otero, and A. Panitch, Polymeric biomaterials for tissue and organ regeneration. Materials Science and Engineering: R: Reports, 2001. 34(4-5): p. 147-230.
    47. Markstedt, K., et al., 3D bioprinting human chondrocytes with nanocellulose–alginate bioink for cartilage tissue engineering applications. Biomacromolecules, 2015. 16(5): p. 1489-1496.
    48. Coleman, M.M., et al., A practical guide to polymer miscibility. Polymer, 1990. 31(7): p. 1187-1203.
    49. Hobbs, S.Y., M.E.J. Dekkers, and V.H. Watkins, Effect of interfacial forces on polymer blend morphologies. Polymer, 1988. 29(9): p. 1598-1602.
    50. Paul, D.R. and L.H. Sperling, Multicomponent polymer materials. 1986.
    51. Deng, Y., et al., Optimising Ductility of Poly(Lactic Acid)/Poly(Butylene Adipate-co-Terephthalate) Blends Through Co-continuous Phase Morphology. Journal of Polymers and the Environment, 2018. 26(9): p. 3802-3816.
    52. Ranganathaiah, C. and G. Kumaraswamy, New method of determining miscibility in binary polymer blends through hydrodynamic interaction: The free volume approach. Journal of applied polymer science, 2009. 111(2): p. 577-588.
    53. Okoroafor, E.U., J.P. Villemaire, and J.F. Agassant, The viscosity of immiscible polymer blends: influences of the interphase and deformability. Polymer, 1992. 33(24): p. 5264-5271.
    54. Tsuji, H., et al., Blends of aliphatic polyestersPart 7. Effects of poly (L-lactide-co-caprolactone) on morphology, structure, crystallization, and physical properties of blends of poly (L-lactide) and poly (caprolactone). Polymer international, 2003. 52(2): p. 269-275.
    55. Kuo, S.-W., et al., Effect of bisphenol A on the miscibility, phase morphology, and specific interaction in immiscible biodegradable poly(ε-caprolactone)/poly(L-lactide) blends. Journal of Applied Polymer Science, 2006. 100(2): p. 1146-1161.
    56. Zhuravlev, E., et al., Kinetics of nucleation and crystallization in poly(ɛ-caprolactone) (PCL). Polymer, 2011. 52(9): p. 1983-1997.
    57. Sawyer, L., D.T. Grubb, and G.F. Meyers, Polymer microscopy. 2008: Springer Science & Business Media.
    58. Ehrenstein, G.W., Polymeric materials: structure, properties, applications. 2012: Carl Hanser Verlag GmbH Co KG.
    59. Vittoria, B. and L. M. Gouveia, Estimation of thermodynamic and kinetic secondary nucleation parameters in poly(styrene-co-maleic anhydride)/poly(e- caprolactone) blends. Revista Latinoamericana de Metalurgia y Materiales, 2011. 31: p. 26-34.
    60. Sear, R.P., Quantitative studies of crystal nucleation at constant supersaturation: experimental data and models. CrystEngComm, 2014. 16(29): p. 6506-6522.
    61. Kumar, A., Fundamentals of polymers. 1998.
    62. Lehmann, J., The observation of the crystallization of high polymer substances from the solution by nuclear magnetic resonance. Colloid & Polymer Science, 1966. 212(2): p. 167-168.
    63. Balsamo, V. and L.M. Gouveia, Estimation of thermodynamic and kinetic secondary nucleation parameters in poly (styrene-co-maleic anhydride)/poly (ε-caprolactone) blends. Revista Latinoamericana de Metalurgia y Materiales, 2010: p. 26-34.
    64. Campbell, A.K. and A.K. Campbell, Chemiluminescence: principles and applications in biology and medicine. 1988.
    65. Gupta, K.K., et al., Polycaprolactone composites with TiO 2 for potential nanobiomaterials: tunable properties using different phases. Physical Chemistry Chemical Physics, 2012. 14(37): p. 12844-12853.

    無法下載圖示 全文公開日期 2025/07/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE