簡易檢索 / 詳目顯示

研究生: 葉羅納
Ronald
論文名稱: 膠凝時間對可能用作柴油吸收劑藻酸鹽氣凝膠吸收率的影響
The Influence of Gelation Time on the Absorptivity of Alginate Aerogel with Intended Applications as Absorbent for Diesel Uptake
指導教授: 朱義旭
Yi-Hsu Ju
翁玉鑽
Artik Elisa Angkawijaya
口試委員: 朱義旭
Yi-Hsu Ju
翁玉鑽
Artik Elisa Angkawijaya
吳耀豐
Alchris Woo Go
陳燿騰
Yaw-Terng Chern
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 76
中文關鍵詞: 海藻酸鈣膠凝時間柴油吸收能力可重複使用性疏水性氣凝膠
外文關鍵詞: Calcium alginate, Crosslinking time, Diesel, Absorption capacity, Reusability, Hydrophobic aerogel
相關次數: 點閱:485下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 漏油是海洋生態系統及其周邊的嚴重問題之一,已有一些技術可緩解這一問題,其中之一就是吸收。本研究探討使用自然可得的生物質,即海藻酸鈉,作為吸收劑合成的前體。雖然海藻酸鹽吸收劑合成和改性的各種方法已被廣泛研究,但關於凝膠時間對其性質和吸收率的影響所知甚少。本研究使用 1 w/v % 海藻酸鈉與 1 wt% CaCl 交聯 0、3、6 和 12 小時所得之海藻酸鹽氣凝膠(AA)分別稱為 AA-0、AA-3、AA-6、AA-12。凝膠時間對 AA 物理化學性質的影響藉由電感耦合等離子體發射光譜儀 (ICP-OES) 分析、使用壓汞孔隙率計 (MIP) 量測總孔體積和使用萬能測試機(UTM)評估其抗壓強度;結果顯示凝膠時間越長,表觀密度和鈣含量增加,從而增加了 AA 氣凝膠的最大應力。本研究使用柴油為模型吸收物。在合成的 AA 中,AA-3 具有最高的吸收能力(Q=11.20 g/g)、可重複使用性(最多 29 次循環)和再吸收能力(Q= 4.09 g/g)。通過添加單寧酸和十二烷硫醇進行表面改性,將親水性 AA-3 轉化為更疏水的 AA-3Do。傅里葉變換紅外 (FTIR) 數據證實了在 AA-3Do 中成功地加入了添加劑。 AA-3Do 顯示能極快速吸收柴油,初始速率 ((R_0) 為 1.12E+09 g/g.s,但緩慢地吸收水 (R_0 = 27.6526 g/g.s),在其動力學數據中觀察到 2 吸收平衡。擬二級動力學和兩步線性驅動力 (LDF) 模型分別可最佳地描述柴油和水的吸收。本研究還探討了可重複使用性,並證明了 AA-3Do 偏好吸收柴油勝過吸收水。


    The oil spill is one of the serious issues for the marine ecosystem and its surrounding, thus some techniques have been established to alleviate this problem, one of which is absorption. This study explored the use of naturally available biomass, namely sodium alginate, as the precursor for absorbent synthesis. While various methods for alginate absorbent synthesis and modifications have been extensively studied, not much is known about the effect of gelation time on its properties and absorptivity. Here, alginate aerogels, namely AA-0, AA-3, AA-6, AA-12, were prepared using 1 w/v % sodium alginate crosslinked with 1 wt% CaCl under gelation times of 0, 3, 6, and 12 h, respectively. The influence of gelation time on the physico-chemical properties of the AAs was evaluated by means of inductively coupled plasma optical emission spectrometer (ICP-OES) analysis, total pore volume using Mercury Intrusion Porosimeter (MIP), and compressive strength using the Universal Testing Machine (UTM); and showed that longer gelation time, the apparent density and the calcium content were increased, therefore increasing the maximum stress of the AA aerogel. Diesel was used as the model absorbate in this study. Out of the synthesized AAs, the one prepared with 3 h crosslinking produces AA-3 with the highest absorption capacity (Q=11.20 g/g), reusability (up to 29 cycle), and re-absorption capacity (Q= 4.09 g/g). Surface modification through the addition of tannic acid and dodecanthiol was done to transform the hydrophilic AA-3 into more hydrophobic AA-3Do. The Fourier Transform Infrared (FTIR) data confirmed the incorporation of the additives in AA-3Do. The AA-3Do shown to very rapidly absorb diesel with the initial rate (R_0) of 1.12E+09 g/g.s but absorb water more gradually (R_0 = 27.6526 g/g.s) with 2 uptake equilibrium observed in its kinetic data. The pseudo second order kinetic and 2 steps linear driving force (LDF) model best described the diesel and water uptake, respectively. The study also explored the reusability and demonstrated the preference of AA-3Do for diesel uptake.

    摘要 ii ABSTRACT iv ACKNOWLEDGEMENT vi TABLE OF CONTENT vii LIST OF TABLES ix LIST OF FIGURES x CHAPTER 1 1 1.1. Background 1 1.2. Goal and Objectives 3 1.3. Significance of the Study 4 1.4. Scope and Limitations 5 CHAPTER 2 6 2.1. Oil-spill 6 2.2. Removal of oil spill 8 2.2.1. Mechanical containment and recovery 8 2.2.2. In-situ burning 8 2.2.3. Oil dispersant 9 2.2.4. Absorption 9 2.3. Oil Absorbent 10 2.4. Alginate 14 2.4.1. Microbial alginate 16 2.4.2. Alginate aerogel synthesis 17 2.5. Hydrophobic Modification 19 CHAPTER 3 25 3.1. Materials 25 3.2. Methods 26 3.2.1. Preparation of alginate aerogel 26 3.2.2. Hydrophobic modification of aerogel 26 3.2.3. Characterization 27 3.2.4. Absorption study 28 3.2.5. Reusability 29 CHAPTER 4 31 4.1. Synthesis and characterization of alginate aerogels 31 4.2. Diesel Absorption Study 32 4.2.1. Absorption kinetics and capacity 32 4.2.2. Absorption Reusability 37 4.3. Water absorption study of AA-3 aerogel 39 4.4. Hydrophobic aerogel 44 4.4.1. Absorption capability of modified AA aerogel 46 CHAPTER 5 54 REFERENCES 55 APPENDIX 64

    1. Machín-Ramírez, C., et al., Slurry-phase biodegradation of weathered oily sludge waste. Chemosphere, 2008. 70(4): p. 737-744.
    2. ITOPF. Oil Tanker Spill Statistics 2019. 2020 [cited 2020 26/08]; Available from: www.itopf.org/fileadmin/data/Documents/Company_Lit/Oil_Spill_Stats_brochure_2020_for_web.pdf.
    3. Romero, I.C., et al., Large-scale deposition of weathered oil in the Gulf of Mexico following a deep-water oil spill. Environ Pollut, 2017. 228: p. 179-189.
    4. Degnarain, N. Was The Deliberate Sinking Of The Mauritius Oil Spill Vessel, Wakashio, An International Crime? 2020 [cited 2020 09/06].
    5. Saramandi, A. Dead whales wash ashore as Mauritius faces oil spill aftermath. 2020 [cited 2020 09/06].
    6. OCHA, Mauritius: MV Wakashio Oil Spill - Flash Update No. 4 (17 August 2020). 2020.
    7. Evans, D.D., et al., In Situ Burning of Oil Spills. Journal of research of the National Institute of Standards and Technology, 2001. 106(1): p. 231-278.
    8. EPA. Oil Spills Response Techniques. EPA’s Response Techniques [Online] 2020 [cited 2020; Available from: https://www.epa.gov/emergency-response/epas-response-techniques#Oil%20Spill%20Response%20Techniques.
    9. Fritt-Rasmussen, J., S. Wegeberg, and K. Gustavson, Review on Burn Residues from In Situ Burning of Oil Spills in Relation to Arctic Waters. Water, Air, & Soil Pollution, 2015. 226(10): p. 329.
    10. Hobbs, J.L.R.R.J.F. and V. Peter, Particle and Gas Emissions from an In Situ Burn of Crude Oil on the Ocean. Journal of the Air & Waste Management Association, 1996. 46(3): p. 251-259.
    11. Mullin, J.V. and M.A. Champ, Introduction/Overview to In Situ Burning of Oil Spills. Spill Science & Technology Bulletin, 2003. 8(4): p. 323-330.
    12. Doshi, B., M. Sillanpää, and S. Kalliola, A review of bio-based materials for oil spill treatment. Water Research, 2018. 135: p. 262-277.
    13. Zhu, K., et al., Oil spill cleanup from sea water by carbon nanotube sponges. Frontiers of Materials Science, 2013. 7(2): p. 170-176.
    14. Mazrouei-Sebdani, Z., et al., Sodium silicate based aerogel for absorbing oil from water: the impact of surface energy on the oil/water separation. Materials Research Express, 2019. 6(8): p. 085059.
    15. Khan, E., W. Virojnagud, and T. Ratpukdi, Use of biomass sorbents for oil removal from gas station runoff. Chemosphere, 2004. 57(7): p. 681-689.
    16. Nguyen, S.T., et al., Cellulose Aerogel from Paper Waste for Crude Oil Spill Cleaning. Industrial & Engineering Chemistry Research, 2013. 52(51): p. 18386-18391.
    17. Zhu, Y., et al., 13 - Polysaccharide nanoparticles for cancer drug targeting, in Polysaccharide Carriers for Drug Delivery, S. Maiti and S. Jana, Editors. 2019, Woodhead Publishing. p. 365-396.
    18. Quignard, F., R. Valentin, and F. Di Renzo, Aerogel materials from marine polysaccharides. New Journal of Chemistry, 2008. 32(8): p. 1300-1310.
    19. Turánek, J., et al., 13 - Modification of liposomal surface by polysaccharides: Preparation, characterization, and application for drug targeting, in Functional Polysaccharides for Biomedical Applications, S. Maiti and S. Jana, Editors. 2019, Woodhead Publishing. p. 433-467.
    20. Konur, O., Chapter 12 - The Top Citation Classics in Alginates for Biomedicine, in Seaweed Polysaccharides, J. Venkatesan, S. Anil, and S.-K. Kim, Editors. 2017, Elsevier. p. 223-249.
    21. Eiselt, P., K.Y. Lee, and D.J.J.M. Mooney, Rigidity of two-component hydrogels prepared from alginate and poly (ethylene glycol)− diamines. 1999. 32(17): p. 5561-5566.
    22. Yang, J., et al., Super-elastic and highly hydrophobic/superoleophilic sodium alginate/cellulose aerogel for oil/water separation. Cellulose, 2018. 25(6): p. 3533-3544.
    23. Michel, J. and M. Fingas, Oil Spills: Causes, Consequences, Prevention, and Countermeasures, in Fossil Fuels. p. 159-201.
    24. Chaerun, S.K., et al., Bioremediation of coastal areas 5 years after the Nakhodka oil spill in the Sea of Japan: isolation and characterization of hydrocarbon-degrading bacteria. Environment International, 2004. 30(7): p. 911-922.
    25. Rauckyte, T., D.J. Hargreaves, and Z. Pawlak, Determination of heavy metals and volatile aromatic compounds in used engine oils and sludges. Fuel, 2006. 85(4): p. 481-485.
    26. Medina-Bellver, J.I., et al., Evidence for in situ crude oil biodegradation after the Prestige oil spill. 2005. 7(6): p. 773-779.
    27. Clarke, K.C. and J.J. Hemphill, The Santa Barbara Oil Spill: A Retrospective. Yearbook of the Association of Pacific Coast Geographers, 2002. 64: p. 157-162.
    28. Guo, W., S. Zhang, and G. Wu, Quantitative oil spill risk from offshore fields in the Bohai Sea, China. Science of The Total Environment, 2019. 688: p. 494-504.
    29. Reddy, C.M., et al., Composition and fate of gas and oil released to the water column during the <em>Deepwater Horizon</em> oil spill. Proceedings of the National Academy of Sciences, 2012. 109(50): p. 20229.
    30. Fingas, M., Oil spill science and technology. 2016: Gulf professional publishing.
    31. Hart, A., A review of technologies for transporting heavy crude oil and bitumen via pipelines. Journal of Petroleum Exploration and Production Technology, 2014. 4(3): p. 327-336.
    32. Lord, D.L., Crude Oil Properties Overview. 2014, Sandia National Lab.(SNL-NM), Albuquerque, NM (United States).
    33. Stout, S.A., G.S. Douglas, and A.D. Uhler, 11 - Chemical fingerprinting of gasoline and distillate fuels, in Standard Handbook Oil Spill Environmental Forensics (Second Edition), S.A. Stout and Z. Wang, Editors. 2016, Academic Press: Boston. p. 509-564.
    34. Wilkinson, J., et al., Oil spill response capabilities and technologies for ice-covered Arctic marine waters: A review of recent developments and established practices. 2017. 46(3): p. 423-441.
    35. Zheng, Q., 8.06 - SAR Detection of Ocean Processes and Bottom Topography, in Comprehensive Remote Sensing, S. Liang, Editor. 2018, Elsevier: Oxford. p. 145-196.
    36. Jin, S.-J., S.-Y. Lim, and S.-H. Yoo, The public value of building large oil spill response vessels in Korea. Marine Policy, 2018. 88: p. 242-247.
    37. van Gelderen, L., et al., Importance of the slick thickness for effective in-situ burning of crude oil. Fire Safety Journal, 2015. 78: p. 1-9.
    38. Buist, I., et al., Herding surfactants to contract and thicken oil spills in pack ice for in situ burning. Cold Regions Science and Technology, 2011. 67(1): p. 3-23.
    39. Almeda, R., S. Cosgrove, and E.J. Buskey, Oil Spills and Dispersants Can Cause the Initiation of Potentially Harmful Dinoflagellate Blooms (“Red Tides”). Environmental Science & Technology, 2018. 52(10): p. 5718-5724.
    40. Olga, V.R., et al., Cleanup of water surface from oil spills using natural sorbent materials. 2014. 10: p. 145-150.
    41. Zhang, X., et al., Highly Compressible and Hydrophobic Anisotropic Aerogels for Selective Oil/Organic Solvent Absorption. ACS Sustainable Chemistry & Engineering, 2019. 7(1): p. 332-340.
    42. Hu, H., et al., Compressible Carbon Nanotube–Graphene Hybrid Aerogels with Superhydrophobicity and Superoleophilicity for Oil Sorption. Environmental Science & Technology Letters, 2014. 1(3): p. 214-220.
    43. Gui, X., et al., Recyclable carbon nanotube sponges for oil absorption. Acta Materialia, 2011. 59(12): p. 4798-4804.
    44. Asadpour, R., et al., Application of Sorbent materials in Oil Spill management: A review. 2013. 2(2).
    45. Angelova, D., et al., Kinetics of oil and oil products adsorption by carbonized rice husks. Chemical Engineering Journal, 2011. 172(1): p. 306-311.
    46. Adebajo, M.O., et al., Porous materials for oil spill cleanup: a review of synthesis and absorbing properties. 2003. 10(3): p. 159-170.
    47. Rengasamy, R., D. Das, and C.P.J.J.o.H.M. Karan, Study of oil sorption behavior of filled and structured fiber assemblies made from polypropylene, kapok and milkweed fibers. 2011. 186(1): p. 526-532.
    48. Sehaqui, H., Q. Zhou, and L.A. Berglund, High-porosity aerogels of high specific surface area prepared from nanofibrillated cellulose (NFC). Composites Science and Technology, 2011. 71(13): p. 1593-1599.
    49. Luo, Y., et al., Highly reusable and superhydrophobic spongy graphene aerogels for efficient oil/water separation. Scientific Reports, 2017. 7(1): p. 7162.
    50. Robitzer, M., et al., Nanostructure of Calcium Alginate Aerogels Obtained from Multistep Solvent Exchange Route. Langmuir, 2008. 24(21): p. 12547-12552.
    51. Tian, X., et al., Amphiphilic Calcium Alginate Carbon Aerogels: Broad-Spectrum Adsorbents for Ionic and Solvent Dyes with Multiple Functions for Decolorized Oil–Water Separation. ACS Sustainable Chemistry & Engineering, 2020. 8(34): p. 12755-12767.
    52. Deze, E.G., et al., Porous alginate aerogel beads for effective and rapid heavy metal sorption from aqueous solutions: Effect of porosity in Cu2+ and Cd2+ ion sorption. Chemical Engineering Journal, 2012. 209: p. 537-546.
    53. Gao, C., et al., Synergistic preparation of modified alginate aerogel with melamine/chitosan for efficiently selective adsorption of lead ions. Carbohydrate Polymers, 2021. 256: p. 117564.
    54. Li, Y., et al., A robust salt-tolerant superoleophobic aerogel inspired by seaweed for efficient oil-water separation in marine environments. Phys Chem Chem Phys, 2016. 18(36): p. 25394-25400.
    55. E, T., et al., Graphene oxide-montmorillonite/sodium alginate aerogel beads for selective adsorption of methylene blue in wastewater. Journal of Alloys and Compounds, 2020. 832: p. 154833.
    56. Dutta, P., et al., Efficient organic solvent and oil sorbent co-polyesters: Poly-9-octadecenylacrylate/methacrylate with 1-hexene. Reactive and Functional Polymers, 2013. 73(3): p. 457-464.
    57. Wang, Z., et al., Kinetic and equilibrium studies of hydrophilic and hydrophobic rice husk cellulosic fibers used as oil spill sorbents. Chemical Engineering Journal, 2015. 281: p. 961-969.
    58. Ho, Y.S. and G. McKay, Pseudo-second order model for sorption processes. Process Biochemistry, 1999. 34(5): p. 451-465.
    59. Sahoo, T.R. and B. Prelot, Chapter 7 - Adsorption processes for the removal of contaminants from wastewater: the perspective role of nanomaterials and nanotechnology, in Nanomaterials for the Detection and Removal of Wastewater Pollutants, B. Bonelli, et al., Editors. 2020, Elsevier. p. 161-222.
    60. Simonin, J.-P., On the comparison of pseudo-first order and pseudo-second order rate laws in the modeling of adsorption kinetics. Chemical Engineering Journal, 2016. 300: p. 254-263.
    61. Khosravi, M. and S. Azizian, A new kinetic model for absorption of oil spill by porous materials. Microporous and Mesoporous Materials, 2016. 230: p. 25-29.
    62. Kopelman, R., Fractal Reaction Kinetics. 1988. 241(4873): p. 1620-1626.
    63. Moen, E., B. Larsen, and K. Østgaard, Aerobic microbial degradation of alginate in Laminaria hyperborea stipes containing different levels of polyphenols. Journal of Applied Phycology, 1997. 9(1): p. 45.
    64. Montes, L., et al., Impact of drying on the sodium alginate obtained after polyphenols ultrasound-assisted extraction from Ascophyllum nodosum seaweeds. Carbohydrate Polymers, 2021. 272: p. 118455.
    65. LARSEN, B.R., Quantitative determination of the uronic acid composition of alginates. J Acta chem. scand, 1962. 16(8).
    66. McKee, J.W.A., et al., Alginate content and composition ofMacrocystis pyrifera from New Zealand. Journal of Applied Phycology, 1992. 4(4): p. 357-369.
    67. Papageorgiou, S.K., et al., Heavy metal sorption by calcium alginate beads from Laminaria digitata. Journal of Hazardous Materials, 2006. 137(3): p. 1765-1772.
    68. Grasdalen, H., B. Larsen, and O. Smidsrød, A pmr study of the composition and sequence of uronate residues in alginates. J Carbohydrate Research, 1979. 68(1): p. 23-31.
    69. Zhao, X., et al., Effect of molecular weight on the antioxidant property of low molecular weight alginate from Laminaria japonica. Journal of Applied Phycology, 2012. 24(2): p. 295-300.
    70. Minghou, J., et al., Studies on the M:G ratios in alginate. Developments in Hydrobiology, ed. M. K. Vol. Vol. 22. 1984, Dordrecht: Springer.
    71. Percival, E.E., M.F. Venegas Jara, and H. Weigel, Carbohydrates of the brown seaweed lessonia nigrescens. Phytochemistry, 1983. 22(6): p. 1429-1432.
    72. Feng, D. and C. Aldrich, Adsorption of heavy metals by biomaterials derived from the marine alga Ecklonia maxima. Hydrometallurgy, 2004. 73(1): p. 1-10.
    73. Hongu, T., G.O. Phillips, and M. Takigami, 7 - Polymer fibers for health and nutrition, in New Millennium Fibers, T. Hongu, G.O. Phillips, and M. Takigami, Editors. 2005, Woodhead Publishing. p. 218-246.
    74. Wang, L., et al., Microencapsulation of Ginger Volatile Oil Based on Gelatin/Sodium Alginate Polyelectrolyte Complex. Chemical and Pharmaceutical Bulletin, 2016. 64(1): p. 21-26.
    75. Wang, S., et al., A Comparison of Palladium Sorption Using Polyethylenimine Impregnated Alginate-Based and Carrageenan-Based Algal Beads. 2018. 8(2): p. 264.
    76. Ates, B., et al., Chemistry, Structures, and Advanced Applications of Nanocomposites from Biorenewable Resources. Chemical Reviews, 2020. 120(17): p. 9304-9362.
    77. Wang, S.-L., et al., Optimal temperature control of tissue embedded with gold nanoparticles for enhanced thermal therapy based on two-energy equation model. Journal of Thermal Biology, 2018. 74: p. 264-274.
    78. Zheng, W.Z., et al., The Ultrasonic Wave-Assisted Preparation and Modification by KH-550 of SiO2 Aerogels. Advanced Materials Research, 2012. 554-556: p. 580-583.
    79. Fang, B. and L. Binder, Enhanced surface hydrophobisation for improved performance of carbon aerogel electrochemical capacitor. Electrochimica Acta, 2007. 52(24): p. 6916-6921.
    80. De, S. and D. Robinson, Polymer relationships during preparation of chitosan–alginate and poly-l-lysine–alginate nanospheres. Journal of Controlled Release, 2003. 89(1): p. 101-112.
    81. Fang and I. Szleifer, Effect of Molecular Structure on the Adsorption of Protein on Surfaces with Grafted Polymers. Langmuir, 2002. 18(14): p. 5497-5510.
    82. Cheng, Y., et al., Reinforced low density alginate-based aerogels: Preparation, hydrophobic modification and characterization. Carbohydrate Polymers, 2012. 88(3): p. 1093-1099.
    83. Li, J., et al., A new insight to the effect of calcium concentration on gelation process and physical properties of alginate films. Journal of Materials Science, 2016. 51(12): p. 5791-5801.
    84. Yang, Y., et al., Construction of a Superhydrophobic Sodium Alginate Aerogel for Efficient Oil Absorption and Emulsion Separation. Langmuir, 2021. 37(2): p. 882-893.
    85. Saarai, A., et al. A comparative study of crosslinked sodium alginate/gelatin hydrogels for wound dressing. in Proceeding of the 4th WSEAS International Conference on Engineering Mechanics, Structures, Engineering Geology. WSEAS Press, Greece. 2011.
    86. Kildeeva, N., et al., Influence of Genipin Crosslinking on the Properties of Chitosan-Based Films. 2020. 12(5): p. 1086.
    87. Zhang, H., et al., Hydrogels with high mechanical strength cross-linked by a rosin-based crosslinking agent. RSC Advances, 2017. 7(67): p. 42541-42548.
    88. Kabiri, S., et al., Outstanding adsorption performance of graphene–carbon nanotube aerogels for continuous oil removal. Carbon, 2014. 80: p. 523-533.
    89. Yang, J., et al., Biomimetic superelastic sodium alginate-based sponges with porous sandwich-like architectures. Carbohydrate Polymers, 2021. 272: p. 118527.
    90. Ertesvåg, H. and S. Valla, The A modules of the Azotobacter vinelandii mannuronan-C-5-epimerase AlgE1 are sufficient for both epimerization and binding of Ca2+. Journal of bacteriology, 1999. 181(10): p. 3033-3038.
    91. Hay, I.D., et al., Genetics and regulation of bacterial alginate production. 2014. 16(10): p. 2997-3011.
    92. Chitnis, C.E. and D.E. Ohman, Genetic analysis of the alginate biosynthetic gene cluster of Pseudomonas aeruginosa shows evidence of an operonic structure. Mol Microbiol, 1993. 8(3): p. 583-93.
    93. Rehm, B.H.A., Bacterial polymers: biosynthesis, modifications and applications. Nature Reviews Microbiology, 2010. 8(8): p. 578-592.
    94. Sun, J. and H. Tan, Alginate-Based Biomaterials for Regenerative Medicine Applications. 2013. 6(4): p. 1285-1309.
    95. Skj»k-Bræk, G., H. Grasdalen, and B. Larsen, Monomer sequence and acetylation pattern in some bacterial alginates. Carbohydrate Research, 1986. 154(1): p. 239-250.
    96. Clementi, F., Alginate production by Azotobacter vinelandii. Crit Rev Biotechnol, 1997. 17(4): p. 327-61.
    97. Ma, L., et al., Synthesis of multiple Pseudomonas aeruginosa biofilm matrix exopolysaccharides is post‐transcriptionally regulated. 2012. 14(8): p. 1995-2005.
    98. Iglesias-Mejuto, A. and C.A. García-González, 3D-printed alginate-hydroxyapatite aerogel scaffolds for bone tissue engineering. Materials Science and Engineering: C, 2021. 131: p. 112525.
    99. Rodríguez-Dorado, R., et al., Design of Aerogels, Cryogels and Xerogels of Alginate: Effect of Molecular Weight, Gelation Conditions and Drying Method on Particles’ Micromeritics. 2019. 24(6): p. 1049.
    100. Qin, Y., 3 - A brief description of textile fibers, in Medical Textile Materials, Y. Qin, Editor. 2016, Woodhead Publishing. p. 23-42.
    101. Lee, B.-B., P. Ravindra, and E.-S. Chan, Size and Shape of Calcium Alginate Beads Produced by Extrusion Dripping. 2013. 36(10): p. 1627-1642.
    102. Wang, H., et al., Effect of calcium ions on the III steps of self-assembly of SA investigated with atomic force microscopy. International Journal of Food Properties, 2018. 21(1): p. 1995-2006.
    103. Cao, L., et al., Egg-box model-based gelation of alginate and pectin: A review. Carbohydrate Polymers, 2020. 242: p. 116389.
    104. Matsumoto, T., M. Kawai, and T. Masuda, influence of concentration and mannuronate/guluronate [correction of gluronate] ratio on steady flow properties of alginate aqueous systems. Biorheology, 1992. 29(4): p. 411-7.
    105. Yang, J.-S., Y.-J. Xie, and W. He, Research progress on chemical modification of alginate: A review. Carbohydrate Polymers, 2011. 84(1): p. 33-39.
    106. LeRoux, M.A., F. Guilak, and L.A. Setton, Compressive and shear properties of alginate gel: Effects of sodium ions and alginate concentration. Journal of Biomedical Materials Research, 1999. 47(1): p. 46-53.
    107. Tkalec, G., et al., Optimisation of critical parameters during alginate aerogels' production. Journal of Non-Crystalline Solids, 2016. 443: p. 112-117.
    108. George, M. and T.E. Abraham, Polyionic hydrocolloids for the intestinal delivery of protein drugs: Alginate and chitosan — a review. Journal of Controlled Release, 2006. 114(1): p. 1-14.
    109. Park, S. and M. Lee, Removal of copper and cadmium in acid mine drainage using Ca-alginate beads as biosorbent. Geosciences Journal, 2017. 21(3): p. 373-383.
    110. Chen, D., et al., Directly ambient pressure dried robust bridged silsesquioxane and methylsiloxane aerogels: effects of precursors and solvents. RSC Advances, 2019. 9(15): p. 8664-8671.
    111. Lin, Y., et al., Facile Fabrication of Mechanically Strong and Thermal Resistant Polyimide Aerogels with an Excess of Cross-Linker. Journal of Materials Research and Technology, 2020. 9(5): p. 10719-10731.
    112. Liao, W., et al., On controlling aerogel microstructure by freeze casting. Composites Part B: Engineering, 2019. 173: p. 107036.
    113. Lee, H., et al., Mussel-Inspired Surface Chemistry for Multifunctional Coatings. 2007. 318(5849): p. 426-430.
    114. Hofer, R., M. Textor, and N.J.L. Spencer, Alkyl phosphate monolayers, self-assembled from aqueous solution onto metal oxide surfaces. 2001. 17(13): p. 4014-4020.
    115. Iijima, M., Application 57 - Surface Modification of Nanoparticles by Silane Alkoxides and Their Application in Silicone-Based Polymer Nanocomposites, in Nanoparticle Technology Handbook (Third Edition), M. Naito, et al., Editors. 2018, Elsevier. p. 705-709.
    116. Cichosz, S. and A. Masek, Superiority of Cellulose Non-Solvent Chemical Modification over Solvent-Involving Treatment: Solution for Green Chemistry (Part I). 2020. 13(11): p. 2552.
    117. Chaudhury, M.K. and G.M.J.S. Whitesides, Correlation between surface free energy and surface constitution. 1992. 255(5049): p. 1230-1232.
    118. Chen, S., et al., A simple one-step modification of various materials for introducing effective multi-functional groups. Colloids and Surfaces B: Biointerfaces, 2014. 113: p. 125-133.
    119. Ejima, H., et al., One-Step Assembly of Coordination Complexes for Versatile Film and Particle Engineering. 2013. 341(6142): p. 154-157.
    120. Barrett, D.G., T.S. Sileika, and P.B. Messersmith, Molecular diversity in phenolic and polyphenolic precursors of tannin-inspired nanocoatings. Chemical Communications, 2014. 50(55): p. 7265-7268.
    121. Wang, Z., et al., Mussel-Inspired Surface Engineering for Water-Remediation Materials. Matter, 2019. 1(1): p. 115-155.
    122. Li, W., et al., Green approach to facilely design hydrophobic aerogel directly from bagasse. Industrial Crops and Products, 2021. 172: p. 113957.
    123. Chin, S.F., A.N. Binti Romainor, and S.C. Pang, Fabrication of hydrophobic and magnetic cellulose aerogel with high oil absorption capacity. Materials Letters, 2014. 115: p. 241-243.
    124. Traw, M.B. and N. Gift, Environmental Microbiology: Tannins & Microbial Decomposition of Leaves on the Forest Floor. The American Biology Teacher, 2010. 72(8): p. 506-512.
    125. Zhu, Q. and Q. Pan, Mussel-Inspired Direct Immobilization of Nanoparticles and Application for Oil–Water Separation. ACS Nano, 2014. 8(2): p. 1402-1409.
    126. Huang, S., et al., Fabrication of a Superhydrophobic, Fire-Resistant, and Mechanical Robust Sponge upon Polyphenol Chemistry for Efficiently Absorbing Oils/Organic Solvents. Industrial & Engineering Chemistry Research, 2015. 54(6): p. 1842-1848.
    127. Arbenz, A. and L. Avérous, Chemical modification of tannins to elaborate aromatic biobased macromolecular architectures. Green Chemistry, 2015. 17(5): p. 2626-2646.
    128. Salazar, P., M.-B. Martin, and J.L. González-Mora. Polydopamine-modified surfaces in biosensor applications. 2016.
    129. Stalder, A.F., et al., Low-bond axisymmetric drop shape analysis for surface tension and contact angle measurements of sessile drops. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2010. 364(1): p. 72-81.
    130. Brown, A.M., A step-by-step guide to non-linear regression analysis of experimental data using a Microsoft Excel spreadsheet. Computer Methods and Programs in Biomedicine, 2001. 65(3): p. 191-200.
    131. Smith, G., Chapter 10 - Multiple Regression, in Essential Statistics, Regression, and Econometrics, G. Smith, Editor. 2012, Academic Press: Boston. p. 297-331.
    132. Komolafe, C.A., et al., Modelling of moisture diffusivity during solar drying of locust beans with thermal storage material under forced and natural convection mode. Case Studies in Thermal Engineering, 2019. 15: p. 100542.
    133. Lu, P., et al., Porosity effect on densification and shape distortion in liquid phase sintering. Materials Science and Engineering: A, 2001. 318(1): p. 111-121.
    134. Nguyen, S.T., et al., Cellulose aerogel from paper waste for crude oil spill cleaning. 2013. 52(51): p. 18386-18391.
    135. Kweon, H.D., et al., Determination of true stress-strain curve of type 304 and 316 stainless steels using a typical tensile test and finite element analysis. Nuclear Engineering and Technology, 2021. 53(2): p. 647-656.
    136. Ma, H., et al., Simulation and Analysis of Mechanical Properties of Silica Aerogels: From Rationalization to Prediction. 2018. 11(2): p. 214.
    137. Pietras, D., et al., Out-of-plane crushing response of aluminum honeycombs in-situ filled with graphene-reinforced polyurethane foam. Composite Structures, 2020. 249: p. 112548.
    138. Sanjeevi, S., et al., Effects of water absorption on the mechanical properties of hybrid natural fibre/phenol formaldehyde composites. Scientific Reports, 2021. 11(1): p. 13385.
    139. Venkateswara Rao, A., N.D. Hegde, and H. Hirashima, Absorption and desorption of organic liquids in elastic superhydrophobic silica aerogels. Journal of Colloid and Interface Science, 2007. 305(1): p. 124-132.
    140. Meng, Y., et al., Ultralight carbon aerogel from nanocellulose as a highly selective oil absorption material. 2015. 22(1): p. 435-447.
    141. Chen, X., et al., Additive-free poly (vinylidene fluoride) aerogel for oil/water separation and rapid oil absorption. Chemical Engineering Journal, 2017. 308: p. 18-26.
    142. Li, Z., et al., Excellent reusable chitosan/cellulose aerogel as an oil and organic solvent absorbent. Carbohydrate Polymers, 2018. 191: p. 183-190.

    QR CODE