簡易檢索 / 詳目顯示

研究生: 黄蓮香
HUYNH - LIEN HUONG
論文名稱: 從活性污泥中分離及分析中性脂質 與蠟酯
ISOLATION AND ANALYSIS OF NEUTRAL LIPID AND WAX ESTER FROM ACTIVATED SLUDGE
指導教授: 朱義旭
Yi-Hsu Ju
口試委員: 李振綱
Cheng-Kang Lee
王勝仕
Sheng-Shih Wang
王孟菊
Meng-Jiy Wang
Suryadi Ismadji
Suryadi Ismadji
Tri Widjaja
Tri Widjaja
Renanto
Renanto
學位類別: 博士
Doctor
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 114
中文關鍵詞: 活性污泥生質柴油脂肪酸脂肪醇次臨界水預處理中性脂蠟酯
外文關鍵詞: activated sludge, biodiesel, fatty acid, fatty alcohol, neutral lipids, subcritical water, wax esters
相關次數: 點閱:382下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 脂質含量高的活性污泥是一種有潛力生產生質柴油之原料。次臨界水處理已知是一種低成本且有效的方法,可用以減少活性污泥中之有機物,特別是致癌芳香化合物如PAH及PCB,並增加活性污泥中可萃取脂質之含量。
    本研究探討次臨界水處理對兩種不同來源污泥(都市活性污泥及食品加工活性污泥)中中性脂質含量和脂肪酸組成之影響。此外本研究也探討污泥來源對中性脂質含量及脂肪酸組成之影響。結果顯示,經次臨界水處理後污泥中性脂質量為未經次臨界水處理時之2-4 倍。然而,次臨界水處理對污泥所含脂質之脂肪酸組成並無明顯之影響。污泥來源在中性脂質量及脂肪酸組成中扮演重要角色。
    利用活性污泥中所含有用的化合物將有助於降低從活性污泥生產生物柴油之成本。從台灣某食品加工廠污泥中發現之蠟酯即為一種有價值之化合物。粗污泥油經去脂、去蠟可得粗蠟脂。粗蠟脂再經預處理和漂白後,大約可得4.13%之漂白蠟(以乾污泥重計)。漂白蠟之主要蠟酯是C44-C60蠟酯以及小量C37-C43及C62 蠟酯。本研究也探討蠟酯之脂肪酸及脂肪醇組成,結果發現蠟酯主要由C14-C28脂肪酸與C24-C37脂肪醇所構成,其中主要脂肪酸為 C16及C18而主要脂肪醇為C32及C34。


    Activated sludge (AS) with its high lipid content is a potential raw material for producing biodiesel (BD). Sub-critical water (SCW) treatment has been known to be a cheap and effective method for reducing organic compounds, especially carcinogenic aromatic compounds such as polycyclic aromatic hydrocarbons (PAHs) or polychlorobiphenyls (PCBs) in AS as well as increasing the amount of extractable lipids. In this work, the amount of neutral lipids and fatty acid (FA) profiles in neutral lipids extracted from two sludge samples of different sources (municipal AS and food processing AS) with and without SCW pre-treatment were investigated. Moreover, the impact of the sludge origins on their neutral lipid content and FA profiles was also investigated. Results showed that the amount of neutral lipid extracted from SCW treated AS is almost 2-4 times to those without SCW treatment. However, there is no observable difference between the FA profiles of neutral lipids obtained from AS with and without SCW treatment. The source of sludge plays an important role on the neutral lipid content as well as the FA acid profiles.
    Additionally, the utilization of useful compounds in AS may also help reducing the cost of BD production from AS. One of these compounds is the valuable wax esters (WEs) found in AS from a food processing company in Taiwan. About 4.13 % (based on dry sludge weight) bleached wax was obtained after pretreatment and bleaching of crude sludge wax obtained from the dewaxing of crude sludge oil. The major WEs detected in the bleached wax were C46-C60 with small amounts of C37-C43 and C62 WEs. The FAs and fatty alcohols (FALs) profiles of WEs were also investigated. Activated sludge WEs are mainly mixture of C14-C28 FAs and C24-C37 FALs, in which the predominant FAs are C16 and C18 while the predominant FALs are C32 and C34.

    TABLE OF CONTENTS COVER Page RECOMMENDATION LETTER APPROVAL LETTER CHINESE ABSTRACT I ENGLISH ABSTRACT II ACKNOWDLEMENTS III TABLE OF CONTENTS IV LIST OF ABBREATIONS VIII LIST OF FIGURES X LIST OF TABLES XI CHAPTER 1 INTRODUCTION 1 1.1 Background of this study 1 1.2 Objective of this study 5 2 LITERATURE REVIEW 6 2.1 Activated sludge 6 2.1.1 Activated sludge process 6 2.1.2. Activated sludge 8 2.1.2.1. Biological components of AS 9 2.1.2.2. Chemical composition of AS 10 2.2 Status of sludge production and disposal in Taiwan 10 2.3 Utilization of AS 11 2.3.1 AS as a biomass resource 11 2.3.1.1. Energy recovery with incineration of sewage sludge 11 2.3.1.2. Biogas/Methane production from anaerobic digestion of AS 12 2.3.1.3. Pyrolysis of AS 13 2.3.1.4. Gasification of AS 14 2.3.2 Biodiesel from AS 16 2.3.2.1 Extraction and analysis of lipid from waste sludge 16 2.3.2.2 BD production from waste solid sludge/AS 22 2.3.2.3 Economic analysis of BD from waste solid sludge/AS 26 2.3.3 Other utilization of waste solid sludge 26 2.4 Subcritical water: extraction medium and hydrolysis agent 29 2.5 Wax 30 2.5.1 Introduction of wax 30 2.5.2 Waxes types or sources of waxes 31 2.5.3 Extraction and analysis of wax 34 2.5.4 Bacterial wax ester 35 2.5.4.1 Introduction 35 2.5.4.2 Occurrence 36 2.5.4.3 Biological function 36 2.5.4.4 Potential uses of bacterial WEs 37 2.5.4.5 Genetics of WEs biosynthesis in bacteria 38 2.5.4.5.1 Key enzymes for bacterial WEs synthesis 38 2.5.4.5.2 Biosynthesis of precursors for WEs synthesis 40 2.5.4.6 Formation pathway of WE 40 3 MATERIAL AND METHODS 47 3.1 materials 47 3.2 Methodology 47 3.2.1 Sample preparation 47 3.2.2. Solvent extraction 48 3.2.3. Subcritical water assisted solvent extraction 48 3.2.4. Dewax and degum of sludge oil 49 3.2.5. Fatty acid profile of neutral lipid 51 3.2.6. Lipase catalyzed synthesis of WEs standards 53 3.2.7. Preparation of WEs from AS 54 3.2.7.1 Pretreatment of crude sludge wax 54 3.2.7.2. Bleaching of IPA pretreated sludge wax 54 3.2.8 Saponification of bleached sludge wax 55 3.3 Analyses 57 3.3.1 Thin layer chromatography (TLC) analysis 57 3.3.2. Low temperature gas chromatography (LTGC) analysis 57 3.3.3 GC analysis of DWDGSO 58 3.3.4 GC analyses of WEs, FAs and FALs 58 3.3.5 GC-MS analyses of FAL 59 4 RESULTS AND DISCUSSION 60 4.1 Analysis of neutral lipid from AS with and without SCW pretreatment 60 4.1.1 Neutral lipid composition of DWDGSO 60 4.1.2 Fatty acid profile of DWDGSO 63 4.1.3 Effect of SCW treatment on sludge oil properties 64 4.1.4 Effect of activated sludge sources 68 4.2 Isolation and analysis of WEs from AS 68 4.2.1 Pretreatment and bleaching of sludge wax 68 4.2.2 Composition of BSW 70 4.2.3 Composition of saponified BSW 74 5 CONCLUSIONS AND FUTURE PROSPECT 76 REFERENCES 78 APPENDIX A APPENDIX B CHROMTOGRAMS OF COMPOUNDS CURRICULUM VITAE COPY RIGHT

    Albro, P. L., 1976. Bacterial waxes, in: Kolattukudy, P. E., (Ed.), Chemistry and Biochemistry of Natural Waxes. Elsevier Amsterdam, pp 419-445.
    Alvarez, H.M., 2010. Biotechnological production and significane of triglycerols and wax esters, in: Timmis, K.N. (Ed.), Handbook of Hydrocarbon and Lipid Microbiology, Volume 4: Consequences of Microbial Interactions with Hydrocarbons, Oils and Lipids. Springer-Verlag, Heidelberg, pp 2996-3001.
    Anderson, S., 2004. Soxtec: Its principles and applications, in: Luthria, D. L., (Ed.), Oil extraction and analysis-critical issue and comparative studies. AOCS Press., Champaign, Ill., p 14.
    AOCS, 1998-2002. Official methods and recommended practices of the AOCS, fifth ed., AOCS Press., Champaign, Ill.
    Arrendale, R. F., Severson, R. F., Chartyk, O. T., Stephenson, M. G., 1988. Isolation and identification of the wax esters from the cuticular waxes of green tobacco leaf. Beitr. Tabakforsch. Znt. 14, 67-84.
    Athukorala, Y., Mazza, G., 2010. Supercritical carbon dioxide and hexane extraction of wax from triticale straw: Content, composition and thermal properties. Industrial Crops and Products. 31, 550-556.
    Boocock, D. G. B., Konar, S. K., Mackay, A., Cheung, P. T. C., Liu, J., 1992. Fuels and chemicals from sewage sludge: 2. The production of alkanes and alkenes by the pyrolysis of triglycerides over activated alumina. Fuel. 71, 1291-1297.
    Boyajian, E., Finger, R. E., Gilligan, T. P., Dana Love, J., Marshall, L. S., Richard H. M., J.,Uhte, W. R., 1987. Activated Sludge Manual of Practice No. OM-9, Water Polution Control Federation, Alexandria, VA, USA.
    Bredemeier, R., Hulsch, R., Metzger, J. O., berthe-Corti, L., 2003. Submersed culture production of extracellular wax esters by the marine bacterium Fundibacterjadensis. Mar. Biotechnol. 5, 579-583.
    Brunner, G., 2009. Near critical and supercritical water. Part I. Hydrolytic and hydrothermal processes. The Journal of Supercritical Fluids. 47, 373-381.
    Camacho, P., Deleris, S., Geaugey, V., Ginestet, P., Paul, E., 2002. A comparative study between mechanical, thermal and oxidative disintegration techniques of waste activated sludge. Water Sci. Technol. 46, 79-87.
    Carrapiso, A.,García, C., 2000. Development in lipid analysis: Some new extraction techniques and in situ transesterification. Lipids. 35, 1167-1177.
    Chen, Z.-Y., Ma, K. Y., Liang, Y., Peng, C., Zuo, Y., 2011. Role and classification of cholesterol-lowering functional foods. J. Funct. Foods. In Press, Corrected Proof.
    Cheremisinoff, P. N., 1994. Sludge: Management and Disposal, Prentice-Hall, Inc., New Jersey, USA.
    Cheung, Y. H., Wong, M. H., 1981. Properties of animal manure and sewage sludges and their utilization for algal growth. Agric. Wastes 3, 109-122.
    Chipasa, K. B., Medrzycka, K., 2008. Characterization of the fate of lipids in activated sludge. J. Environ. Sci. 20, 536-542.
    Christie, W.W., 2011. Waxes structure, composition, occurence and analysis. The Lipid Library. The Am. Oil Chem. Soc. Illinois, USA. Retrived 2011, April 28, from http://lipidlibrary.aocs.org/lipids/waxes/index.htm.
    Dohányos, M., Zábranská, J., Jenícek, P., Stipová, J., Kutil, V., Horejš, J., 2000. The intensification of sludge digestion by the disintegration of activated sludge and the thermal conditioning of digested sludg. Water Sci. Technol. 42, 57-64.
    Dueholm, T. E., Andreasen, K. H., Nielsen, P. H., 2001. Transformation of lipids in activated sludge. Water Sci. Technol. 43, 165-172.
    Dufreche, S., Hernandez, R., French, T., Sparks, D., Zappi, M., Alley, E., 2007. Extraction of lipids from municipal wastewater plant microorganisms for production of biodiesel. J. Am. Oil Chem. Soc. 84, 181-187
    Eikani, M. H., Golmohammad, F., Rowshanzamir, S., 2007. Subcritical water extraction of essential oils from coriander seeds (Coriandrum sativum L.). J. Food Eng. 80, 735-740.
    Ensikat, H. J., Neinhuis, C., Barthlott, W., 2000. Direct access to plant epicuticular wax crystals by a new mechanical isolation method. International Journal of Plant Sciences. 161, 143-148.
    Fastner, J., Flieger, I.,Neumann, U., 1998. Optimised extraction of microcystins from field samples - A comparison of different solvents and procedures. Water Res. 32, 3177-3181.
    Fixter, L. M., Nagi, M. N., Mc Cormack, J. G.,Fewson, C. A., 1986. Structure, distribution and function of wax esters in Acinetobacter calcoaceticus. Gen Microbiol. 132, 3147-3157.
    Fujii, T., Khuwijitjaru, P., Kimura, Y., Adachi, S., 2006. Decomposition kinetics of monoacyl glycerol and fatty acid in subcritical water under temperature-programmed heating conditions. Food Chem. 94, 341-347.
    Fytili, D., Zabaniotou, A., 2008. Utilization of sewage sludge in EU application of old and new methods-A review. Renewable Sustainable Energy Rev. 12, 116-140.
    Galkin, A. A., Lunin, V. V., 2005. Subcritical and supercritical water: a universal medium for chemical reactions. Russ. Chem. Rev. 74, 21-35.
    Gámiz-Gracia, L.,Luque de Castro, M. D., 2000. Continuous subcritical water extraction of medicinal plant essential oil: comparison with conventional techniques. Talanta. 51, 1179-1185.
    Gao, C., Xiong, W., Zhang, Y., Yuan, W.,Wu, Q., 2008. Rapid quantitation of lipid in microalgae by time-domain nuclear magnetic resonance. J. of Microbiol. Methods. 75, 437-440.
    Gasafi, E., Reinecke, M.-Y., Kruse, A., Schebek, L., 2008. Economic analysis of sewage sludge gasification in supercritical water for hydrogen production. Biomass Bioenerg. 32, 1085-1096.
    Gascó, G., Méndez, A.,Gascó, J. M., 2005. Preparation of carbon-based adsorbents from sewage sludge pyrolysis to remove metals from water. Desalination. 180, 245-251.
    Hass, M. J., Foglia, T. A., 2005. Alternative feedstocks and technologies for biodiesel production, in: G. Knothe, J. Krahl, J. H. Van Jerpen. (Eds.), The Biodiesel handbook. AOCS Press., Champaign, Ill., pp. 42-61.
    Hata, S., Wiboonsirikul, J., Maeda, A., Kimura, Y.,Adachi, S., 2008. Extraction of defatted rice bran by subcritical water treatment. Biochem. Eng. J. 40, 44-53.
    Holliday, R. L., King, J. W., List, G. R., 1997. Hydrolysis of Vegetable Oils in Sub- and Supercritical Water. Ind. Eng. Chem. Res. 36, 932-935
    Horan, N. J., 1991. Biological Wastewater Treatment Systems, John Wiley & Sons LTd., West Sussex, England.
    Huang, Y.-H., Wu, J.-H., 2008. Analysis of biodiesel promotion in Taiwan. Renew. Sust. Energ. Rev. 12, 1176-1186.
    Huynh, L.-H., Kasim, N. S.,Ju, Y.-H., 2010. Extraction and analysis of neutral lipids from activated sludge with and without sub-critical water pre-treatment. Bioresour. Technol. 101, 8891-8896.
    Hwang, K. T., Weller, C. L., Cuppett, S. L., Hanna, M. A., 2004. Changes in composition and thermal transition temperatures of grain sorghum wax during storage. Ind. Crops Prod. 19, 125-132.
    Hwu, C.-S., Tseng, S.-K., Yuan, C.-Y., Kulik, Z., Lettinga, G., 1998. Biosorption of long-chain fatty acids in UASB treatment process. Water Res. 32, 1571-1579.
    Inoue, S., Sawayama, S., Ogi, T., Yokoyama, S.-y., 1996. Organic composition of liquidized sewage sludge. Biomass Bioenergy. 10, 37-40.
    Ishige, T., Tani, A., Sakai, Y., Kato, N., 2003. Wax ester production by bacteria. Curr. Opin. Microbiol. 6, 244-250.
    Izumizaki, Y., Park, K. C., Yamamura, T., Tomiyasu, H., Goda, B., Fujii, Y., 2008. Exothermic hydrogen production system in supercritical water from biomass and usual domestic wastes with an exploitation of RuO2 catalyst. Prog. Nucl. Energy. 50, 438-442.
    Jardé, E., Mansuy, L., Faure, P., 2005. Organic markers in the lipidic fraction of sewage sludges. Water Res. 39, 1215-1232.
    Jenkins, D. J. A., Josse, A. R., Wong, J. M. W., Nguyen, T. H., Kendall, C. W. C., 2009. Nutriceuticals and functional foods for cholesterol reduction, in: Christie, M. B., and M.D, Eds.), Clinical Lipidology W.B. Saunders, Philadelphia, pp 376-386.
    Jenkins, D., Richard, M. G., Daigger, G. T., 1993. Manual on the causes and control of activated sludge bulking and foaming and other solids separations problems, second ed., Lewis Boca Raton.
    Kalscheuer, R., 2010. Genetic of wax esters and triacylglycerol biosynthesis in bacteria, in: Timmis, K.N. (Ed.), Handbook of hydrocarbon and lipid microbiology, Volume1: Hydrocarbons, Oils and Lipids: Diversity, Properties and Formation. Springer-Verlag, Heidelberg, pp 528-534.
    Kalscheuer, R., Stöveken, T., Luftmann, H., Malkus, U., Reichelt, R., Steinbüchel, A., 2006. Neutral lipid biosynthesis in engineered Escherichia coli: Jojoba oil-like wax esters and fatty acid butyl esters. Appl Environ Microbiol. 72, 1373-1379.
    Kaneshiro, T., Nakamura, L. K., Nicholson, J. J., Bagby, M. O., 1996. Oleyl oleate and homologous wax esters synthesized coordinately from oleic acid by Acinetobacter and Coryneform strains. Curr Microbiol. 32, 336-342.
    Kanya, T. C. S., Rao, L. J., Sastry, M. C. S., 2007. Characterization of wax esters, free fatty alcohols and free fatty acids of crude wax from sunflower seed oil refineries. Food Chem. 101, 1552-1557.
    Kasim, N. S., Tsai, T.-H., Gunawan, S., Ju, Y.-H., 2009. Biodiesel production from rice bran oil and supercritical methanol. Bioresour. Technol. 100, 2399-2403.
    Kassis, A. N., Jones, P. J. H., 2006. Evaluation of policosanols as functional food ingredients for cholesterol-lowering. Atherosclerosis Supp 7, 447-447.
    Khiari, B., Marias, F., Zagrouba, F.,Vaxelaire, J., 2004. Analytical study of the pyrolysis process in a wastewater treatment pilot station. Desalin. 167, 39-47.
    Khuwijitjaru, P., Fujii, T., Adachi, S., Kimura, Y., Matsuno, R., 2004. Kinetics on the hydrolysis of fatty acid esters in subcritical water. Chem. Eng. J. 99, 1-4.
    Kocsisová, T., Juhasz, J., Cvengrosˇ, J., 2006. Hydrolysis of fatty acid esters in subcritical water. Eur. J. Lipid Sci. Technol. . 108, 652-658.
    Kolattukudy, P. E., 1976. Introduction to natural waxes, in: Kolattukudy, P. E., (Ed.), Chemistry and Biochemistry of Natural Waxes. Elsevier Amsterdam, pp 1-12.
    Konar, S. K., Boocock, D. G. B., Mao, V., Liu, J., 1994. Fuels and chemicals from sewage sludge: 3. Hydrocarbon liquids from the catalytic pyrolysis of sewage sludge lipids over activated alumina. Fuel. 73, 642-646.
    Krammer, P.,Vogel, H., 2000. Hydrolysis of esters in subcritical and supercritical water. The J. Supercrit Fluids. 16, 189-206.
    Lamoolphak, W., De-Eknamkul, W., Shotipruk, A., 2008. Hydrothermal production and characterization of protein and amino acids from silk waste. Bioresour Technol. 99, 7678-7685.
    Lamoolphak, W., Goto, M., Sasaki, M., Suphantharika, M., Muangnapoh, C., Prommuag, C., Shotipruk, A., 2006. Hydrothermal decomposition of yeast cells for production of proteins and amino acids. J. of Hazard. Mater. 137, 1643-1648.
    Lee, D. J., 2007. South Asia and China, in: Spinosa, L., (Ed.), Wastewater sludge: a global overview of the current status and future prospects. IWA Publishing Ltd., p 27.
    Li, Y., Chen, Y.-F., Chen, P., Min, M., Zhou, W., Martinez, B., Zhu, J., Ruan, R., 2011. Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresour. Technol. 102, 5138-5144.
    Lin, K.-L., Lin, C.-Y., 2005. Hydration characteristics of waste sludge ash utilized as raw cement material. Cem. and Concr. Res. 35, 1999-2007.
    López-Mesas, M., Carrillo, F., Crespi, M., 2003. Microwave enhanced extraction of wool wax from solid wool scour wastes. Anal. Chim. Acta. 494, 255-260.
    López-Mesas, M., Christoe, J., Carrillo, F., Crespi, M., 2005. Supercritical fluid extraction with cosolvents of wool wax from wool scour wastes. The J. Supercrit Fluids. 35, 235-239.
    Ma, F., Hanna, M. A., 1999. Biodiesel production: a review. Bioresour. Technol. 70, 1-15.
    Makula, R. A., Lockwood, P. J., Finnerty, W. R., 1975. Comparative analysis of lipid of Acinetobacter species grown on hexadecane. J. Bacteriol. 121, 250-258.
    Marinangeli, C. P. F., Jones, P. J. H., Kassis, A. N., Eskin, M. N. A., 2010. Policosanols as nutraceuticals: Fact or fiction. Crit. Rev. Food Sci. Nutr. 50, 259-267.
    Marrero, T. W., McAuley, B. P., Sutterlin, W. R., Steven Morris, J., Manahan, S. E., 2004. Fate of heavy metals and radioactive metals in gasification of sewage sludge. Waste Manage. 24, 193-198.
    Martin, M. J., Artola, A., Balaguer, M. D., Rigola, M., 2003. Activated carbons developed from surplus sewage sludge for the removal of dyes from dilute aqueous solutions. Chem. Eng. J. 94, 231-239.
    Méndez, A., Gascó, G., Freitas, M. M. A., Siebielec, G., Stuczynski, T., Figueiredo, J. L., 2005. Preparation of carbon-based adsorbents from pyrolysis and air activation of sewage sludges. Chem. Eng. J. 108, 169-177.
    Mondala, A., Liang, K., Toghiani, H., Hernandez, R., French, T., 2009. Biodiesel production by in situ transesterification of municipal primary and secondary sludges. Bioresour. Technol. 100, 1203-1210.
    Mountouris, A., Voutsas, E., Tassios, D., 2008. Plasma gasification of sewage sludge: Process development and energy optimization. Energy Convers. Manage. 49, 2264-2271.
    Müller, J. A., Winter, A., Strünkmann, H., 2004. Investigation and assessment of sludge pre-treatment processes. Water Sci. Technol. 49, 97-104.
    Neis, U., Nickel, K., Tiehm, A., 2000. Enhancement of anaerobic sludge digestion by ultrasonic disintegration. Water Sci. Technol. 42, 73-80.
    Nishio, N., Nakashimada, Y., 2007. Recent development of anaerobic digestion processes for energy recovery from wastes. J. Biosci. Bioeng. 103, 105-112.
    Nordon, A., McGill, C. A., Littlejohn, D., 2001. Process NMR spectrometry. Analyst. 126, 260-272.
    Novak, J. T., Kraus, D. L., 1973. Degradation of long chain fatty acids by activated sludge. Water Res. 7, 843-851.
    Ozel, M. Z., Gogus, F., Lewis, A. C., 2003. Subcritical water extraction of essential oils from Thymbra spicata. Food Chem. 82, 381-386.
    Pei, K. M., Gaudy, A. F., 1971. Kinetic constants for aerobic growth of microbial populations selected with various single compounds and with municipal wastes as substrates. Appl Microbiol. 21, 253-256.
    Pokoo-Aikins, G., Heath, A., Mentzer, R. A., Sam Mannan, M., Rogers, W. J., El-Halwagi, M.M., 2010. A multi-criteria approach to screening alternatives for converting sewage sludge to biodiesel. J. Loss Prev. Process Ind. 23, 412-420.
    Quéméneur, M., Marty, Y., 1994. Fatty acids and sterols in domestic wastewaters. Water Res. 28, 1217-1226.
    Quitain, A. T., Faisal, M., Kang, K., Daimon, H.,Fujie, K., 2002. Low-molecular-weight carboxylic acids produced from hydrothermal treatment of organic wastes. J. Hazard. Mater. 93, 209-220.
    Rajam, L., Soban Kumar, D. R., Sundaresan, A., Arumughan, C., 2005. A novel process for physically refining rice bran oil through simultaneous degumming and dewaxing. J. Am. Oil. Chem. Soc. 82, 213-220.
    Rashotte, A. M., Jenks, M. A., Feldmann, K. A., 2001. Cuticular waxes on eceriferum mutants of Arabidopsis thaliana. Phytochem. 57, 115-123.
    Reisige, K., Gorzelanny, C., Daniels, U.,Moerschbacher, B. M., 2006. The C28 aldehyde octacosanal is a morphogenetically active component involved in host plant recognition and infection structure differentiation in the wheat stem rust fungus. Physiol. and Mol. Plant Pathol. 68, 33-40.
    Revellame, E., Hernandez, R., French, W., Holme, W., Alley, E., 2010. Biodiesel from activated sludge through in- situ transesterification. J. Chem. Technol. Biotechnol. 85, 614-620.
    Réveillé, V., Mansuy, L., Jardé, É., Garnier-Sillam, É., 2003. Characterisation of sewage sludge-derived organic matter: lipids and humic acids. Org. Geochem. 34, 615-627
    Rogalinski, T., Herrmann, S., Brunner, G., 2005. Production of amino acids from bovine serum albumin by continuous sub-critical water hydrolysis. J. Supercrit. Fluids. 36, 49-58.
    Rontani, J. F., Bonin, P.,Volkman, J. K., 1999. Production of wax esters during aerobic growth of marine bacteria on isoprenoid compound. Appl. Environ. Microbiol. 65 (1), 221-230.
    Rontani, J.-F., 2010. Production of wax esters by bacteria, in: Timmis, K.N. (Ed.), Handbook of Hydrocarbon and Lipid Microbiology, Volume 1: Hydrocarbons, Oils and Lipids: Diversity, Properties and Formation. Springer-Verlag, Heidelberg, pp 460-469.
    Rulkens, W., 2008. Sewage sludge as a biomass resource for the production of energy: overview and assessment of the various options. Energy Fuels. 22, 9-15.
    Salasoo, I., 1983. Effect of epicuticular wax isolation method on alkane distribution pattern. Biochem. Syst. and Ecol. 11, 17-20.
    Sawayama, S., Minowa, T., Dote, Y., Yokoyama, S., 1992. Growth of the hydrocarbon-rich microalga Botryococcus braunii in secondary treated sludge. App. Microbiol. Biotechnol. 38 (1), 135-138.
    Seltmann, G., Holst, O., 2002. The bacteria cell wall, second ed., Springer-Verlag, New York.
    Shen, L.,Zhang, D.-K., 2003. An experimental study of oil recovery from sewage sludge by low-temperature pyrolysis in a fluidised-bed[small star, filled]. Fuel. 82, 465-472.
    Siddiquee, M. N., Rohani, S., 2011. Lipid extraction and biodiesel production from municipal sewage sludges: A review. Renewable Sustainable Energy Rev. 15, 1067-1072.
    Silva, R. A., Grossi, V., Alvarez, H. M., 2007. Biodegradation of phytane(2,3,10,14-tetramethylhexadecane) and accumulation of related isoprenoid wax esters by Mycobacterium ratisbonense strain SD4 under nitrogen-starved conditions. FEMS Microbiol. Lett. 272, 220-228.
    Soto Ayala, R., Luque de Castro, M. D., 2001. Continuous subcritical water extraction as a useful tool for isolation of edible essential oils. Food Chem. 75, 109-113.
    Stoveken, T., Steinbuchel, A., 2008. Bacterial acyltransferases as an alternative for lipase-catalyzed acylation for the production of oleochemicals and fuels. Angew Chem Int Ed Engl. 47, 3688-3649.
    Tam, N. F. Y., Wong, Y. S., 1989. Wastewater nutrient removal by Chlorella pyrenoidosa and Scenedesmus sp. Environ. Pollut. 58, 19-34.
    Tam, N. F. Y., Wong, Y. S., 1990. The comparision of growth and nutrient removal efficiency of Chlorella pyrenoidosa in settled and activated sewages. Environ. Pollut. 65, 93-108.
    Todt, H., Guthausen, G., Burk, W., Schmalbein, D., Kamlowski, A., 2006. Water/moisture and fat analysis by time-domain NMR. Food Chem. 96, 436-440.
    Tsai, T. H., 2008. Production of biodiesel from supercritical methanol and rice bran oil. Master thesis, National Taiwan University of Science and Technology, p29.
    Tsai, W.-T., Lin, C.-C., Yeh, C.-W., 2007. An analysis of biodiesel fuel from waste edible oil in Taiwan. Renew. Sust. Energ. Rev. 11, 838-857.
    Vali, S., Ju, Y.-H., Kaimal, T., Chern, Y.-T., 2005. A process for the preparation of food-grade rice bran wax and the determination of its composition. J. Am. Oil Chem. Soc. 82, 57-64.
    Vandana, V., Karuna, M. S. L., Vijayalakshmi, P., Prasad, R. B. N., 2001. A simple method to enrich phospholipid content in commercial soybean lecithin. J. Am. Oil. Chem. Soc. 78, 555-556.
    Veraverbeke, E. A., Lammertyn, J., Saevels, S., NicolaI, B. M., 2001. Changes in chemical wax composition of three different apple (Malus domestica Borkh.) cultivars during storage. Postharvest Biol. Technol. 23, 197-208.
    Viereck, N., Norgaard, L., Bro, R., Engelsen, S.B., 2008. Chemometric analysis of NMR data. Modern Magnetic Resonance. Part III, Food Sci. Springer, Netherlands, pp 1833-1843.
    Wältermann, M., Steinbüchel, A., 2005. Neutral lipid bodies in prokaryotes: Recent insights into structure, formation and relationship to eukaryotic lipid depots. J. Bacteriol. 187, 3607-3619.
    Wältermann, M., Stöveken, T., Steinbüchel, A., 2007. Key enzymes for biosynthesis of neutral lipid storage compounds in prokaryotes: Properties, function and occurrence of wax ester synthases/acyl-CoA:diacylglycerol acyltransferases. Biochimie. 89, 230-242.
    Weemaes, M., Grootaerd, H., Simoens, F., Huysmans, A.,Verstraete, W., 2000. Ozonation of sewage sludge prior to anaerobic digestion. Water Sci. Technol. 42, 175-178.
    Wen, M., Buschhaus, C., Jetter, R., 2006. Nanotubules on plant surfaces: Chemical composition of epicuticular wax crystals on needles of Taxus baccata L. Phytochem. 67, 1808-1817.
    Willson, R. M., Wiesman, Z., Brenner, A., 2010. Analyzing alternative bio-waste feedstocks for potential biodiesel production using time domain (TD)-NMR. Waste Manage. 30, 1881-1888.
    Woertz, I., Feffer, A., Lundquist, T., Nelson, Y., 2009. Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock. J. Environ. Eng. 135 (11), 1115-1122.
    Yin, Y., Bi, Y., Chen, S., Li, Y., Wang, Y., Ge, Y., Ding, B., Li, Y., Zhang, Z., 2011. Chemical composition and antifungal activity of cuticular wax isolated from Asian pear fruit (cv. Pingguoli). Scientia Horticulturae. In Press, Corrected Proof.
    Yoshida, H., Terashima, M.,Takahashi, Y., 1999. Production of Organic Acids and Amino Acids from Fish Meat by Sub-Critical Water Hydrolysis. Biotechnol. Progr. 15, 1090-1094.
    Zappi, M.E., French, W.T., Hernandez, R., Dufreche, S.T., Sparks Jr., D.L., 2009 Dec. 29. Production of biodiesel and other valuable chemicals from wastewater treatment plant sludges. United States patent US 7,638,314.
    Zhang, Y. M., Rock, C. O., 2008. Membrane lipid homeostasis in bacteria. Nat Rev Microbiol. 6, 222-233.

    QR CODE