簡易檢索 / 詳目顯示

研究生: 陳竑孝
Hung-Shiau Chen
論文名稱: 蒸餾製程對廢食用生質柴油磨潤性能的影響
Effects of Distilled Process on Tribological Performance of Waste Cooking Oil Methyl Easters
指導教授: 林原慶
Yuan-Ching Lin
口試委員: 呂道揆
Daw-Kwei Leu
鄭偉鈞
Wei-Chun Cheng
向四海
Su-Hai Hsiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 226
中文關鍵詞: 廢食用生質柴油蒸餾殘渣磨潤性能磨耗
外文關鍵詞: Waste cooking biodiesel, distillation residues, Tribological performance, wear
相關次數: 點閱:238下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文目的在於探討經蒸餾製程處理前與後的廢食用生質柴油,模擬引擎供油系統零組件磨潤性能的影響,利用油品靜態浸泡試驗、磨耗實驗及加熱結膠試驗,藉以了解生質柴油造成引擎噴油嘴運轉異常所衍生的問題。最後利用儀器進行磨耗試片表面形貌觀察及表面膜的成份分析。
    試驗結果顯示,室溫條件下的抗磨耗能力主要以酯類的物理吸附膜能力為主,混合廢食用油的特定濃度(B2、DB100、DR20及DBR0.2)中有較佳的抗磨耗能力;高溫條件下,某些特定濃度的混合油品(B100、DB100、DR10及DBR2)亦有較佳的抗磨耗能力,此現象與油品所產生的磨潤化學生成物作為一保護膜避免金屬的直接接觸有關。蒸餾殘渣相較於其他不同用途的市售潤滑油具有相當程度的抗磨耗能力,主要是因為蒸餾殘渣富含酯類及腐蝕性物質,可以在室溫及高溫下的摩擦表面形成較佳的物理吸附膜或磨潤化學反應膜保護。微震磨耗試驗結果中較B20生質柴油的酯類含量具有阻尼效果,因此相對於化石柴油(D100)有較輕微的表面損傷。此外,由加熱結膠實驗得知,蒸餾殘渣在高溫180℃有最大的分離負荷產生,判定此蒸餾殘渣會隨著溫度變化而發生結膠現象。


    The tribological performance of the biodiesel was evaluated using a static immersing test、reciprocating wear test、fretting wear test rig and the gumming effect of distillation residues at various temperatures.After the wear test, the worn surface and the compositions of the chemical films of each tested specimen were observed and identified by using several instruments.
    The experimental results demonstrate that the anti-wear ability is mainly by physical adsorption film of fatty acids ester at room temperature. Besides, some specimens test in biodiesel with different concentrations (B100、DB100、DR10 and DBR2) have lowest wear depth in each process. Moreover, some specimens test biodiesel with different concentrations (B100、DB100、DR10 and DBR2) have lowest wear depth in each process at high temperature. It is possible that some corrosion and oxidations layer was produced by biodiesel which could protected the rubbing surface to prevent the direct contact of rough surface during wear test. Comparing to different kinds of base lubricating oils, distillation residues performed pretty well anti-wear ability by physical adsorption film or tribology chemical reaction film at different temperature conditions. In the fretting wear test, the esters adsorptive films of biodiesel provide damping effect in B20, so the surface damage of B20 is slighter than D100. Due to the temperature changes, distillation residues would occur gumming effect. And it has maximum separation load at 180℃.

    摘要 Abstract 誌謝 目錄 表目錄 圖目錄 第一章 緒論 1.1 研究動機 1.2 模型構想簡介 第二章 文獻回顧 2.1 生質柴油的種類與製造方式 2.2 生質柴油的特性 2.2.1 亞麻籽油(linseed oil) 2.2.2 大豆油(soybean oil) 2.2.3 棕櫚油(palm oil) 2.2.4 油菜籽油(rapeseed oil) 2.2.5 蓖麻油(castor oil) 2.2.6 其他種類生質油的相關研究 2.3 腐蝕(Corrosion) 2.3.1 腐蝕定義 2.3.2 腐蝕型態 2.3.3 腐蝕率計算 2.4 潤滑模式 2.5 摩擦與磨耗機構 2.5.1 摩擦型態 2.5.2 磨耗機構 2.6 微震磨耗(Fretting wear) 2.6.1 微震定義與磨耗機制 2.6.2 微震磨耗預防與相關研究 2.7 固體表面與接觸型態 2.7.1 表面粗糙度 2.7.2 接觸應力計算 第三章 實驗儀器與方法 3.1 實驗儀器 3.2 分析儀器 3.3 試片規格 3.4 試驗用油 3.5 試驗條件 3.6 磨耗量計算 3.7 試驗步驟 第四章 結果與討論 4.1 靜態腐蝕試驗 4.1.1 不同材料經靜態腐蝕試驗後之表面形貌分析 4.1.2 不同材料經靜態腐蝕試驗後之表面成份分析 4.2 生質柴油往復滑動下的磨潤性能評估 4.2.1 非蒸餾生質柴油濃度對化石柴油之室溫磨潤性能的影響 4.2.2 蒸餾生質柴油濃度對化石柴油之室溫磨潤性能的影響 4.2.3 非蒸餾生質柴油濃度對化石柴油之高溫80°C磨潤性能的影響 4.2.4 蒸餾生質柴油濃度對化石柴油之高溫80°C磨潤性能的影響 4.2.5 生質柴油磨耗表面化合膜成份分析 4.2.6 綜合討論-非蒸餾與蒸餾生質柴油濃度對化石柴油的磨痕深度比較(磨痕中間區) 4.2.7 蒸餾殘渣濃度對化石柴油之室溫磨潤性能的影響 4.2.8 蒸餾殘渣濃度對蒸餾生質柴油之室溫磨潤性能的影響 4.2.9 蒸餾殘渣濃度對化石柴油之高溫80°C磨潤性能的影響 4.2.10 蒸餾殘渣濃度對蒸餾生質柴油之高溫80°C磨潤性能的影響 4.2.11 綜合討論-蒸餾殘渣濃度對化石柴油與蒸餾生質柴油的磨痕深度比較(磨痕中間區) 4.3 蒸餾殘渣與各類型基礎油之磨潤性能評估 4.3.1 蒸餾殘渣與各類型基礎油之室溫磨潤性能的影響 4.3.2 蒸餾殘渣與各類型基礎油之高溫150°C磨潤性能的影響 4.4 生質柴油在微震磨耗下的磨耗型態分析 4.4.1 室溫下生質柴油濃度對化石柴油之微震磨耗的影響 4.4.2 高溫80°C下生質柴油濃度對化石柴油之微震磨耗的影響 4.5 蒸餾殘渣之加熱試驗 4.5.1 純蒸餾殘渣(R100)在不同溫度下之加熱試驗 4.5.2 不同濃度蒸餾殘渣添加至化石柴油之高溫180°C加熱試驗 4.5.3 不同濃度蒸餾殘渣添加至蒸餾生質柴油之高溫180°C加熱試驗 第五章 結論 5.1 結論 5.2 建議 參考文獻 附錄

    [1]A.S.f.Testing and Materials, "ASTM D6751-09, Standard Specification for Biodiesel Fuel Blend Stock (B100) for Middle Distillate Fuels," 2009.
    [2]G.Kanthe, "The biodiesel handbook," ed: AOCS PRESS, Illinois, 2004.
    [3]李興旺,"石化柴油添加生質柴油引擎排放多環芳烴",國立成功大學碩士論文,2004.
    [4]T.K.Gogoi and D.C.Baruah, (2010). "A cycle simulation model for predicting the performance of a diesel engine fuelled by diesel and biodiesel blends," Energy, 35(3), pp.1317~1323, doi:10.1016 / j.energy. 2009.11.014
    [5]K.S.Chen, Y.C.Lin, L.T.Hsieh, L.F.Lin and C.C.Wu, "Saving energy and reducing pollution by use of emulsified palm biodiesel blends with bio-solution additive," Energy, 35(5), pp.2043~2048. doi:10.1016/j.energy, 2010.
    [6]C.A.Sharp, S.A.Howell and J.Jobe, "The effect of biodiesel fuels on transient emissions from modern diesel engines, part I regulated emissions and performance," SAE Technical Paper 0148-7191, 2000.
    [7]V.Camobreco, J.Sheehan, J.Duffield, and M.Graboski, "Understanding the life-cycle costs and environmental profile of biodiesel and petroleum diesel fuel," SAE Technical Paper, 2000.
    [8]M. Kalam and H. Masjuki, "Biodiesel from palmoil an analysis of its properties and potential," Biomass and Bioenergy, vol. 23, pp.471~479, 2002.
    [9]G.Quick, P.Woodmore and B.Wilson, "Engine evaluations of linseed oil and derivatives," in This paper was presented at the Second National Conference on Fuels from Crops, Melbourne, August 1983.
    [10]李唐,"生質潤滑油成果發表暨綠色能源科技研討會手冊",台北科技大學,2007.
    [11]S.Kalligeros, F.Zannikos, S.Stournas, E.Lois, G.Anastopoulos and C. Teas, "An investigation of using biodiesel marine diesel blends on the performance of a stationary diesel engine," Biomass and Bioenergy, vol. 24, pp.141~149, 2003.
    [12]A.Haseeb, S.Sia, M.Fazal and H.Masjuki, "Effect of temperature on tribological properties of palm biodiesel," Energy, vol. 35, pp. 1460~1464, 2010.
    [13]H.Masjuki and M.Maleque, "The effect of palm oil diesel fuel contaminated lubricant on sliding wear of cast irons against mild steel," Wear, vol. 198, pp. 293~299, 1996.
    [14]J.Hu, Z.Du, C.Li and E.Min, "Study on the lubrication properties of biodiesel as fuel lubricity enhancers," Fuel, vol. 84, pp. 1601~1606, 2005.
    [15]W.Danping and H.Spikes, "The lubricity of diesel fuels," Wear, vol. 111, pp. 217~235, 1986.
    [16]F.P.Bowden and D.Tabor, The friction and lubrication of solids vol. 2: Wiley Online Library, 1964.
    [17]D.Jin, X.Zhou, P.Wu, L.Jiang and H.Ge, "Corrosion behavior of ASTM 1045 mild steel in palm biodiesel," Renewable Energy, 81, pp. 457~463. doi:10.1016/j.renene, 2015.03.022.
    [18]A.Kovács, J.Tóth, G.Isaák and I.Keresztényi, "Aspects of storage and corrosion characteristics of biodiesel," Fuel Processing Technology, 134, pp.59~64. doi:10.1016/j.fuproc, 2015.01.014.
    [19]E.Hu, Y.Xu, X.Hu, L.Pan and S.Jiang, "Corrosion behaviors of metals in biodiesel from rapeseed oil and methanol," Renewable Energy, 37(1), pp.371~378. doi: 10.1016/j.renene, 2011.07.010
    [20]M.A.Fazal, A.S.M.A.Haseeb and H.H.Masjuki, "Effect of different corrosion inhibitors on the corrosion of cast iron in palm biodiesel,"Fuel Processing Technology, 92(11), pp.2154~2159. doi: 10.1016/j.fuproc, 2011.06.012
    [21]Y.S.Lin and H.P.Lin, "Spray characteristics of emulsified castor biodiesel on engine emissions and deposit formation," Renewable Energy, vol. 36, pp.3507~3516, 2011.
    [22]A.K.Agarwal, J.Bijwe and L.Das, "Effect of biodiesel utilization of wear of vital parts in compression ignition engine," Journal of Engineering for Gas Turbines and Power, vol. 125, pp.604~611, 2003.
    [23]A.Agarwal, "Experimental investigations of the effect of biodiesel utilization on lubricating oil tribology in diesel engines," Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, vol. 219, pp.703~713, 2005.
    [24]L.G.Schumacher, S.C.Borgelt, D.Fosseen, W.Goetz and W.G.Hires, "Heavy-duty engine exhaust emission tests using methyl ester soybean oil/diesel fuel blends,"Bioresource Technology, Vol 57, pp.31~36, 1996.
    [25]T.R.Sem, "Investigation of injector tip deposits on transport refrigeration units running on biodiesel fuel," SAE paper, 2004-01-0091.
    [26]W.Castro, D.E.Weller, K.Cheenkachorn and J.M.Perez, "The effect of chemical structure of basefluids on antiwear effectiveness of additives," Tribology International, Vol 38, pp.321~326, 2005.
    [27]黃天謚,"生質柴油之磨潤性能研究",國立台灣科技大學碩士論文,2008.
    [28]R.A.Candeia, M.C.D.Silva, J.R.Carvalho Filho, M.G.A.Brasilino, T.C.Bicudo, I.M.G.Santos and A.G.Souza, "Influence of soybean biodiesel content on basic properties of biodiesel–diesel blends," Fuel, Vol 88, pp.738~743, 2009.
    [29]Flavia Aparecida de Almeida, Marcia Marie Maru, Luciano do Nascimento Batista, Filipe Jose Alves de Oliveira, Rui Ramos Ferreira e Silva and Carlos Alberto Achete, "Wear and friction behavior of Si3N4 ceramics under diesel and biodiesel lubrication, " j mater res technol, 2(2), pp.110~116, 2013.
    [30]M.A.Maleque, H.H.Masjuki and A.S.M.A.Haseeb, "Effect of mechanical factors on tribological properties of palm oil methyl ester blended lubricant," Wear, Vol 239, pp.117~125, 2000.
    [31]M.A.Fazal, A.S.M.A.Haseeb and H.H.Masjuki, "Investigation of friction and wear characteristics of palm biodiesel,"Energy Conversion and Management, Vol. 67, pp.251~256, 2013.
    [32]A.S.M.A.Haseeb, S.Y.Sia, M.A.Fazal and H.H.Masjuki, "Effect of temperature on tribological properties of palm biodiese," Energy 35, pp.1460~1464, 2010.
    [33]I.Minami, T.Kubo, D.Shimamoto, D.Takahashi, H.Nanao and S.Mori, "Investigation of wear mechanism by organic sulphides in vegetable oils, Lubrication Science," Vol 19, pp.113~126, 2007.
    [34]M.W.Sulek, A.Kulczycki, A.Malysa, "Assessment of lubricity of compositions of fuel oil with biocomponents derived from rape-seed," Wear, Vol 268, pp.104~108, 2010.
    [35]N.L.Panwar, Hemant Y.Shrirame, N.S.Rathore, Sudhakar Jindal, A.K.Kurchania, "Performance evaluation of a diesel engine fueled with methyl ester of castor seed oil," Applied Thermal Engineering Vol 30, pp.245~249, 2010.
    [36]P.R.Wander, C.R.Altafini, A.L.Colombo and S.C.Perera, "Durability studies of mono-cylinder compression ignition engines operating with diesel, soy and castor oil methyl esters," Energy, Vol 36, pp.3917~3923, 2011.
    [37]L.Canoira, J.G.Galea’n, R.A.Ntara and R.G.Contreras, "Fatty acid methyl esters (FAMEs) from castor oil: Production processassessment and synergistic effects in its properties,"Renewable Energy, Vol 35, pp.208~217, 2010.
    [38]沈宗義,"蓖麻油酯與生質柴油對引擎機油抗磨耗性能之研究",國立台灣科技大學碩士論文,2014.
    [39]J.E.Fernandez Rico, A.Hernandez Battez, D.Garcia Cuervo, "Wear prevention characteristics of binary oil mixtures," Wear, Vol 253, pp.827~831, 2002.
    [40]S.Kaul, R.C.Saxena, A.Kumar, M.S.Negi, A.K.Bhatnagar, H.B.Goyal, A.K.Gupta, "Corrosion behavior of biodiesel from seed oils of Indian origin on diesel engine parts," Fuel Processing Technology, Vol 88, pp.303~307, 2007.
    [41]Q.Lu, J.Zhang and X.Zhu, "Corrosion properties of bio-oil and its emulsions with diesel," Chinese Science Bulletin, 53(23), pp.3726~3734. doi: 10.1007/s11434-008-0499-7, 2008
    [42]Yufu Xu, Qiongjie Wang, Xianguo Hu, Chuan Li, and Xifeng Zhu, "Characterization of the Lubricity of Bio-Oil/Diesel Fuel Blends by High Frequency Reciprocating Test Rig," Energy, Vol 35, pp.283~87, 2010.
    [43]A.S.M.A.Haseeb, H.H.Masjuki, L.J.Ann and M.A.Fazal, "Corrosion characteristics of copper and leaded bronze in palm biodiesel," Fuel Processing Technology vol 91, pp.329~334, 2010.
    [44]M.A.Fazal, A.S.M.A.Haseeb, and H.H.Masjuki, "Comparative Corrosive Characteristics of Petroleum Diesel and Palm Biodiesel for Automotive Materials," Fuel Processing Technology, Vol 91, 1308-15, 2010.
    [45]M.A.Fazal, A.S.M.A.Haseeb and H.H.Masjuki, "Effect of different corrosion inhibitors on the corrosion of cast iron in palm biodiesel," Fuel Processing Technology, 92(11), pp.2154~2159. doi: 10.1016/j.fuproc, 2011.06.012
    [46]M.A.Fazal, A.S.M.A.Haseeb and H.H.Masjuki, "Effect of temperature on the corrosion behavior of mild steel upon exposure to palm biodiesel," Energy, 36(5), pp.3328~3334.doi:10.1016/ j.energy. 2011.03.028
    [47]M.A.Fazal, A.S.M.A.Haseeb and H.H.Masjuki, "Corrosion mechanism of copper in palm biodiesel," Corrosion Science,Vol 67, pp.50~59. doi: 10.1016/j.corsci, 2012.10.006
    [48]Yufu Xu, Xianguo Hu, Kun Yuan, Guolai Zhu and Wenzhe Wang, "Friction and Wear Behaviors of Catalytic Methylesterified Bio-Oil," Tribology International, Vol 71, pp.168~74, 2014.
    [49]柯賢文,"腐蝕及其防制",全華科技圖書有限公司,1998.
    [50]左克東等,"腐蝕防制學",百成書店印行,1977.
    [51]N.G.Fontana and N.D.Greene, "Corrosion Engineering," McGraw Hill Company, 1986.
    [52]R.Roberge Pierre and P.Eng, "Corrosion Engineering: Principles and Practice," McGraw-Hill Company, 2008.
    [53]M.G.Fontana, "CorrosionEngineering, third ed," McGraw-Hill,New York, 1987.
    [54]D.Dowson and G.Higginson, "Elasto-Hydrodynamic Lubrication," Pergamon Press, Oxford, ISBN 0, vol 8, p.2, 2002.
    [55]林榮盛,"潤滑學",全華科技圖書股份有限公司,1987.
    [56]H.Czichos, Tribology, "A systems approach to the science and technology of friction," lubrication and wear, Tribology Series 1, Elsevier Press, 1978.
    [57]李冠宗,"潤滑學",高立圖書出版,1990.
    [58]N.P.Suh and H.C.Sin, "The genesis of friction," Wear, Vol 69, pp. 91~114, 1981.
    [59]DIN50320:Verschleiβ-Begriffe, "Analyse Von Verschleiβ-vorgangen," Gliederung des Verschleiβgebietes, 1979.
    [60]Ernest Rabinowicz, "An adhesive wear model based on variations in strength values," Wear, Vol 68, pp.175~181, 1980.
    [61]N.P.Suh, "The delamination theory of wear," Wear, Vol 25, pp. 111~124, 1973.
    [62]林原慶,"ZDDP 添加劑在邊界潤滑狀態下的抗磨耗研究",國立台灣大學,1993.
    [63]D.A.Constantine, Y.Wang and E.J.Terrell, "Effect of reciprocation frequency on friction and wear of bibrating contacts lubricated with soybean-based B100 biodiesel," Tribology Letters, Vol 50, pp.279~285, 2013.
    [64]R.C.Bill, "Review of factors that influence fretting wear," Materials Evaluation Under Fretting Conditions, ASTM STP 780, American Society for Testing and Materials, pp.165~182, 1982.
    [65]E.Marui, H.Endo, N.Hasegawa and H.Mizuno, "Prototype fretting wear testing machine and some experimental results," Wear, Vol 214, pp.221~230, 1998.
    [66]R.C.Bill, "Fretting and wear and fretting fatigue-how are they related," Trans. ASME, Journal of Lubrication Technology, Vol 105, pp.230~238, 1983.
    [67]G.W.Stachowiak and A.W.Batchelor, Engineering Tribology, Tribology series 24, Elsevier Press, 1993.
    [68]S.Fouvry, Ph.Kapsa and L.Vincent, "An elastic–plastic shakedown analysis of fretting wear," Wear, Vol 247, pp.41~54, 2001.
    [69]Z.R.Zhoua and L.Vincentb, "Mixed fretting regime," Wear, Vol 181~183, pp.531~536, 1995.
    [70]O.Vingsbo and S.Soderberg, "On fretting maps," Wear, Vol 126, pp.131~147, 1988.
    [71]S.Hannel, S.Fouvry, Ph.Kapsa and L.Vincent, "The fretting sliding transition as a criterion for electrical contact performance," Wear, Vol 249, pp.761~770, 2001.
    [72]J.Beard, Palliatives for fretting fatigue, in: R.B. Waterhouse, T.C. Lind1ey (Eds.), Fretting Fatigue, ESIS 18, Mechanical Engineering Publications, London, pp.419~436, 1994.
    [73]S.C.Gordelier and T.C.Chivers, "A literature review of palliatives for fretting fatigue," Wear, Vol 56, pp.177~190, 1979.
    [74]R.B.Waterhouse, "Fretting corrosion," Pergamons Prcee Ltd., Oxford, pp.141, 1972.
    [75]B.W.Sakmann and B.G.Rightmire, "An investigation of fretting corrosion under several condtions of oxidation," NACA TN-1492, 1948.
    [76]K.Endo and H.Goto, "Effects of environment on fretting fatigue," Wear, Vol 48, pp.347~367, 1978.
    [77]R.C.Bill, "Study of Fretting Wear in Titanium, Monel-400, and Cobalt 25 Percent Molybdenum Using Scanning Electron Microscopy," ASLE Transactions, Vol 16, pp.286~290, 1973.
    [78]H.Goto and D.H.Buckley, "The influence of water vapour in air on the friction behavior of pure metals during fretting," Tribology International, Vol 18, pp.237~245, 1985.
    [79]K.Thomas and R.Tom,"Rough surface," Imperial College Press, 1999.
    [80]H.Hertz, "Uber die Beruhrung fester elastischer Korper," 1882.
    [81]B.Hamrock and D.Dowson, "Ball bearing lubrication the elastohydrodynamics of elliptical contacts," ed: Wiley-Interscience, 1981.
    [82]H.Hertz, " Miscellaneous papers: Macmillan," 1896.
    [83]J.Williams, "Engineering tribology: Cambridge University Press," 1994.
    [84]K.Bomben, J.Moulder, P.E.Sobol and W.Stickle, "Handbook of X-ray Photoelectron Spectroscopy," A Reference Bookof Standard.
    [85]陳雅倫等人,"柴油共軌噴油系統快速劣化試驗評估研究",中華民國第十九屆車輛工程學術研討會論文集 #C-02,台灣中壢,2014.
    [86]S.L.Kokjohn, M.P.B.Musculus and R.D.Reitz, "Evaluating temperature and fuel stratification for heat-release rate control in a reactivity-controlled compression-ignition engine using optical diagnostics and chemical kinetics modeling," Combustion and Flame, 162(6), pp.2729~2742. doi: 10.1016/j.combustflame.2015.04.009
    [87]甘滄弘,"生質柴油對引擎機油抗磨耗能力的影響",國立台灣科技大學碩士論文,2011.
    [88]R.Dyer John, "Application of absorption spectroscopy of organic compounds," Prentice-Hall, 1965.
    [89]F.Linstromberg and R.Baumgarten, "organic chemistry," D. C. Heath, 1987.
    [90]J.F.Moulder, W.F.Stickle, P.E.Sobol and K.D.Bomben,"Handbook of X-ray Photoelectron Spectroscopy," Physical Electronics, Inc, 1995.
    [91]Jiusheng Li, Tianhui Ren, Hong Liu, Dapu Wang and Weimin Liu, "The tribological study of a tetrazole derivative as additive in liquid paraffin," Wear, Vol 246, pp.130~133, 2000.
    [92]P.Li, J.Y.Lin, K.L.Tan and J.Y.Lee, "Electrochemical impedance and X-ray photoelectron spectroscopic studies of the inhibition of mild steel corrosion in acids by cyclohexylamine," Electrochimica Acta, Vol 42, No.4, pp.605~615, 1997
    [93]http://www.lasurface.com/accueil/index.php
    [94]溫詩鑄、黃平,"摩擦學原理",清華大學出版社,2002.
    [95]Abdul Monyem and Jon H.Van Gerpen, "The effect of biodiesel oxidation on engine performance and emissions," Biomass and Bioenergy, Vol 20, pp.317~325, 2001.

    無法下載圖示 全文公開日期 2021/07/25 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE