簡易檢索 / 詳目顯示

研究生: 徐睿
Jui Hsu
論文名稱: 常壓電漿噴射束於JIS SACM645氮化用鋼滲氮碳化製程之研究
Study of Atmospheric Pressure Plasma Nitrocarburizing Process on JIS SACM645 Steel
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 邱六合
Liu-Ho Chiu
顏鴻威
Hung-Wei Yen
丘群
Chun Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 133
中文關鍵詞: 常壓電漿噴射束表面滲氮碳化處理JIS SACM645氮化用鋼磨耗性質電漿診斷氣氛效應
外文關鍵詞: Atmospheric Pressure Plasma Jet, Nitrocarburizing, JIS SACM645, Wear Performance, Plasma Diagnosis, Atmosphere Effect
相關次數: 點閱:186下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 目錄 摘要 I Abstract II 目錄 V 表目錄 XII 第一章 緒論 1 1.1 前言 1 1.2 研究動機與目的 4 第二章 文獻回顧 5 2.1 中碳合金鋼 5 2.1.1 SACM645 黑十字滲氮用鋼性能與應用 5 2.1.2 合金元素對鋼材之影響 8 2.2 氮化與滲氮碳化 11 2.2.1 滲氮碳化介紹 11 2.2.2 滲氮碳化反應機制 14 2.3 電漿 16 2.3.1 電漿介紹與定義 16 2.3.2 電漿原理 16 2.3.3 氣體崩潰機制 24 2.3.4 常壓電漿放電機制 25 2.3.5 常壓電漿激發型態與應用 28 2.4 磨耗 32 2.4.1 磨耗介紹 32 2.4.2 磨耗原理 33 第三章 實驗方法 36 3.1 實驗設計流程 36 3.2 實驗材料 38 3.3 實驗步驟 40 3.3.1 SACM645氮化用鋼試片製備與鹽浴調質熱處理 40 3.3.2 常壓電漿噴射束滲氮碳化處理流程 41 3.4 實驗設備 42 3.5 分析儀器 44 3.5.1 光學顯微鏡(OM) 44 3.5.2 維克氏硬度機(Vicckers Hardness Test) 45 3.5.3 X光繞射儀(XRD) 47 3.5.4 電子微探儀(EPMA) 48 3.5.5 高解析度場發射掃描式電子顯微鏡(FE-SEM) 49 3.5.6 穿透式電子顯微鏡(TEM) 51 3.5.7 Ball-on-Flat 磨耗試驗機(Wear Test) 54 3.5.8 光學放射光譜儀(OES) 55 第四章 結果與討論 57 4.1 常壓電漿滲氮碳化製程溫度量測 57 4.2 X光繞射相結構分析 59 4.3 場發射掃描式電子顯微鏡表面形貌與成分檢測 62 4.4 光學顯微鏡金相組織觀察 65 4.5 機械性質分析 68 4.5.1 表面硬度分析 68 4.5.2 剖面硬度分析 72 4.6 電子微探儀元素梯度分析 75 4.7 電漿檢測 79 4.7.1 光學放射光譜儀電漿物種分析 79 4.7.2 氣體分析 83 4.8 穿透式電子顯微鏡選區繞射 86 4.9 常壓電漿滲氮碳化製程機制探討 90 4.10 磨耗性質分析 95 第五章 結論 109 第六章 未來展望 111 參考資料 112

    [1] "2018年工業4.0發展的前九大趨勢", https://kknews.cc/tech/vknro44.html
    [2] "天下雜誌-華文世界最優質的財經雜誌", https://www.cw.com.tw/article/5107032
    [3] "台電月刊-打開電力新視野", https://tpcjournal.taipower.com.tw/article/3199
    [4] About CCUS – Analysis - IEA, https://www.iea.org/reports/about-ccus
    [5] "「開學防疫 大氣電漿讓口罩用更久」媒體報導-國立臺灣科技大學", https://www.ntust.edu.tw/p/404-1000-78207.php?Lang=zh-tw
    [6] "SACM645黑十字鋼-昇茂金屬股份有限公司 SHENG MAW METAL CO., LTD", http://www.sheng-maw.com.tw/productshow.php?id=258.
    [7] 天文大同特殊鋼股份有限公司, 天文大同特殊鋼使用手冊。
    [8] 李勝隆,金屬熱處理:原理與應用,全華圖書,2014。
    [9] 王憲柏,以常壓電漿噴射束於SKD11模具鋼表面硬化處理之研究,國立臺灣科技大學機械工程系,2018。
    [10] 王繹綸,調質及軟氮化對FC350及FCD450鑄鐵之磨耗性能影響,大同大學材料工程學系, 2020。
    [11] B.G.Thomas, by B.G Thomas, I.VSamarasekera, The Formation of Panel Cracks in Steel Ingots: A State-of-the-Art Review, ISS Trans. 7 (1986) 7–20.
    [12] F.Weinberg, Continuous Casting of Steel., CIM Bull. 74 (1981) 96–99.
    [13] 熱處理編輯委員會,熱處理,高立圖書有限公司,2006。
    [14] 余煥騰,金屬熱處理學,六合出版社,1998。
    [15] 金重勳,熱處理,台灣復文興業有限公司,1998。
    [16] 李俊毅,以直流脈衝電漿化學氣相沉積法蒸鍍DLC薄膜於氮氧化處理薄膜於氮氧化處理AISI H13工具鋼之研究,國立臺北科技大學材料及資源工程系,2012。
    [17] J.T.S.E.J. Mittemeijer, Thermodynamical activities of nitrogen and carbon imposed by gaseous nitriding and carburizing atmospheres, ASM International, Materials Park, OH (United States), 1995.
    [18] T.Bell, Y.Sun, A.Suhadi, Environmental and technical aspects of plasma nitrocarburizing, Vacuum. 59 (2000) 14–23.
    [19] 王繹綸、徐睿、邱六合,淬火回火與軟氮化處理對鑄鐵磨耗性能之影響,金屬熱處理學會論文,2019。
    [20] J.Wu, K.Wang, L.Fan, L.Dong, J.Deng, D.Li, W.Xue, Investigation of anodic plasma electrolytic carbonitriding on medium carbon steel, Surf. Coatings Technol. 313 (2017) 288–293.
    [21] S.M.Noori, C.Dehghanian, Effect of treatment time on Corrosion and Tribological behavior of Nitrocarburized coating by Cathodic Plasma Electrolytic Deposition, Prot. Met. Phys. Chem. Surfaces 2020 571. 57 (2021) 121–131.
    [22] E.J.Mittemeijer, Fundamentals of Nitriding and Nitrocarburizing,
    [23] M.A.J.Somers, Development of Compound Layer and Diffusion ZOne during Nitriding and Nitrocarburizing of Iron and Steels, Compr. Mater. Process. 12 (2014) 413–437.
    [24] K.Marušić, H.Otmačić, D.Landek, F.Cajner, E.Stupnišek-Lisac, Modification of carbon steel surface by the Tenifer® process of nitrocarburizing and post-oxidation, Surf. Coatings Technol. 201 (2006) 3415–3421.
    [25] A.Esfahani, M.Heydarzadeh Sohi, J.Rassizadehghani, F.Mahboubi, Effect of treating atmosphere in plasma post-oxidation of nitrocarburized AISI 5115 steel, Vacuum. 82 (2007) 346–351.
    [26] P.Corengia, G.Ybarra, C.Moina, A.Cabo, E.Broitman, Microstructural and topographical studies of DC-pulsed plasma nitrided AISI 4140 low-alloy steel, Surf. Coatings Technol. 200 (2005) 2391–2397.
    [27] I.Lee, Post-oxidizing treatments of the compound layer on the AISI 4135 steel produced by plasma nitrocarburizing, Surf. Coatings Technol. 188–189 (2004) 669–674
    [28] R.Huang, J.Wang, S.Zhong, M.Li, J.Xiong, H.Fan, Surface modification of 2205 duplex stainless steel by low temperature salt bath nitrocarburizing at 430 °C, Appl. Surf. Sci. 271 (2013) 93–97.
    [29] Z.Zhou, M.Dai, Z.Shen, J.Hu, A novel rapid D.C. salt bath nitrocarburizing technology, Vacuum. 109 (2014) 144–147.
    [30] W.Cai, F.Meng, X.Gao, J.Hu, Effect of QPQ nitriding time on wear and corrosion behavior of 45 carbon steel, Appl. Surf. Sci. 261 (2012) 411–414.
    [31] M.Zlatanović, N.Popović, Ž.Bogdanov, S.Zlatanović, Plasma post oxidation of nitrocarburized hot work steel samples, Surf. Coatings Technol. 177–178 (2004) 277–283.
    [32] R.Liu, Y.Qiao, M.Yan, Y.Fu, Mechanical and corrosion resistant properties of martensitic stainless steel plasma nitrocarburized with rare earths addition, J. Rare Earths. 30 (2012) 826–830.
    [33] M.Heydarzadeh Sohi, M.Ebrahimi, A.Honarbakhsh Raouf, F.Mahboubi, Effect of plasma nitrocarburizing temperature on the wear behavior of AISI 4140 steel, Surf. Coatings Technol. 205 (2010) S84–S89.
    [34] I.LEE, Plasma post oxidation of nitrocarburized AISI 4140 steel, Rare Met. 25 (2006) 267–271.
    [35] X.Ye, J.Wu, Y.Zhu, J.Hu, A study of the effect of propane addition on plasma nitrocarburizing for AISI 1045 steel, Vacuum. 110 (2014) 74–77.
    [36] Y.Jiang, T.Geng, Y.Bao, Y.Zhu, Electrolyte–electrode interface and surface characterization of plasma electrolytic nitrocarburizing, Surf. Coatings Technol. 216 (2013) 232–236.
    [37] A.R.Rastkar, B.Shokri, Surface modification and wear test of carbon steel by plasma electrolytic nitrocarburizing, Surf. Interface Anal. 44 (2012) 342–351.
    [38] M.Noori, C.Dehghanian, S.M.Noori, Characterization of nitrocarburized coating by plasma electrolytic saturation., Acta Metall. Slovaca. 24 (2018) 20–31.
    [39] "興光工業股份有限公司(熱處理)-Xing Guang Industrial Co.,Ltd.", http://www.xht.com.tw/ch/hot_01_page.asp?num=20140228224514.
    [40] M.A.J.Somers, Development of the compound layer during nitriding and nitrocarburizing of iron and iron-carbon alloys, Thermochem. Surf. Eng. Steels Improv. Mater. Perform. (2015) 341–372
    [41] J.Ågren, A thermodynamic analysis of the Fe−C and Fe−N phase diagrams, Metall. Trans. A 1979 1012. 10 (1979) 1847–1852.
    [42] Z.H.Dong, W.Zhang, H.W.Kang, Y.J.Xie, M.Ebrahimnia, X.Peng, Surface hardening of laser melting deposited 12CrNi2 alloy steel by enhanced plasma carburizing via hollow cathode discharge, Surf. Coatings Technol. 397 (2020) 125976.
    [43] K. L. Chopra and S. R. Das, Thin Film Solar Cells, Springer Science + …, Springer, Boston, MA, 1983.
    [44] H.Conrads, M.Schmidt, Plasma generation and plasma sources, Plasma Sources Sci. Technol. 9 (2000) 441.
    [45] C.Tendero, C.Tixier, P.Tristant, J.Desmaison, P.Leprince, Atmospheric pressure plasmas: A review, Spectrochim. Acta Part B At. Spectrosc. 61 (2006) 2–30.
    [46] M.I.Boulos, Thermal Plasma Processing, IEEE Trans. Plasma Sci. 19 (1991) 1078–1089.
    [47] 郭福升,大面積常壓電漿技術之研究,國立成功大學化學工程學系,2003。
    [48] J. R. Roth, Industrial Plasma Engineering, Institute, 1995.
    [49] 張祐錡,常壓電漿氮化處理對AISI 304不鏽鋼抗衝擊磨損和耐蝕性能之研究,碩士論文,國立台灣科技大學機械工程系,2021。
    [50] 張家豪、魏鴻文、翁政輝、柳克強、李安平、寇崇善、吳敏文、曾錦清、蔡文發、鄭國川,電漿源原理與應用之介紹,物理雙月刊. 第二十八卷 (2006)。
    [51] M.Černák, L.Černáková, I.Hudec, D.Kováčik, A.Zahoranová, Diffuse Coplanar Surface Barrier Discharge and its applications for in-line processing of low-added-value materials, Eur. Phys. J. - Appl. Phys. 47 (2009).
    [52] C.L.Ko, Y.L.Kuo, W.J.Lee, H.J.Sheng, J.Y.Guo, The enhanced abrasion resistance of an anti-fingerprint coating on chrome-plated brass substrate by integrating sputtering and atmospheric pressure plasma jet technologies, Appl. Surf. Sci. 448 (2018) 88–94.
    [53] J.-Y.Guo, Y.-L.Kuo, H.-P.Wang, J.-Y.;Guo, Y.-L.;Kuo, H.-P.Wang, A Facile Nitriding Approach for Improved Impact Wear of Martensitic Cold-Work Steel Using H2/N2 Mixture Gas in an AC Pulsed Atmospheric Plasma Jet, Coatings 2021, Vol. 11, Page 1119. 11 (2021) 1119.
    [54] "台灣儀器科技研究中心", https://www.tiri.narl.org.tw/Publication/InstTdy_Full/12487?PubId=22
    [55] "低溫常壓電漿機 可將用過口罩滅菌除臭",公視新聞網. https://news.pts.org.tw/article/468283
    [56] A.Akbari, R.Mohammadzadeh, C.Templier, J.P.Riviere, Effect of the initial microstructure on the plasma nitriding behavior of AISI M2 high speed steel, Surf. Coatings Technol. 204 (2010) 4114–4120.
    [57] K.Toda, R.Ichiki, Y.Kanbara, K.Kojima, K.Tachibana, T.Furuki, S.Kanazawa, Bright nitriding using atmospheric-pressure pulsed-arc plasma jet based on NH emission characteristics, Jpn. J. Appl. Phys. 59 (2020) SHHE01.
    [58] N.Zhong, G.Fu, J.Li, C.Lian, W.Chen, K.Huang, A novel two-dimensional atmospheric pressure plasma jet device, Plasma Process. Polym. 19 (2022) 2100159.
    [59] N.Plaks, G.H.Ramsey, D.S.Ensor, J.R.Newsome, Control of Volatile Organic Compounds by an ac Energized Ferroelectric Pellet Reactor and a Pulsed Corona Reactor, IEEE Trans. Ind. Appl. 28 (1992) 528–534.
    [60] D.P.Dowling, F.T.O’Neill, S.J.Langlais, V.J.Law, Influence of dc Pulsed Atmospheric Pressure Plasma Jet Processing Conditions on Polymer Activation, Plasma Process. Polym. 8 (2011) 718–727.
    [61] A.Metze, D.W.Ernie, H.J.Oskam, Application of the physics of plasma sheaths to the modeling of rf plasma reactors, J. Appl. Phys. 60 (1998) 3081.
    [62] P.J.Blau, K.G.Budinski, Development and use of ASTM standards for wear testing, Wear. 225–229 (1999) 1159–1170.
    [63] K.H. and A.Matthews, Coatings Tribology Properties, Mechanisms, Techniques and Applications in Surface, 1994.
    [64] M.W.Davidson, M.Abramowitz, OPTICAL MICROSCOPY.
    [65] J.J.Gilman, Chemistry and Physics of Mechanical Hardness, John Wiley, 2009.
    [66] A.R.Franco Jr., G.Pintaúde, A.Sinatora, C.E.Pinedo, A.P.Tschiptschin, The use of a vickers indenter in depth sensing indentation for measuring elastic modulus and vickers hardness, Mater. Res. 7 (2004) 483–491.
    [67] E.M. and K.S.Y. Waseda, X-Ray Diffraction Crystallography: Introduction, Examples and Solved Problems - Yoshio Waseda, Eiichiro Matsubara, Kozo Shinoda, Springer-Verlag Berlin Heidelberg, 2011.
    [68] N.Perez, Phase Transformation in Metals: Mathematics, Springer Nature, Springer International Publishing, 2020.
    [69] 施正雄,儀器分析原理與應用,五南圖書出版股份有限,2012。
    [70] "X-ray Fluorescence,"http://projects.exeter.ac.uk/geomincentre/estuary/Main /fluorescence.htm
    [71] S.-Y.Yang, S.-Y.Jiang, Q.Mao, Z.-Y.Chen, C.Rao, X.-L.Li, W.-C.Li, W.-Q.Yang, P.-L.He, X.Li, Electron Probe Microanalysis in Geosciences: Analytical Procedures and Recent Advances, 20211013 XXX At. Spectrosc. 2022 .
    [72] A.B.A. UI-Hamid, Guide to Scanning Electron Microscopy, Springer Nature Con…, 2018.
    [73] 鮑忠興、劉思謙,近代穿透式電子顯微鏡實務,2012。.
    [74] "教學設備介紹",明志科技大學,
    https://mse.mcut.edu.tw/p/412-1043-968.php?Lang=zh-tw
    [75] R.F.Coeffi-, Standard Test Method for Linearly Reciprocating Ball-on-Flat Sliding Wear 1, Lubrication. 05 (2011) 1–10.
    [76] M. P. Vaughan, Optics, University, 2014.
    [77] G.Chen, L.Xue, J.Wang, Z.Tang, X.Li, H.Dong, Investigation of surface modifications for combating the molten aluminum corrosion of AISI H13 steel, Corros. Sci. 174 (2020) 108836.
    [78] R.Sola, G.Poli, P.Veronesi, R.Giovanardi, Effects of surface morphology on the wear and corrosion resistance of post-treated Nitrided and nitrocarburized 42CrMo4 steel, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 45 (2014) 2827–2833.
    [79] D.Wu, Y.Ge, H.Kahn, F.Ernst, A.H.Heuer, Diffusion profiles after nitrocarburizing austenitic stainless steel, Surf. Coatings Technol. 279 (2015) 180–185.
    [80] S.H.Yeh, L.H.Chiu, W.C.Lo, C.L.Huang, Thermal Fatigue Behavior of Nitrocarburized and Low Pressure Nitrided Modified JIS SKD61 Hot Work Mold Steel, Mater. Trans. 54 (2013) M2013035.
    [81] 邱凱鴻,SUS 420麻田散鐵系不銹鋼之氣體滲氮·滲碳研究,碩士論文,國立台灣大學機械工程學系,2017。
    [82] 鄭愉宏,沃斯田鐵系不銹鋼之低溫氣體滲碳氮化之研究,碩士論文,國立台灣大學機械工程學系,2014。
    [83] T.Ceregatti, L.Kunicki, S.R.Biaggio, L.C.Fontana, C.Dalmolin, N2–H2 plasma functionalization of carbon fiber fabric for polyaniline grafting, Plasma Process. Polym. 17 (2020) 1900166.
    [84] W.Bongers, H.Bouwmeester, B.Wolf, F.Peeters, S.Welzel, D.van denBekerom, N.denHarder, A.Goede, M.Graswinckel, P.W.Groen, J.Kopecki, M.Leins, G.vanRooij, A.Schulz, M.Walker, R.van deSanden, Plasma-driven dissociation of CO2 for fuel synthesis, Plasma Process. Polym. 14 (2017) 1600126.
    [85] A.G.G.R.W.B. Pearce, Identification of Molecular Spectra, Chapman and Hall, London, 1976.
    [86] S.Kelly, J.A.Sullivan, CO2 Decomposition in CO2 and CO2/H2 Spark-like Plasma Discharges at Atmospheric Pressure, ChemSusChem. 12 (2019) 3785–3791.
    [87] M.Martins, K.Godehusen, T.Richter, A.Müller, D.Bernhardt, A.Borovik, L.Varvarezos, H.Lu, J.T.Costello, A.Bartnik, P.Wachulak, T.Fok, Ł.We, H.Fiedorowicz, Oxygen K-shell photoabsorption spectra of photoionized CO2 plasmas, J. Phys. B At. Mol. Opt. Phys. 53 (2020) 105701.
    [88] M.A.Elliott, P.W.May, J.Petherbridge, S.M.Leeds, M.N.R.Ashfold, W.N.Wang, Optical emission spectroscopic studies of microwave enhanced diamond CVD using CH4/CO2 plasmas, Diam. Relat. Mater. 9 (2000) 311–316.
    [89] M.J.Pavlovich, D.S.Clark, D.B.Graves, Quantification of air plasma chemistry for surface disinfection, Plasma Sources Sci. Technol. 23 (2014) 065036.
    [90] E.Haruman, T.Bell, Y.Sun, Compound Layer Characteristics Resulting from Plasma Nitrocarburising in Atmospheres Containing Carbon Dioxide Gas Additions,
    [91] C.Ruset, A.Bloyce, T.Bell, Plasma nitrocarburizing with nitrogen, hydrogen, and hydrogen sulphide gas mixtures, 10.1179/Sur.1995.11.4.308. 11 (2013) 308–314.
    [92] T.Lampe, S.Eisenberg, G.Laudien, Compound Layer Formation During Plasma Nitriding and Plasma Nitrocarburising, 10.1179/Sur.1993.9.1.69. 9 (2013) 69–76.
    [93] M.Sode, W.Jacob, T.Schwarz-Selinger, H.Kersten, Measurement and modeling of neutral, radical, and ion densities in H2-N2-Ar plasmas, J. Appl. Phys. 117 (2015) 083303..
    [94] X.D.Pham, A.T.Hoang, D.N.Nguyen, V.VLe, Effect of Factors on the Hydrogen Composition in the Carburizing Process, Int. J. Appl. Eng. Res. 12 (2017) 8238–8244.
    [95] H.J.Grabke, Carburization, carbide formation, metal dusting, coking, Mater. Tehnol. 36 (2002) 297–305.
    [96] D.U.Hong, M.A.J.Somers, J.Ågren, Microstructural and compositional evolution of compound layers during gaseous nitrocarburizing, Metall. Mater. Trans. A 2000 311. 31 (2000) 195–211.
    [97] C.Rond, A.Bultel, P.Boubert, B.G.Chéron, Spectroscopic measurements of nonequilibrium CO2 plasma in RF torch, Chem. Phys. 354 (2008) 16–26.
    [98] H.Ito, K.Koshimura, S.Onitsuka, K.Okada, T.Suzuki, H.Akasaka, H.Saitoh, Dissociative excitation of C2H2 in the electron cyclotron resonance plasma of ar: Production of CH(A2Δ) radicals and formation of hydrogenated amorphous carbon films, Plasma Chem. Plasma Process. 32 (2012) 231–248.

    無法下載圖示 全文公開日期 2027/08/31 (校內網路)
    全文公開日期 2027/08/31 (校外網路)
    全文公開日期 2027/08/31 (國家圖書館:臺灣博碩士論文系統)
    QR CODE