簡易檢索 / 詳目顯示

研究生: 蕭宇呈
Yu-Cheng Hsiao
論文名稱: 以常壓電漿製備二氧化鈰疏水複合薄膜與其抗腐蝕性應用
Study on fabricating cerium oxide with hydrophobic composite coating for anticorrosion application by Atmospheric Pressure Plasma Jet
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 郭俞麟
Yu-Lin Kuo
林昇佃
Shawn D. Lin
莊嘉揚
Jia-Yang Juang
童國倫
Kuo-Lun Tung
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 121
中文關鍵詞: 常壓電漿噴射束二氧化鈰膜層抗腐蝕性疏水性
外文關鍵詞: Atmospheric Pressure Plasma Jet(APPJ), Cerium layer, hydrophobicity, anticorrosion
相關次數: 點閱:320下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 產學界需要疏水與耐用的材料來因應廣泛的應用之需求。二氧化鈰是天然疏水材料且屬於稀土氧化物(REOs)之一。因為二氧化鈰具有獨特的電子結構,在外殼中是完整的八隅體電子結構,因此二氧化鈰不易於水分子交換電子。以阻擋與周圍環境的水分子交互作用。但是,常見的鎂合金往往是親水的,例如AZ91D鎂合金。此為鎂合金耐腐蝕性能差的原因。這也限制了鎂合金在產業界中的應用,而於鎂合金表面披覆鍍膜為改善其提升抗腐蝕性方式之一。
    在這項研究中,透過常壓電漿噴射束以前驅物六水合硝酸鈰、六水合硝酸鈰結合葡萄糖於AZ91D鎂合金的表面上沉積具有抗腐蝕與疏水性的二氧化鈰薄膜,而後透過旋轉塗佈1H,1H,2H,2H-全氟辛基三乙氧基矽烷(FAS-13)於二氧化鈰薄膜表面。膜層材料特性分析透過場發射掃描電子顯微鏡(FE-SEM)進行表面形貌觀測、薄膜附著性透過附著性測試、動電位極化曲線試驗,電化學阻抗譜(EIS)進行抗腐蝕分析、5wt% 鹽霧測試最後水滴接觸角分析。
    結果顯示透過常壓電漿沉積二氧化鈰薄膜具有疏水性(127O)與低表面能與優化AZ91D鎂合金抗腐蝕性之特性。而後於二氧化鈰表面上旋轉塗佈上FAS-13後AZ91D鎂合金擁有更佳的疏水接觸角與抗腐蝕性。此研究說明,透過常壓電漿噴射束沉積二氧化鈰膜層與FAS-13與二氧化鈰複合膜層,實現了於AZ91D鎂合金提升表面之疏水性與其抗腐蝕性之表現。


    Hydrophobic and durable materials are needed in a broad range of applications. Ce-rium is nature hydrophobic material and one of rare-earth oxides (REOs). Cerium has a unique electronic structure which is full octet of electrons in the outer shell therefore ce-rium has low chance to exchange electron with water molecule. It means cerium can shield from interactions with surrounding environment. However, we know that common magnesium alloys tend to be hydrophilic, such as AZ91D magnesium. This is why mag-nesium alloy has poor corrosion resistant performance, restricting their applications in in-dustry. Coating on surface of magnesium alloy is manner to improve corrosion perfor-mance of magnesium alloy.
    In this study a cerium layer which is anticorrosion and hydrophobicity is fabricated on surface of AZ91D magnesium by atmospheric pressure plasma jet(APPJ) that is low-cost equipment and large-area scanning with Cerium (III) nitrate hexahydrate, mix Cerium (III) nitrate hexahydrate with glucose as precursor to improve corrosion perfor-mance of magnesium alloy, following 1H,1H,2H,2H-perfluorooctyltriethoxysilane (FAS-13) is coated on surface of cerium layer by spin coating. The cerium layer’s charac-teristic is analyzed by surface morphology observed by Field Emission Scanning Electron Microscopy (FE-SEM), adhesion cross-cut test (ACCT), potentiodynamic polarization curve test, Electrochemical Impedance Spectroscopy (EIS), water contact angle(WCA), salt spray test in 5 wt % NaCl solution.
    The APPJ-deposited cerium layer has a hydrophobicity surface with water contact angle 127O and low surface energy, optimized anticorrosion performance of AZ91D magnesium alloy, while the FAS-13 coating on the cerium layer sample has higher WCA and better anticorrosion performance, investigated by electrochemical impedance spec-troscopy measurements. There result show cerium layer deposited by APPJ or FAS-13/cerium composite coating for improving the corrosion resistance and the surface properties with hydrophobicity form on surface of AZ91D magnesium alloy is achieved.

    摘要 III Abstract IV 致謝 VI 第一章緒論 1 1.1前言 1 1.2 大氣常壓電漿 2 1.3 二氧化鈰薄膜 2 1.4 研究動機 3 第二章 文獻回顧 4 2.1 二氧化鈰介紹 4 2.1.1 光學性質 5 2.1.2 化學性質 5 2.1.3疏水性質 6 2.2 二氧化鈰製備之方式 7 2.2.1物理性製備 7 2.2.2 化學性製備 9 2.2.3熱裂解法(Thermal decomposition method) 11 2.3水滴接觸角定義與案例 14 2.3.1親疏水定義 15 2.3.2 光滑平面之表面能 15 2.3.3 非光滑平面之表面能 15 2.4 鎂金屬與其合金簡介 19 2.4.1 鎂金屬 19 2.4.2 鎂合金分類 21 2.4.3 鎂合金之命名 23 2.4.4 鎂合金組織結構對於腐蝕之影響 26 2.4.5 鎂合金腐蝕之產物 27 2.4.6 鎂合金常見腐蝕類型 30 2.5 電漿 32 2.5.1電漿歷史與簡介 32 2.5.2 電漿產生原理過程 33 2.5.3常壓電漿簡介 36 2.5.4 常壓電漿近年來應用 38 第三章 實驗設備與方法 41 3.1 研究設計 41 3.1.1 AZD91D鎂合金前處理 41 3.1.2 前驅物六水合硝酸鈰水溶液之置備 41 3.1.3 前驅物六水合硝酸鈰與葡萄糖水溶液之置備 41 3.1.4 常壓電漿噴射束製備氧化鈰薄膜 41 3.1.5 以旋轉塗佈機塗佈FAS於AZ91D 41 3-2 材料特性分析與實驗設備 43 3-2-1 X光繞射儀 (X-ray Diffraction Spectrometer, XRD) 43 3-2-2 顯微拉曼螢光譜儀[25] 43 3-2-3 百格刀附著性測試 (ACCT) 43 3-2-4 旋轉塗佈機 46 3-2-5 鹽水噴霧試驗機[25] 46 3-2-6場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscopy, FE-SEM) 47 3-2-7 接觸角量測儀 47 3-2-7 電化學測試 48 3-2-8 熱重分析(Thermogravimetric Analyzer) 49 3-2-9 OES量測儀 49 第四結果與討論 51 4. 1前言 51 4.2 硝酸鈰與氯化鈰材料特性分析 52 4.2.1 硝酸鈰材料熱重分析(Thermogravimetric analysis, TGA) 52 4.3 電漿溫度之分析 52 4.4 前驅物霧化水滴之計算 53 4.5常壓電漿噴射束進行物種分析 55 4.5.1 以光學放射頻譜儀(OES) 55 4.6 常壓電漿噴射束沉積薄膜之分析 58 4.6.1以六水合硝酸鈰為前驅物之膜層表面形貌之分析 58 4.6.2以六水合硝酸鈰結合葡萄糖為前驅物之膜層表面形貌之分析 59 4.7 結晶結構與元素分析 62 4.8鹽霧測試與其機制 65 4.9 薄膜水滴接觸角分析 70 4.10 拉曼光譜儀分析薄膜 73 4.11 阻抗頻譜分析薄膜 75 4.12 動電位極化曲線分析 83 4.13 附著性測試於常壓電漿沉積之薄膜 85 4-14 塗布FAS於常壓電漿沉積之薄膜分析 86 4-14-1 FAS熱重分析 87 4-14-2 塗布FAS於常壓電漿沉積之薄膜鹽霧測試之分析 87 4-14-3 塗佈FAS於常壓電漿沉積之薄膜之水滴接觸角分析 88 4-14-4 塗佈FAS於常壓電漿沉積之薄膜之阻抗分析 89 4-14-5 塗佈FAS於常壓電漿沉積之薄膜之動電位極化曲線分析 90 第五章 結論 99 第六章 未來展望 100 第七章 文獻回顧 101

    [1] Azimi, G., et al., Hydrophobicity of rare-earth oxide ceramics. Nature materials, 2013. 12(4): p. 315.
    [2] Xu, C. and X. Qu, Cerium oxide nanoparticle: a remarkably versatile rare earth nanomaterial for biological applications. NPG Asia Materials, 2014. 6(3): p. e90.
    [3] Zhang, F., et al., Cerium oxide nanoparticles: size-selective formation and structure analysis. Applied physics letters, 2002. 80(1): p. 127-129.
    [4] Tang, W.-X. and P.-X. Gao, Nanostructured cerium oxide: preparation, characterization, and application in energy and environmental catalysis. MRS Communications, 2016. 6(4): p. 311-329.
    [5] Phoka, S., et al., Synthesis, structural and optical properties of CeO2 nanoparticles synthesized by a simple polyvinyl pyrrolidone (PVP) solution route. Materials Chemistry and Physics, 2009. 115(1): p. 423-428.
    [6] Özer, N., Optical properties and electrochromic characterization of sol–gel deposited ceria films. Solar Energy Materials and Solar Cells, 2001. 68(3-4): p. 391-400.
    [7] Krishna, M.G., A. Hartridge, and A. Bhattacharya, Temperature and ionic size dependence of the properties of ceria based optionic thin films. Materials Science and Engineering: B, 1998. 55(1-2): p. 14-20.
    [8] Park, B.-E., et al., Hysteresis characteristics of vacuum-evaporated ferroelectric PbZr0. 4Ti0. 6O3 films on Si (111) substrates using CeO2 buffer layers. Applied surface science, 1997. 117: p. 423-428.
    [9] Lawrence, N.J., et al., Defect engineering in cubic cerium oxide nanostructures for catalytic oxidation. Nano letters, 2011. 11(7): p. 2666-2671.
    [10] Macedo, A.G., et al., Catalytic performance of ceria nanorods in liquid-phase oxidations of hydrocarbons with tert-butyl hydroperoxide. Molecules, 2010. 15(2): p. 747-765.
    [11] Bishop, S., K. Duncan, and E. Wachsman, Defect equilibria and chemical expansion in non-stoichiometric undoped and gadolinium-doped cerium oxide. Electrochimica Acta, 2009. 54(5): p. 1436-1443.
    [12] Kamiya, M., et al., Intrinsic and extrinsic oxygen diffusion and surface exchange reaction in cerium oxide. Journal of the Electrochemical Society, 2000. 147(3): p. 1222-1227.
    [13] Kung, H.H., Transition metal oxides: surface chemistry and catalysis. Vol. 45. 1989: Elsevier.
    [14] 張宏毅, 二氧化鈰奈米粉體之晶形操控-製備、特性分析及氧化催化活性, in 化學工程學系碩博士班. 2005, 國立成功大學: 台南市. p. 208.
    [15] Cui, Q., et al., Direct fabrication of cerium oxide hollow nanofibers by electrospinning. Journal of Rare Earths, 2008. 26(5): p. 664-669.
    [16] Lee, B.-H., et al., Synthesis of CeO2/TiO2 nanoparticles by laser ablation of Ti target in cerium (III) nitrate hexahydrate (Ce (NO3) 3· 6H2O) aqueous solution. Journal of Alloys and Compounds, 2011. 509(4): p. 1231-1235.
    [17] Kuo, Y.-L., et al., Gadolinia-doped ceria films deposited by RF reactive magnetron sputtering. Solid State Ionics, 2009. 180(26): p. 1421-1428.
    [18] Lin, S.-E., et al., Characterization of electrolyte films deposited by using RF magnetron sputtering a 20mol% gadolinia-doped ceria target. Thin Solid Films, 2010. 518(24): p. 7229-7232.
    [19] Kuo, Y.-L., Y.-S. Chen, and C. Lee, Growth of 20mol% Gd-doped ceria thin films by RF reactive sputtering: The O2/Ar flow ratio effect. Journal of the European Ceramic Society, 2011. 31(16): p. 3127-3135.
    [20] Kasuga, T., et al., Formation of Titanium Oxide Nanotube. Langmuir, 1998. 14(12): p. 3160-3163.
    [21] Liu, N., et al., A review on TiO2-based nanotubes synthesized via hydrothermal method: Formation mechanism, structure modification, and photocatalytic applications. Catalysis Today, 2014. 225: p. 34-51.
    [22] Yin, L., et al., Sonochemical Synthesis of Cerium Oxide Nanoparticles—Effect of Additives and Quantum Size Effect. Journal of Colloid and Interface Science, 2002. 246(1): p. 78-84.
    [23] Poston, J.A., et al., Thermal decomposition of the rare earth sulfates of cerium(III), cerium(IV), lanthanum(III) and samarium(III). Applied Surface Science, 2003. 214(1): p. 83-102.
    [24] Kuo, Y.-L., Y.-M. Su, and H.-L. Chou, A facile synthesis of high quality nanostructured CeO 2 and Gd 2 O 3-doped CeO 2 solid electrolytes for improved electrochemical performance. Physical Chemistry Chemical Physics, 2015. 17(21): p. 14193-14200.
    [25] 陳駿騰, 以溶膠凝膠法製備二氧化鈰/FAS複合性塗層於鎂合金之抗腐蝕研究, in 機械工程系. 2018, 國立臺灣科技大學: 台北市. p. 158.
    [26] Fauchais, P., A. Vardelle, and B. Dussoubs, Quo vadis thermal spraying? Journal of Thermal Spray Technology, 2001. 10(1): p. 44-66.
    [27] Plasma Spray Process. Available from: http://fab.cba.mit.edu.
    [28] Singh, V., et al., Precursor dependent microstructure evolution and nonstoichiometry in nanostructured cerium oxide coatings using the solution precursor plasma spray technique. Journal of the American Ceramic Society, 2010. 93(11): p. 3700-3708.
    [29] Ko, C.-L., et al., Functional FAS-13/SiOx composite coatings for improved anticorrosion and hydrophobicity/oleophobicity on AZ91D magnesium alloys. Japanese Journal of Applied Physics, 2018. 58(SA): p. SAAD03.
    [30] Lommatzsch, U. and J. Ihde, Plasma Polymerization of HMDSO with an Atmospheric Pressure Plasma Jet for Corrosion Protection of Aluminum and Low‐Adhesion Surfaces. Plasma Processes and Polymers, 2009. 6(10): p. 642-648.
    [31] Zhang, M., et al., Lotus effect in wetting and self-cleaning. Biotribology, 2016. 5: p. 31-43.
    [32] Liang, C., et al., Experimental study of the effects of fin surface characteristics on defrosting behavior. Applied Thermal Engineering, 2015. 75: p. 86-92.
    [33] Instruments, S.; Available from: http://www.sindatek.com.
    [34] Marmur, A., The lotus effect: superhydrophobicity and metastability. Langmuir, 2004. 20(9): p. 3517-3519.
    [35] Ok, S., et al., Tuning hydrophobicity of a fluorinated terpolymer in differently assembled thin films. Journal of Polymer Science Part B: Polymer Physics, 2017. 55(8): p. 643-657.
    [36] Huang, Y., et al., In vitro and in vivo evaluation of akermanite bioceramics for bone regeneration. Biomaterials, 2009. 30(28): p. 5041-5048.
    [37] Song, G.L. and A. Atrens, Corrosion mechanisms of magnesium alloys. Advanced engineering materials, 1999. 1(1): p. 11-33.
    [38] Pokhmurska, H., et al., Post-treatment of thermal spray coatings on magnesium. Surface and Coatings Technology, 2008. 202(18): p. 4515-4524.
    [39] Parkins, R. and R. Winston Revie, Uhlig’s Corrosion Handbook. Wiley, New York, 2000.
    [40] Harrison, R., et al., Corrosion of magnesium and magnesium–calcium alloy in biologically-simulated environment. Progress in Natural Science: Materials International, 2014. 24(5): p. 539-546.
    [41] Wang, L.L., Z. Munir, and Y.M. Maximov, Thermite reactions: their utilization in the synthesis and processing of materials. Journal of Materials Science, 1993. 28(14): p. 3693-3708.
    [42] Esmaily, M., et al., Fundamentals and advances in magnesium alloy corrosion. Progress in Materials Science, 2017. 89: p. 92-193.
    [43] Bethune, A.J.D., Standard aqueous electrode potentials and temperature coefficients at 25 degrees C. 1964.
    [44] Hu, H., X. Nie, and Y. Ma, Corrosion and surface treatment of magnesium alloys, in Magnesium Alloys-Properties in Solid and Liquid States. 2014, Intech.
    [45] Tkacz, J., et al., Comparison of electrochemical methods for the evaluation of cast AZ91 magnesium alloy. Materials, 2016. 9(11): p. 925.
    [46] Simanjuntak, S., et al., The influence of iron, manganese, and zirconium on the corrosion of magnesium: an artificial neural network approach. Corrosion, 2014. 71(2): p. 199-208.
    [47] Ikeo, N., M. Nishioka, and T. Mukai, Fabrication of biodegradable materials with high strength by grain refinement of Mg–0.3 at.% Ca alloys. Materials Letters, 2018. 223: p. 65-68.
    [48] Aung, N.N. and W. Zhou, Effect of grain size and twins on corrosion behaviour of AZ31B magnesium alloy. Corrosion Science, 2010. 52(2): p. 589-594.
    [49] Avedesian, M.M. and H. Baker, ASM specialty handbook: magnesium and magnesium alloys. 1999: ASM international.
    [50] Esmaily, M., et al., Microstructural characterization of the Mg–Al alloy AM50 produced by a newly developed rheo-casting process. Materials Characterization, 2014. 95: p. 50-64.
    [51] Liu, J.C., et al., The interface bonding mechanism and related mechanical properties of Mg/Al compound materials fabricated by insert molding. Materials Science and Engineering: A, 2015. 635: p. 70-76.
    [52] Jia, J., et al., Simulation of galvanic corrosion of magnesium coupled to a steel fastener in NaCl solution. Materials and Corrosion, 2005. 56(7): p. 468-474.
    [53] Song, G., A. Atrens, and M. Dargusch, Influence of microstructure on the corrosion of diecast AZ91D. Corrosion Science, 1998. 41(2): p. 249-273.
    [54] Ambat, R., N.N. Aung, and W. Zhou, Studies on the influence of chloride ion and pH on the corrosion and electrochemical behaviour of AZ91D magnesium alloy. Journal of Applied Electrochemistry, 2000. 30(7): p. 865-874.
    [55] Song, G. and A. Atrens, Understanding magnesium corrosion—a framework for improved alloy performance. Advanced engineering materials, 2003. 5(12): p. 837-858.
    [56] Ambat, R., N.N. Aung, and W. Zhou, Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy. Corrosion Science, 2000. 42(8): p. 1433-1455.
    [57] Zamani, N., J. Porter, and A. Mufti, A survey of computational efforts in the field of corrosion engineering. International Journal for Numerical Methods in Engineering, 1986. 23(7): p. 1295-1311.
    [58] Shimada, M., et al., Optimization of grain boundary character distribution for intergranular corrosion resistant 304 stainless steel by twin-induced grain boundary engineering. Acta Materialia, 2002. 50(9): p. 2331-2341.
    [59] Assouli, B., A. Srhiri, and H. Idrissi, Characterization and control of selective corrosion of α,β′-brass by acoustic emission. NDT & E International, 2003. 36(2): p. 117-126.
    [60] Avedesian, M.M. and H. Baker, ASM speciality handbook: magnesium and magnesium alloys. ASM international, 1999. 59: p. 60.
    [61] Grill, A., Cold plasma in materials fabrication. Vol. 151. 1994: IEEE Press, New York.
    [62] Bittencourt, J.A., Fundamentals of plasma physics. 2013: Springer Science & Business Media.
    [63] Qian, M., et al., Stark broadening measurement of the electron density in an atmospheric pressure argon plasma jet with double-power electrodes. Journal of Applied Physics, 2010. 107(6): p. 063303.
    [64] Bogaerts, A., et al., Gas discharge plasmas and their applications. Spectrochimica Acta Part B: Atomic Spectroscopy, 2002. 57(4): p. 609-658.
    [65] Uhm, H.S., J.P. Lim, and S.Z. Li, Sterilization of bacterial endospores by an atmospheric-pressure argon plasma jet. Applied physics letters, 2007. 90(26): p. 261501.
    [66] Fricke, K., et al., High rate etching of polymers by means of an atmospheric pressure plasma jet. Plasma Processes and Polymers, 2011. 8(1): p. 51-58.
    [67] Becker, K.H., et al., Non-equilibrium air plasmas at atmospheric pressure. 2004: CRC press.
    [68] Ko, C.-L., et al., The enhanced abrasion resistance of an anti-fingerprint coating on chrome-plated brass substrate by integrating sputtering and atmospheric pressure plasma jet technologies. Applied Surface Science, 2018. 448: p. 88-94.
    [69] Schutze, A., et al., The atmospheric-pressure plasma jet: a review and comparison to other plasma sources. IEEE Transactions on Plasma Science, 1998. 26(6): p. 1685-1694.
    [70] Laroussi, M. and X. Lu, Room-temperature atmospheric pressure plasma plume for biomedical applications. Applied Physics Letters, 2005. 87(11): p. 113902.
    [71] 陳冠霖, 載氣流量效應於常壓電漿噴射束沉積氧化矽薄膜特性與抗腐蝕能力之研究, in 機械工程系. 2015, 國立臺灣科技大學.
    [72] Jurov, A., et al., Atmospheric pressure plasma jet–assisted impregnation of gold nanoparticles into PVC polymer for various applications. The International Journal of Advanced Manufacturing Technology, 2018.
    [73] Xu, N., et al., A Two-Mode Portable Atmospheric Pressure Air Plasma Jet Device for Biomedical Applications. IEEE Transactions on Plasma Science, 2018. 46(4): p. 947-953.
    [74] Lee, H.W., et al., Tooth bleaching with nonthermal atmospheric pressure plasma. Journal of endodontics, 2009. 35(4): p. 587-591.
    [75] Coutinho, D.S., et al., Comparison of temperature increase in in vitro human tooth pulp by different light sources in the dental whitening process. Lasers in medical science, 2009. 24(2): p. 179-185.
    [76] García, M.C., et al., Microwave atmospheric pressure plasma jets for wastewater treatment: Degradation of methylene blue as a model dye. Chemosphere, 2017. 180: p. 239-246.
    [77] 黃慧婷, 以常壓電漿噴射束製備鑭鍶錳氧化物固態燃料電池陰極材料之研究, in 機械工程系. 2015, 國立臺灣科技大學.
    [78] Abbas, Q.A., Optical Emission Spectroscopy Study of Fe Plasma at Atmospheric Pressure. PARIPEX-INDIAN JOURNAL OF RESEARCH, 2018. 6(3).
    [79] Chourashiya, M., S. Pawar, and L. Jadhav, Synthesis and characterization of Gd0.1Ce0.9O1.95 thin films by spray pyrolysis technique. Vol. 254. 2008. 3431-3435.
    [80] Lang, R.J., Ultrasonic atomization of liquids. The journal of the acoustical society of America, 1962. 34(1): p. 6-8.
    [81] ASTM, B., 117, Standard Practice for Operating Salt Spray (Fog) Apparatus. ASTM International (1997 Edition), 2011.
    [82] Gobara, M., M. Shamekh, and R. Akid, Improving the corrosion resistance of AZ91D magnesium alloy through reinforcement with titanium carbides and borides. Journal of Magnesium and Alloys, 2015. 3(2): p. 112-120.
    [83] Cui, J. and G.A. Hope, Raman and Fluorescence Spectroscopy of CeO2, Er2O3, Nd2O3, Tm2O3, Yb2O3, La2O3, and Tb4O7. Journal of Spectroscopy, 2015. 2015.
    [84] Amin, M.A. and M.M. Ibrahim, Corrosion and corrosion control of mild steel in concentrated H2SO4 solutions by a newly synthesized glycine derivative. Corrosion Science, 2011. 53(3): p. 873-885.
    [85] Paint, A.C.D.-o., M. Related Coatings, and Applications, Standard test methods for measuring adhesion by tape test. 2009: ASTM International.
    [86] Saengkaew, J., et al., Superhydrophobic coating from fluoroalkylsilane modified natural rubber encapsulated SiO2 composites for self-driven oil/water separation. Applied Surface Science, 2018. 462: p. 164-174.

    無法下載圖示 全文公開日期 2024/01/28 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE