簡易檢索 / 詳目顯示

研究生: 陳松郁
Song-Yu Chen
論文名稱: 以龍捲式常壓電漿驗證石墨氈電極之電漿-基板交互作用於釩液流電池電性能提升
Elucidating the Plasma-Substrate Interaction on Graphite Felt Electrode Using Tornado-Type Atmospheric Pressure Plasma Jet and Its Improvement in the Vanadium Redox Flow Batteries
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 王冠文
Kuan-Wen Wang
周昭昌
Chau-Chang Chou
洪逸明
I-Ming Hung
林長華
Chang-Hua Lin
王丞浩
Chen-Hao Wang
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 164
中文關鍵詞: 全釩氧化還原液流電池石墨氈電極潤濕性龍捲式常壓電漿噴射束官能化
外文關鍵詞: Vanadium Redox Flow Battery (VRFB), Graphite felt electrode, Wettability, Tornado-type Atmospheric Pressure Plasma Jet (APPJ), Functionalization
相關次數: 點閱:275下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 第一章 簡介..........1 1.1 前言..........1 1.2 研究目的與動機..........4 第二章 文獻回顧..........5 2.1 全釩液流電池概述..........5 2.2 全釩液流電池反應機制..........6 2.3 全釩液流電池架構介紹..........8 2.4 全釩液流電池之電極..........9 2.4.1 碳纖維..........11 2.4.2 聚丙烯腈 (Polyacrylonitrile, PAN)..........11 2.4.3 PAN電極的選用..........14 2.5 官能化電機之反應機制電極之優勢..........15 2.5.1 高溫處理技術..........17 2.5.2 酸性藥劑..........19 2.5.3 催化物技術..........21 2.5.4 元素摻雜技術..........25 2.6 電漿原理..........27 2.6.1 電漿生成及基本反應..........28 2.6.2 湯森放電理論 (Townsend discharge theory)..........29 2.6.3 帕邢定律 (Paschen's law)..........30 2.6.4 電漿解離機制..........31 2.6.5 電漿的用途..........33 2.7 常壓電漿概述..........33 2.7.1 介電質屏障放電 (Dielectric Barrier Discharge, DBD)..........34 2.7.2 電暈放電 (Corona Discharge)..........34 2.7.3 電漿火炬 (Plasma Torch)..........35 2.7.4 常壓噴射式電漿 (Atmospheric Pressure Plasma Jet, APPJ)..........36 2.8 電漿-介面反應機制..........37 2.9 常壓電漿針對石墨氈進行改質..........39 第三章 實驗材料與方法..........41 3.1 研究設計..........41 3.2 實驗耗材..........43 3.3 實驗儀器與參數..........44 3.3.1 常壓電漿 (Atmospheric pressure plasma jet, APPJ)..........44 3.3.2 光學放射光譜儀(Optical Emission Spectroscopy, OES)..........45 3.3.3 場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope, FE-SEM)..........46 3.3.4 水滴接觸角量測儀 (Water contact angle, WCA)..........47 3.3.5 紅外線熱影像儀 (Thermographic camera or infrared camera)..........48 3.3.6 電化學分析儀..........49 3.3.7 熱電偶 (Thermocouple)..........50 3.3.8 拉曼光譜儀 (Raman spectroscopy)..........51 3.3.9 X射線光電子能譜儀 (X-ray photoelectron spectroscopy, XPS)..........52 第四章 結果與討論..........53 4.1 空氣電漿對石墨氈電極纖維之影響..........53 4.1.1 石墨氈電極熱裂解溫度量測..........53 4.1.2 電漿氣體溫度與電漿/基材接觸溫度量測..........54 4.1.3 空氣電漿內部物種分析..........57 4.1.4 空氣電漿與石墨氈電極接觸後之尾氣量測..........61 4.1.5 石墨氈電極纖維之表面形貌..........63 4.1.6 石墨氈電極之水滴接觸角與半電池電解液浸泡測試..........65 4.1.7 石墨氈電極之時效測試..........67 4.1.8 石墨氈電極於全電池專用電解液之接觸角測試與時效測試..........70 4.1.9 石墨氈電極之缺陷分析..........73 4.1.10 石墨氈電極之表面化學鍵結分析..........76 4.1.11 石墨氈電極之CV循環測試..........84 4.1.12 石墨氈電極之阻抗測試..........88 4.1.13 於不同掃描次數處理的石墨氈電極之全電池專用電解液接觸角與時效測試..........90 4.1.14 於不同掃描次數處理的石墨氈電極之CV循環測試..........93 4.1.15 於不同掃描次數處理的石墨氈電極之阻抗測試..........97 4.1.16 石墨氈電極於全電池性能與長時間充放電測試..........99 4.1.17 空氣電漿與石墨氈電極之介面反應機制推導..........105 4.2 氮氣、氮氣/氫氣混合氣之電漿氣氛效應對石墨氈電極電性之影響..........108 4.2.1 電漿氣體溫度與電漿/基材接觸溫度量測..........108 4.2.2 電漿內部物種分析..........110 4.2.3 電漿與石墨氈電極接觸之尾氣分析..........114 4.2.4 石墨氈電極之表面形貌..........116 4.2.5 石墨氈電極之水滴接觸角與半電池電解液浸泡測試..........118 4.2.6 石墨氈電極之時效測試..........120 4.2.7 石墨氈電極於全電池專用電解液之接觸角與時效測試..........123 4.2.8 石墨氈電極缺陷分析..........126 4.2.9 石墨氈電極化學鍵結分析..........128 4.2.10 氮氣、氮氣/氫氣混合氣電漿處理之石墨氈電極循環測試..........132 4.2.11 石墨氈電極阻抗測試..........137 4.2.12 石墨氈電極全電池測試與長循環測試..........139 4.2.13 石墨氈電極之介面反應機制推導..........145 第五章 結果與討論..........149 第六章 未來展望..........151 參考文獻..........153

    [1] 谷傑人, 氫能源儲存技術. Available: https://www.materialsnet.com.tw/DocView.aspx?id=7490
    [2] Industrial history of european countries. Available: https://www.erih.net/how-it-started/industrial-history-of-european-countries
    [3] The Second Industrial Revolution, 1870-1914. Available: https://ushistoryscene.com/article/second-industrial-revolution/
    [4] The Second Industrial Revolution: The Technological Revolution. Available: https://richmondvale.org/blog/second-industrial-revolution/
    [5] Fossil Fuels. Available: https://ourworldindata.org/fossil-fuels#citation
    [6] 王茜穎, SDGs、ESG有什麼不同?兩者如何對照?一張表帶你看懂. Available: https://futurecity.cw.com.tw/article/2328
    [7] 科技橘子. No ESG,No Money!淨零碳排浪潮來襲,德國萊因如何建議中小企業抓住綠色商機?. Available: https://esg.businesstoday.com.tw/article/category/180687/post/202211230006/No%20ESG%EF%BC%8CNo%20Money%EF%BC%81%E6%B7%A8%E9%9B%B6%E7%A2%B3%E6%8E%92%E6%B5%AA%E6%BD%AE%E4%BE%86%E8%A5%B2%EF%BC%8C%E5%BE%B7%E5%9C%8B%E8%90%8A%E5%9B%A0%E5%A6%82%E4%BD%95%E5%BB%BA%E8%AD%B0%E4%B8%AD%E5%B0%8F%E4%BC%81%E6%A5%AD%E6%8A%93%E4%BD%8F%E7%B6%A0%E8%89%B2%E5%95%86%E6%A9%9F%EF%BC%9F.
    [8] 科技報橘. 節能減碳不是「燒錢」是「投資」!綠色轉型成經濟問題,中小企業該如何做ESG?. Available: https://esg.businesstoday.com.tw/article/category/180689/post/202211290016/%E7%AF%80%E8%83%BD%E6%B8%9B%E7%A2%B3%E4%B8%8D%E6%98%AF%E3%80%8C%E7%87%92%E9%8C%A2%E3%80%8D%E6%98%AF%E3%80%8C%E6%8A%95%E8%B3%87%E3%80%8D%EF%BC%81%E7%B6%A0%E8%89%B2%E8%BD%89%E5%9E%8B%E6%88%90%E7%B6%93%E6%BF%9F%E5%95%8F%E9%A1%8C%EF%BC%8C%E4%B8%AD%E5%B0%8F%E4%BC%81%E6%A5%AD%E8%A9%B2%E5%A6%82%E4%BD%95%E5%81%9AESG%EF%BC%9F
    [9] 曾彥翔, ESG白話文- 企業凈零減碳必懂關鍵氣候評比準則:TCFD、SBTi. Available: https://ubrand.udn.com/ubrand/story/12117/6798455
    [10] 陳文姿, 【探探儲能】削峰填谷乾坤挪移 儲能的常見用途. Available: https://e-info.org.tw/node/234189
    [11] How can electricity be stored with batteries? Available: https://totalenergies.com/infographics/how-can-electricity-be-stored-batteries
    [12] Moslem Uddin, MF Romlie, MF Abdullah, ChiaKwang Tan, GM Shafiullah, Ab Halim Abu Bakar, A novel peak shaving algorithm for islanded microgrid using battery energy storage system, Energy, vol. 196, p. 117084, 2020.
    [13] Ali Hassan Theodore Tzedakis, Enhancement of the electrochemical activity of a commercial graphite felt for vanadium redox flow battery (VRFB), by chemical treatment with acidic solution of K2Cr2O7, Journal of Energy Storage, vol. 26, p. 100967, 2019.
    [14] Daniel Manaye Kabtamu, Jian-Yu Chen, Yu-Chung Chang, Chen-Hao Wang, Water-activated graphite felt as a high-performance electrode for vanadium redox flow batteries, Journal of Power Sources, vol. 341, pp. 270-279, 2017.
    [15] Zoraida González, A Sánchez, C Blanco, M Granda, R Menéndez, R Santamaría, Enhanced performance of a Bi-modified graphite felt as the positive electrode of a vanadium redox flow battery, Electrochemistry Communications, vol. 13, no. 12, pp. 1379-1382, 2011.
    [16] Zhangxing He, Lei Liu, Chao Gao, Zhi Zhou, Xinxing Liang, Ying Lei, Zhen He, Suqin Liu, Carbon nanofibers grown on the surface of graphite felt by chemical vapour deposition for vanadium redox flow batteries, RSC advances, vol. 3, no. 43, pp. 19774-19777, 2013.
    [17] Alexandre Felten, Carla Bittencourt, Jean-Jacques Pireaux, Gregory Van Lier, Jean-Christophe Charlier, Radio-frequency plasma functionalization of carbon nanotubes surface O2, NH3, and CF4 treatments, Journal of applied physics, vol. 98, no. 7, p. 074308, 2005.
    [18] Pietro Favia Riccardo d’Agostino, Plasma treatments and plasma deposition of polymers for biomedical applications, Surface and coatings Technology, vol. 98, no. 1-3, pp. 1102-1106, 1998.
    [19] The different types of energy storage and their opportunities. Available: https://www.smart-energy.com/industry-sectors/energy-grid-management/the-different-types-of-energy-storage-and-their-opportunities/
    [20] "U. S. D. o. Energy, "Redox flow cell development and demonstration project.," NASA TM-790671979..".
    [21] Frank N. Crespilho, Valtencir Zucolotto, Osvaldo N, Oliveira Jr., Francisco C. Nart, Electrochemistry of layer-by-layer films: a review, Int. J. Electrochem. Sci, vol. 1, no. 5, pp. 194-214, 2006.
    [22] Seyed Schwan Hosseiny, Michel Saakes, Matthias Wessling, A polyelectrolyte membrane-based vanadium/air redox flow battery, Electrochemistry Communications, vol. 13, no. 8, pp. 751-754, 2011.
    [23] Mauro Bartolozzi, Development of redox flow batteries. A historical bibliography, Journal of Power Sources, vol. 27, no. 3, pp. 219-234, 1989.
    [24] Anteneh Wodaje Bayeh, Daniel Manaye Kabtamu, Yu-Chung Chang, Guan-Cheng Chen, Hsueh-Yu Chen, Guan-Yi Lin, Ting-Ruei Liu, Tadele Hunde Wondimu, Kai-Chin Wang, Chen-Hao Wang, Synergistic effects of a TiNb2O7–reduced graphene oxide nanocomposite electrocatalyst for high-performance all-vanadium redox flow batteries, Journal of Materials Chemistry A, vol. 6, no. 28, pp. 13908-13917, 2018.
    [25] Byong-Wa Chun, C Randall Davis, Quan He, Richard R Gustafson, Development of surface acidity during electrochemical treatment of pan-carbon fibers, Carbon, vol. 30, no. 2, pp. 177-187, 1992.
    [26] Ki Jae Kim, Min-Sik Park, Young-Jun Kim, Jung Ho Kim, Shi Xue Dou, Maria Skyllas-Kazacos, A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries, Journal of materials chemistry a, vol. 3, no. 33, pp. 16913-16933, 2015.
    [27] 张家埭, 碳材料工程基础. 治金工业出版社, 1992.
    [28] Hugh O Pierson, Handbook of carbon, graphite, diamonds and fullerenes: processing, properties and applications. William Andrew, 2012.
    [29] Evgenij Zhmurikov, Graphite in science and nuclear technology, arXiv preprint arXiv:1508.01814, 2015.
    [30] Om Parkash Bahl Lalit Mohan Manocha, Characterization of oxidised pan fibres, Carbon, vol. 12, no. 4, pp. 417-423, 1974.
    [31] J-B Donnet, E Fitzer, K-H Köchling, Editorial section international committee for characterization and terminology of carbon—first publication of five further tentative definitions, vol. 25, ed: Pergamon, 1987, pp. 449-450.
    [32] Mel Schwartz, Encyclopedia of materials, parts and finishes. CRC press, 2002.
    [33] Om Parkash Bahl Rakesh Behari Mathur, Effect of load on the mechanical properties of carbon fibres from PAN precursor, Fibre Science and Technology, vol. 12, no. 1, pp. 31-39, 1979.
    [34] Ming‐Chien Yang Da‐Guang Yu, Influence of precursor structure on the properties of polyacrylonitrile‐based activated carbon hollow fiber, Journal of applied polymer science, vol. 59, no. 11, pp. 1725-1731, 1996.
    [35] Muhammad Syukri Abdul Rahaman, Ahmad Fauzi Ismail, Azeman Mustafa, A review of heat treatment on polyacrylonitrile fiber, Polymer degradation and Stability, vol. 92, no. 8, pp. 1421-1432, 2007.
    [36] Zahir Bashir, A critical review of the stabilisation of polyacrylonitrile, Carbon, vol. 29, no. 8, pp. 1081-1090, 1991.
    [37] Stephen Dalton, Frank Heatley, Peter M Budd, Thermal stabilization of polyacrylonitrile fibres, Polymer, vol. 40, no. 20, pp. 5531-5543, 1999.
    [38] Matthew Lee Clingerman, Development and modelling of electrically conductive composite materials. Michigan Technological University, 2001.
    [39] Tse‐Hao Ko, Influence of continuous stabilization on the physical properties and microstructure of PAN‐based carbon fibers, Journal of applied polymer science, vol. 42, no. 7, pp. 1949-1957, 1991.
    [40] Laurent I.B. David Ismail Fauzi Bin A.F., Influence of the thermastabilization process and soak time during pyrolysis process on the polyacrylonitrile carbon membranes for O2/N2 separation, Journal of membrane science, vol. 213, no. 1-2, pp. 285-291, 2003.
    [41] HN Friedlander, LH Peebles Jr, J Brandrup, JR Kirby, On the chromophore of polyacrylonitrile. VI. Mechanism of color formation in polyacrylonitrile, Macromolecules, vol. 1, no. 1, pp. 79-86, 1968.
    [42] Priya Rangarajan, Vinayak A. Bhanu, David Godshall, Garth L. Wilkes, James E. McGrath, Donald G. Baird, Dynamic oscillatory shear properties of potentially melt processable high acrylonitrile terpolymers, Polymer, vol. 43, no. 9, pp. 2699-2709, 2002.
    [43] Erich FFitzer Dieter Jürgen Müller, The influence of oxygen on the chemical reactions during stabilization of pan as carbon fiber precursor, Carbon, vol. 13, no. 1, pp. 63-69, 1975.
    [44] Leighton H Peebles, Paul Peyser, Arthur W Snow, W. C. Peters, On the exotherm of polyacrylonitrile: pyrolysis of the homopolymer under inert conditions, Carbon, vol. 28, no. 5, pp. 707-715, 1990.
    [45] RC Houtz, " Orlon" Acrylic Fiber: Chemistry and Properties, Textile Research Journal, vol. 20, no. 11, pp. 786-801, 1950.
    [46] Dan Zhu, Chunye Xu, Norie Nakura, Masaru Matsuo, Study of carbon films from PAN/VGCF composites by gelation/crystallization from solution, Carbon, vol. 40, no. 3, pp. 363-373, 2002.
    [47] L Laffont, M Monthioux, V Serin, RB Mathur, C Guimon, MF Guimon, An EELS study of the structural and chemical transformation of PAN polymer to solid carbon, Carbon, vol. 42, no. 12-13, pp. 2485-2494, 2004.
    [48] Sheeraz Mehboob, Ghulam Ali, Saleem Abbas, Kyung Yoon Chung, Heung Yong Ha, Elucidating the performance-limiting electrode for all-vanadium redox flow batteries through in-depth physical and electrochemical analyses, Journal of Industrial and Engineering Chemistry, vol. 80, pp. 450-460, 2019.
    [49] Hye Kyoung Shin, Mira Park, Hak-Yong Kim, Soo-Jin Park, An overview of new oxidation methods for polyacrylonitrile-based carbon fibers, Carbon letters, vol. 16, no. 1, pp. 11-18, 2015.
    [50] Ditty Dixon, Deepu J Babu, Joachim Langner, Michael Bruns, Lukas Pfaffmann, Aiswarya Bhaskar, Jörg J Schneider, Frieder Scheiba, Helmut Ehrenberg, Effect of oxygen plasma treatment on the electrochemical performance of the rayon and polyacrylonitrile based carbon felt for the vanadium redox flow battery application, Journal of Power Sources, vol. 332, pp. 240-248, 2016.
    [51] Nataliya Roznyatovskaya, Jens Noack, Karsten Pinkwart, Jens Tübke, Aspects of electron transfer processes in vanadium redox-flow batteries, Current Opinion in Electrochemistry, vol. 19, pp. 42-48, 2020.
    [52] Sujith S Nair, Tuhin Saha, Pranab Dey, Sambhu Bhadra, Thermal oxidation of graphite as the first step for graphene preparation: effect of heating temperature and time, Journal of Materials Science, vol. 56, no. 5, pp. 3675-3691, 2021.
    [53] M Kazacos M Skyllas‐Kazacos, Performance characteristics of carbon plastic electrodes in the all‐vanadium redox cell, Journal of the Electrochemical Society, vol. 136, no. 9, p. 2759, 1989.
    [54] Bianting Sun Maria Skyllas-Kazacos, Modification of graphite electrode materials for vanadium redox flow battery application—I. Thermal treatment, Electrochimica acta, vol. 37, no. 7, pp. 1253-1260, 1992.
    [55] Xiaoxin Wu, Hongfeng Xu, Pengcheng Xu, Yang Shen, Lu Lu, Jicheng Shi, Jie Fu, Hong Zhao, Microwave-treated graphite felt as the positive electrode for all-vanadium redox flow battery, Journal of power sources, vol. 263, pp. 104-109, 2014.
    [56] Ki Jae Kim, Young-Jun Kim, Jae-Hun Kim, Min-Sik Park, The effects of surface modification on carbon felt electrodes for use in vanadium redox flow batteries, Materials Chemistry and Physics, vol. 131, no. 1-2, pp. 547-553, 2011.
    [57] Bianting Sun Maria Skyllas-Kazacos, Chemical modification of graphite electrode materials for vanadium redox flow battery application—part II. Acid treatments, Electrochimica Acta, vol. 37, no. 13, pp. 2459-2465, 1992.
    [58] Zhenxin Xu, Cuong Duong-Viet, Housseinou Ba, Bing Li, Tri Truong-Huu, Lam Nguyen-Dinh, Cuong Pham-Huu, Gaseous nitric acid activated graphite felts as hierarchical metal-free catalyst for selective oxidation of H2S, Catalysts, vol. 8, no. 4, p. 145, 2018.
    [59] Lu Yue, Weishan Li, Fengqiang Sun, Lingzhi Zhao, Lidan Xing, Highly hydroxylated carbon fibres as electrode materials of all-vanadium redox flow battery, carbon, vol. 48, no. 11, pp. 3079-3090, 2010.
    [60] Wenguang Zhang, Jingyu Xi, Zhaohua Li, Haipeng Zhou, Le Liu, Zenghua Wu, Xinping Qiu, Electrochemical activation of graphite felt electrode for VO2+/VO2+ redox couple application, Electrochimica Acta, vol. 89, pp. 429-435, 2013.
    [61] Alessandra Di Blasi, Orazio Di Blasi, N Briguglio, Antonino Salvatore Aricò, D Sebastián, MJ Lázaro, G Monforte, Vincenzo Antonucci, Investigation of several graphite-based electrodes for vanadium redox flow cell, Journal of Power Sources, vol. 227, pp. 15-23, 2013.
    [62] Ki Jae Kim, Min-Sik Park, Jae-Hun Kim, Uk Hwang, Nam Jin Lee, Goojin Jeong, Young-Jun Kim, Novel catalytic effects of Mn3O4 for all vanadium redox flow batteries, Chemical Communications, vol. 48, no. 44, pp. 5455-5457, 2012.
    [63] Yang Shen, Hongfeng Xu, Pengcheng Xu, Xiaoxin Wu, Yiming Dong, Lu Lu, Electrochemical catalytic activity of tungsten trioxide-modified graphite felt toward VO2+/VO2+ redox reaction, Electrochimica Acta, vol. 132, pp. 37-41, 2014.
    [64] Xiaoxin Wu, Hongfeng Xu, Lu Lu, Hong Zhao, Jie Fu, Yang Shen, Pengcheng Xu, Yiming Dong, PbO2-modified graphite felt as the positive electrode for an all-vanadium redox flow battery, Journal of Power Sources, vol. 250, pp. 274-278, 2014.
    [65] Nari Yun, Jung Jin Park, O Ok Park, Ki Bong Lee, Jung Hoon Yang, Electrocatalytic effect of NiO nanoparticles evenly distributed on a graphite felt electrode for vanadium redox flow batteries, Electrochimica Acta, vol. 278, pp. 226-235, 2018.
    [66] Haipeng Zhou, Yi Shen, Jingyu Xi, Xinping Qiu, Liquan Chen, ZrO2-nanoparticle-modified graphite felt: bifunctional effects on vanadium flow batteries, ACS applied materials & interfaces, vol. 8, no. 24, pp. 15369-15378, 2016.
    [67] Yan Xiang Walid A Daoud, Investigation of an advanced catalytic effect of cobalt oxide modification on graphite felt as the positive electrode of the vanadium redox flow battery, Journal of Power Sources, vol. 416, pp. 175-183, 2019.
    [68] Sheeraz Mehboob, Ghulam Ali, Hyun-Jin Shin, Jinyeon Hwang, Saleem Abbas, Kyung Yoon Chung, Heung Yong Ha, Enhancing the performance of all-vanadium redox flow batteries by decorating carbon felt electrodes with SnO2 nanoparticles, Applied energy, vol. 229, pp. 910-921, 2018.
    [69] Wen-Jen Lee, Yu-Ting Wu, Yi-Wei Liao, Yen-Ting Liu, Graphite felt modified by atomic layer deposition with TiO2 nanocoating exhibits super-hydrophilicity, low charge-transform resistance, and high electrochemical activity, Nanomaterials, vol. 10, no. 9, p. 1710, 2020.
    [70] Anteneh Wodaje Bayeh, Daniel Manaye Kabtamu, Yu-Chung Chang, Guan-Cheng Chen, Hsueh-Yu Chen, Ting-Ruei Liu, Tadele Hunde Wondimu, Kai-Chin Wang, Chen-Hao Wang, Hydrogen-treated defect-rich W18O49 nanowire-modified graphite felt as high-performance electrode for vanadium redox flow battery, ACS Applied Energy Materials, vol. 2, no. 4, pp. 2541-2551, 2019.
    [71] Anteneh Wodaje Bayeh, Daniel Manaye Kabtamu, Yu-Chung Chang, Tadele Hunde Wondimu, Hsin-Chih Huang, Chen-Hao Wang, Carbon and metal-based catalysts for vanadium redox flow batteries: a perspective and review of recent progress, Sustainable Energy & Fuels, vol. 5, no. 6, pp. 1668-1707, 2021.
    [72] Yongjin Chung, Chanho Noh, Yongchai Kwon, Role of borate functionalized carbon nanotube catalyst for the performance improvement of vanadium redox flow battery, Journal of Power Sources, vol. 438, p. 227063, 2019.
    [73] Zhangxing He, Yingqiao Jiang, Jing Zhu, Yuehua Li, Lei Dai, Wei Meng, Ling Wang, Suqin Liu, Phosphorus Doped Multi‐Walled Carbon Nanotubes: An Excellent Electrocatalyst for the VO2+/VO2+ Redox Reaction, ChemElectroChem, vol. 5, no. 17, pp. 2464-2474, 2018.
    [74] Zhangxing He, Lang Shi, Junxi Shen, Zhen He, Suqin Liu, Effects of nitrogen doping on the electrochemical performance of graphite felts for vanadium redox flow batteries, International Journal of Energy Research, vol. 39, no. 5, pp. 709-716, 2015.
    [75] Chulsang Youn, Shin Ae Song, Kiyoung Kim, Ju Young Woo, Young-Wook Chang, Sung Nam Lim, Effect of nitrogen functionalization of graphite felt electrode by ultrasonication on the electrochemical performance of vanadium redox flow battery, Materials Chemistry and Physics, vol. 237, p. 121873, 2019.
    [76] Jutao Jin, Xiaogang Fu, Qiao Liu, Yanru Liu, Zhiyang Wei, Kexing Niu, Junyan Zhang, Identifying the active site in nitrogen-doped graphene for the VO2+/VO2+ redox reaction, Acs Nano, vol. 7, no. 6, pp. 4764-4773, 2013.
    [77] 李曉菁、黃娟娟, 【領航】化學(全)分冊參考書. 龍騰文化.
    [78] 劉源俊, 「電漿」原是「電離體」. Available: https://web-ch.scu.edu.tw/physics/web_page/4193
    [79] What is Plasma? Available: https://www.lincolnelectric.com/en/welding-and-cutting-resource-center/plasma-cutting-resource-center/process-and-theory/what-is-plasma
    [80] Yuichi Setsuhara, Low-temperature atmospheric-pressure plasma sources for plasma medicine, Archives of biochemistry and biophysics, vol. 605, pp. 3-10, 2016.
    [81] N St J Braithwaite, Introduction to gas discharges, Plasma sources science and technology, vol. 9, no. 4, p. 517, 2000.
    [82] Yuxuan Chen, Electrical breakdown of Gases in subatmospheric pressure, 2016.
    [83] 劉志宏, 應用實驗設計法與電漿診斷技術探討電漿沉積氟碳膜製程之研究, 2006.
    [84] Jelena Peran Sanja Ercegović Ražić, Application of atmospheric pressure plasma technology for textile surface modification, Textile Research Journal, vol. 90, no. 9-10, pp. 1174-1197, 2020.
    [85] Muhamad Nor Firdaus Zainal, Norizah Redzuan, Mohd Fadthul Ikmal Misnal, Brief review: Cold plasma, Jurnal Teknologi, vol. 74, no. 10, 2015.
    [86] Klaus‐Dieter Weltmann, Juergen F Kolb, Marcin Holub, Dirk Uhrlandt, Milan Šimek, Kostya Ostrikov, Satoshi Hamaguchi, Uroš Cvelbar, Mirko Černák, Bruce Locke, The future for plasma science and technology, Plasma Processes and Polymers, vol. 16, no. 1, p. 1800118, 2019.
    [87] 介電質屏蔽放電之特性與應用簡介. Available: materialsnet.com.tw/DocView.aspx?id=9499
    [88] Ulrich Kogelschatz, Filamentary, patterned, and diffuse barrier discharges, IEEE Transactions on plasma science, vol. 30, no. 4, pp. 1400-1408, 2002.
    [89] Andreas Schutze, James Y Jeong, Steven E Babayan, Jaeyoung Park, Gary S Selwyn, Robert F Hicks, The atmospheric-pressure plasma jet: a review and comparison to other plasma sources, IEEE transactions on plasma science, vol. 26, no. 6, pp. 1685-1694, 1998.
    [90] Hamed Taghvaei Mohammad Reza Rahimpour, Upgrading of anisole using in situ generated hydrogen in pin to plate pulsed corona discharge, RSC advances, vol. 6, no. 100, pp. 98369-98380, 2016.
    [91] Min Hur Sang Hee Hong, Comparative analysis of turbulent effects on thermal plasma characteristics inside the plasma torches with rod-and well-type cathodes, Journal of Physics D: Applied Physics, vol. 35, no. 16, p. 1946, 2002.
    [92] E. Gomez, D. Amutha Rani, Christopher Robert Cheeseman, David E. Deegan, Mike L.H. Wise, Aldo R. Boccaccini, Thermal plasma technology for the treatment of wastes: A critical review, Journal of hazardous materials, vol. 161, no. 2-3, pp. 614-626, 2009.
    [93] 郭俞麟, 孫瑛穗, 何明樺, 盛信儒, 陳松郁, 郭兆渝, 王憲柏, 柯季良, 自動化大氣電漿設備建置與醫療用口罩去異味活化, 科儀新知, no. 227, pp. 50-59, 2021.
    [94] 郭俞麟, 柯季良, 盛信儒, 新穎式常壓電漿噴射束製程之應用研究, 真空科技, vol. 30, no. 1, pp. 16-24, 2017.
    [95] Katja Fricke, Ina Koban, Helena Tresp, Lukasz Jablonowski, Karsten Schröder, Axel Kramer, Klaus-Dieter Weltmann, Thomas von Woedtke, Thomas Kocher, Atmospheric pressure plasma: a high-performance tool for the efficient removal of biofilms, 2012.
    [96] 淞耀-大氣電漿簡介. Available: https://www.youtube.com/watch?v=XNb81NzAdqw&ab_channel=%E6%B7%9E%E8%80%80%E4%BC%81%E6%A5%AD%E8%82%A1%E4%BB%BD%E6%9C%89%E9%99%90%E5%85%AC%E5%8F%B8
    [97] Zhitong Chen, Gustavo Garcia Jr, Vaithilingaraja Arumugaswami, Richard E Wirz, Cold atmospheric plasma for SARS-CoV-2 inactivation, Physics of Fluids, vol. 32, no. 11, p. 111702, 2020.
    [98] Rory A Wolf, Atmospheric pressure plasma for surface modification. John Wiley & Sons, 2012.
    [99] Holger Heuermann, Stephan Holtrup, Arash Sadeghfam, Martin Schmidt, Robert Perkuhn, Torsten Finger, Various applications and background of 10–200W 2.45 GHz Microplasmas, in 2012 IEEE/MTT-S International Microwave Symposium Digest, 2012, pp. 1-3: IEEE.
    [100] Michael Noeske, Jost Degenhardt, Silke Strudthoff, Uwe Lommatzsch, Plasma jet treatment of five polymers at atmospheric pressure: surface modifications and the relevance for adhesion, International journal of adhesion and adhesives, vol. 24, no. 2, pp. 171-177, 2004.
    [101] Euth Ortiz-Ortega, Samira Hosseini, Sergio O Martinez-Chapa, Marc J Madou, Aging of plasma-activated carbon surfaces: Challenges and opportunities, Applied Surface Science, vol. 565, p. 150362, 2021.
    [102] Toshihiro Takamatsu, Kodai Uehara, Yota Sasaki, Hidekazu Miyahara, Yuriko Matsumura, Atsuo Iwasawa, Norihiko Ito, Takeshi Azuma, Masahiro Kohno, Akitoshi Okino, Investigation of reactive species using various gas plasmas, Rsc Advances, vol. 4, no. 75, pp. 39901-39905, 2014.
    [103] EAJ Bartis, AJ Knoll, P Luan, J Seog, GS Oehrlein, On the interaction of cold atmospheric pressure plasma with surfaces of bio-molecules and model polymers, Plasma Chemistry and Plasma Processing, vol. 36, pp. 121-149, 2016.
    [104] Daniel Kolacyak, Jörg Ihde, Christian Merten, Andreas Hartwig, Uwe Lommatzsch, Fast functionalization of multi-walled carbon nanotubes by an atmospheric pressure plasma jet, Journal of colloid and interface science, vol. 359, no. 1, pp. 311-317, 2011.
    [105] Andreas Hoffmann, Matthias Uhl, Maximilian Ceblin, Felix Rohrbach, Joachim Bansmann, Marcel Mallah, Holger Heuermann, Timo Jacob, Alexander JC Kuehne, Atmospheric Pressure Plasma-Jet Treatment of PAN-Nonwovens—Carbonization of Nanofiber Electrodes, C, vol. 8, no. 3, p. 33, 2022.
    [106] Chien-Hong Lin, Yu-De Zhuang, Ding-Guey Tsai, Hwa-Jou Wei, Ting-Yu Liu, Performance enhancement of vanadium redox flow battery by treated carbon felt electrodes of polyacrylonitrile using atmospheric pressure plasma, Polymers, vol. 12, no. 6, p. 1372, 2020.
    [107] Jian-Zhang Chen, Cheng-Che Hsu, Ching Wang, Wei-Yang Liao, Chih-Hung Wu, Ting-Jui Wu, Hsiao-Wei Liu, Haoming Chang, Shao-Tzu Lien, Hsin-Chieh Li, Rapid atmospheric-pressure-plasma-jet processed porous materials for energy harvesting and storage devices, Coatings, vol. 5, no. 1, pp. 26-38, 2015.
    [108] Jian-Zhang Chen, Wei-Yang Liao, Wen-Yen Hsieh, Cheng-Che Hsu, Yong-Song Chen, All-vanadium redox flow batteries with graphite felt electrodes treated by atmospheric pressure plasma jets, Journal of Power Sources, vol. 274, pp. 894-898, 2015.
    [109] Tossaporn Jirabovornwisut, Bhupendra Singh, Apisada Chutimasakul, Jung-Hsien Chang, Jian-Zhang Chen, Amornchai Arpornwichanop, Yong-Song Chen, Characteristics of Graphite Felt Electrodes Treated by Atmospheric Pressure Plasma Jets for an All-Vanadium Redox Flow Battery, Materials, vol. 14, no. 14, p. 3847, 2021.
    [110] Song-Yu Chen, Yu-Lin Kuo, Yao-Ming Wang, Wei-Mau Hsu, Tzu-Hsuan Chien, Chiu-Feng Lin, Cheng-Hsien Kuo, Akitoshi Okino, Tai-Chin Chiang, Atmospheric pressure tornado plasma jet of polydopamine coating on graphite felt for improving electrochemical performance in vanadium redox flow batteries, Catalysts, vol. 11, no. 5, p. 627, 2021.
    [111] 謝義孝, 張煥宗, 曹雅萍, 吳德鵬, 張明娟, 葉則易, 李弘文, 簡敦誠, 詹益慈, 王宗興, 選修化學II (全) 物質構造與反應速率. 龍騰文化.
    [112] Monika Bahl, Structured light fields in optical fibers, in Fiber Optics-From Fundamentals to Industrial Applications: IntechOpen, 2019.
    [113] Mars HS2000/HS3000/HS6000系列. Available: https://gieoptics.com/spectrometer_02.php
    [114] Joseph I Goldstein, Dale E Newbury, Joseph R Michael, Nicholas WM Ritchie, John Henry J Scott, David C Joy, Scanning electron microscopy and X-ray microanalysis. Springer, 2017.
    [115] 高解析度場發射掃描式電子顯微鏡 (FESEM-6500F). Available: https://sppic.ntust.edu.tw/p/404-1058-51525.php?Lang=zh-tw
    [116] Daniel Y Kwok August W Neumann, Contact angle measurement and contact angle interpretation, Advances in colloid and interface science, vol. 81, no. 3, pp. 167-249, 1999.
    [117] Lin He, Feng Lin, Xingang Li, Hong Sui, Zhenghe Xu, Interfacial sciences in unconventional petroleum production: from fundamentals to applications, Chemical Society Reviews, vol. 44, no. 15, pp. 5446-5494, 2015.
    [118] Imaging IR sensors - thermopile arrays. Available: https://www.boselec.com/product-category/imaging-ir-sensors-thermopile-arrays/
    [119] FLIR E53 E75 E85 E95 紅外線熱影像儀. Available: https://www.donho.com.tw/flir-exx-series-advanced-thermal-imaging-cameras.html
    [120] Dongyang Chen, Michael A Hickner, Ertan Agar, E Caglan Kumbur, Selective anion exchange membranes for high coulombic efficiency vanadium redox flow batteries, Electrochemistry Communications, vol. 26, pp. 37-40, 2013.
    [121] Tongshuai Wang, Jannice Lee, Xiaofeng Wang, Kun Wang, Chulsung Bae, Sangil Kim, Surface‐engineered Nafion/CNTs nanocomposite membrane with improved voltage efficiency for vanadium redox flow battery, Journal of Applied Polymer Science, vol. 139, no. 7, p. 51628, 2022.
    [122] VSP Potentiostat. Available: https://www.biologic.net/products/vsp/
    [123] Thermocouples. Available: https://web.archive.org/web/20080216165303/http://www.temperatures.com/tcs.html
    [124] Types of Thermocouples with Temperature Ranges & Color Codes. Available: https://www.blazeprobes.com/types-thermocouples-temperature-ranges-color-codes/
    [125] Derek Albert Long DA Long, The Raman effect: a unified treatment of the theory of Raman scattering by molecules. Wiley Chichester, 2002.
    [126] Lesson 2. What is Raman spectroscopy. Available: https://www.nanophoton.net/lecture-room/raman-spectroscopy/lesson-1-2
    [127] Scanning XPS Microprobe. Available: https://www.phi.com/surface-analysis-equipment/versaprobe.html
    [128] X射線光電子能譜儀 (XPS). Available: https://sppic.ntust.edu.tw/p/404-1058-99440.php?Lang=zh-tw
    [129] Truong Do, Changseop Shin, Patrick Kwon, Junghoon Yeom, Fully-enclosed ceramic micro-burners using fugitive phase and powder-based processing, Scientific Reports, vol. 6, no. 1, pp. 1-12, 2016.
    [130] Victor Chabot, Brian Kim, Brent Sloper, Costas Tzoganakis, Aiping Yu, High yield production and purification of few layer graphene by Gum Arabic assisted physical sonication, Scientific reports, vol. 3, no. 1, pp. 1-7, 2013.
    [131] Michael Keidar, Klaus-Dieter Weltmann, Sergey Macheret, Fundamentals and applications of atmospheric pressure plasmas, vol. 130, ed: AIP Publishing LLC, 2021, p. 080401.
    [132] SP Brühl, MW Russell, BJ Gómez, GM Grigioni, JN Feugeas, A Ricard, A study by emission spectroscopy of the active species in pulsed DC discharges, Journal of Physics D: Applied Physics, vol. 30, no. 21, p. 2917, 1997.
    [133] Cheng-Che Hsu Yao-Jhen Yang, The increase of the jet size of an atmospheric-pressure plasma jet by ambient air control, IEEE transactions on plasma science, vol. 38, no. 3, pp. 496-499, 2010.
    [134] Santiago Corujeira Gallo, Constantinos Charitidis, Hanshan Dong, Surface functionalization of carbon fibers with active screen plasma, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol. 35, no. 2, p. 021404, 2017.
    [135] Pradeep Lamichhane, Bhagirath Ghimire, Sohail Mumtaz, Ramhari Paneru, Se Hoon Ki, Eun Ha Choi, Control of hydrogen peroxide production in plasma activated water by utilizing nitrification, Journal of Physics D: Applied Physics, vol. 52, no. 26, p. 265206, 2019.
    [136] Md Tasyrif Abdul Rahman, Nobuyuki Kawahara, Kazuya Tsuboi, Eiji Tomita, Effect of ambient pressure on local concentration measurement of transient hydrogen jet in a constant-volume vessel using spark-induced breakdown spectroscopy, international journal of hydrogen energy, vol. 40, no. 13, pp. 4717-4725, 2015.
    [137] Nikša Krstulović, Irena Labazan, Slobodan Milošević, Uroš Cvelbar, Alenka Vesel, Miran Mozetič, Optical emission spectroscopy characterization of oxygen plasma during treatment of a PET foil, Journal of Physics D: Applied Physics, vol. 39, no. 17, p. 3799, 2006.
    [138] Zlatko Kregar, Marijan Bišćan, Slobodan Milošević, Alenka Vesel, Monitoring oxygen plasma treatment of polypropylene with optical emission spectroscopy, IEEE Transactions on Plasma Science, vol. 39, no. 5, pp. 1239-1246, 2011.
    [139] Sagung Dewi Kencana, Yu-Lin Kuo, Yee-Wen Yen, Wallace Chuang, Eckart Schellkes, The roles of plasma science towards plasma-activated reflow soldering on Cu substrate with organic solderability preservatives surface finish, Surfaces and Interfaces, vol. 34, p. 102284, 2022.
    [140] Jingxiang Xu, Kang Lu, Ding Fan, Yang Wang, Shaolin Xu, Momoji Kubo, Different etching mechanisms of diamond by oxygen and hydrogen plasma: a reactive molecular dynamics study, The Journal of Physical Chemistry C, vol. 125, no. 30, pp. 16711-16718, 2021.
    [141] Young-Bae Park Shi-Woo Rhee, Bulk and interface properties of low-temperature silicon nitride films deposited by remote plasma enhanced chemical vapor deposition, Journal of Materials Science: Materials in Electronics, vol. 12, pp. 515-522, 2001.
    [142] Oguzhan Balki, Md Mahmudur Rahman, Hani E Elsayed-Ali, Optical emission spectroscopy of carbon laser plasma ion source, Optics Communications, vol. 412, pp. 134-140, 2018.
    [143] MI Khan, NU Rehman, Shabraz Khan, Naqib Ullah, Asad Masood, Aman Ullah, Spectroscopic study of CO2 and CO2–N2 mixture plasma using dielectric barrier discharge, AIP Advances, vol. 9, no. 8, p. 085015, 2019.
    [144] L Johansson, Spectrum and term system of neutral carbon atom, Arkiv for Fysik, vol. 31, no. 3, pp. 201-+, 1966.
    [145] Yoshiyuki Suda, Atsushi Okita, Junichi Takayama, Akinori Oda, Hirotake Sugawara, Yosuke Sakai, Shinichiro Oke, Hirofumi Takikawa, Carbon-nanotube growth in alcohol-vapor plasma, IEEE Transactions on plasma science, vol. 37, no. 7, pp. 1150-1155, 2009.
    [146] Sang Shin Park, Hyo Jae Jeong, Jungho Hwang, 3-D CFD modeling for parametric study in a 300-MWe one-stage oxygen-blown entrained-bed coal gasifier, Energies, vol. 8, no. 5, pp. 4216-4236, 2015.
    [147] Tae-Wook Chun, J Shawn Justement, Danielle Murray, Claire W Hallahan, Janine Maenza, Ann C Collier, Prameet M Sheth, Rupert Kaul, Mario Ostrowski, Susan Moir, Rebound of plasma viremia following cessation of antiretroviral therapy despite profoundly low levels of HIV reservoir: implications for eradication, AIDS (London, England), vol. 24, no. 18, p. 2803, 2010.
    [148] Anmin Chen, Yuanfei Jiang, Hang Liu, Mingxing Jin, Dajun Ding, Plume splitting and rebounding in a high-intensity CO2 laser induced air plasma, Physics of Plasmas, vol. 19, no. 7, p. 073302, 2012.
    [149] R Kaltofen, T Sebald, G Weise, Ion bombardment diagnostics in a nitrogen RF magnetron sputtering discharge, Surface and Coatings Technology, vol. 97, no. 1-3, pp. 131-139, 1997.
    [150] Ting Long, Yong Long, Mei Ding, Zhizhao Xu, Jian Xu, Yiqiong Zhang, Mingliang Bai, Qijun Sun, Gen Chen, Chuankun Jia, Large scale preparation of 20 cm× 20 cm graphene modified carbon felt for high performance vanadium redox flow battery, Nano Research, vol. 14, no. 10, pp. 3538-3544, 2021.
    [151] Hannes Radinger, Mark Hartmann, Marius Ast, Jessica Pfisterer, Michael Bron, Helmut Ehrenberg, Frieder Scheiba, Understanding efficient phosphorus-functionalization of graphite for vanadium flow batteries, Electrochimica Acta, vol. 409, p. 139971, 2022.
    [152] Andrew B Shah, Yihui Wu, Yong Lak Joo, Direct addition of sulfur and nitrogen functional groups to graphite felt electrodes for improving all-vanadium redox flow battery performance, Electrochimica Acta, vol. 297, pp. 905-915, 2019.
    [153] Alireza Khataee, Saeed Sajjadi, Shima Rahim Pouran, Aliyeh Hasanzadeh, Sang Woo Joo, A comparative study on electrogeneration of hydrogen peroxide through oxygen reduction over various plasma-treated graphite electrodes, Electrochimica Acta, vol. 244, pp. 38-46, 2017.
    [154] Hannes Radinger, Jessica Pfisterer, Frieder Scheiba, Helmut Ehrenberg, Influence and electrochemical stability of oxygen groups and edge sites in vanadium redox reactions, ChemElectroChem, vol. 7, no. 23, pp. 4745-4754, 2020.
    [155] Song Chen, Lin Tang, Haopeng Feng, Yaoyu Zhou, Guangming Zeng, Yue Lu, Jiangfang Yu, Xiaoya Ren, Bo Peng, Xiaocheng Liu, Carbon felt cathodes for electro-Fenton process to remove tetracycline via synergistic adsorption and degradation, Science of the total environment, vol. 670, pp. 921-931, 2019.
    [156] Abdulmonem Fetyan, Gumaa A El-Nagar, Iver Lauermann, Maike Schnucklake, Jonathan Schneider, Christina Roth, Detrimental role of hydrogen evolution and its temperature-dependent impact on the performance of vanadium redox flow batteries, Journal of Energy Chemistry, vol. 32, pp. 57-62, 2019.
    [157] Seong Eun Park, So Yeon Yang, Ki Jae Kim, Boron-functionalized carbon felt electrode for enhancing the electrochemical performance of vanadium redox flow batteries, Applied Surface Science, vol. 546, p. 148941, 2021.
    [158] Yu-Chung Chang, Jian-Yu Chen, Daniel Manaye Kabtamu, Guan-Yi Lin, Ning-Yih Hsu, Yi-Sin Chou, Hwa-Jou Wei, Chen-Hao Wang, High efficiency of CO2-activated graphite felt as electrode for vanadium redox flow battery application, Journal of Power Sources, vol. 364, pp. 1-8, 2017.
    [159] Suraj Kumar Sinha, Punyapu Bharathi, V Prahlad, Subroto K Mukherjee, Near cathode optical emission spectroscopy in N2–H2 glow discharge plasma, Surface and Coatings Technology, vol. 202, no. 2, pp. 301-309, 2007.
    [160] JH Van Helden, PJ Van Den Oever, WMM Kessels, MCM Van De Sanden, DC Schram, Richard Engeln, Production mechanisms of NH and NH2 radicals in N2− H2 plasmas, The Journal of Physical Chemistry A, vol. 111, no. 45, pp. 11460-11472, 2007.
    [161] Brian Matthew McSkimming, High Active Nitrogen Flux Growth of (Indium) Gallium Nitride by Plasma Assisted Molecular Beam Epitaxy. University of California, Santa Barbara, 2015.
    [162] Rajesh Nagpal Alan Garscadden, Dissociation of hydrogen in glow discharges in hydrogen-nitrogen mixtures, Chemical physics letters, vol. 231, no. 2-3, pp. 211-215, 1994.
    [163] He Ming, Zhou Haiping, Ding Guqiao, Zhang Zidong, Ye Xing, Cai D, Wu Mengqiang, Theoretical-limit exceeded capacity of the N2+H2 plasma modified graphite anode material, Carbon, vol. 146, pp. 194-199, 2019.
    [164] B Kułakowska-Pawlak W Zyrnicki, Spectroscopic investigations into plasma used for nitriding processes of steel and titanium, Thin solid films, vol. 230, no. 2, pp. 115-120, 1993.
    [165] Syed Muhammad Hafiz, Richard Ritikos, Thomas James Whitcher, Nadia Md Razib, Daniel Chia Sheng Bien, Narong Chanlek, Hideki Nakajima, Thanit Saisopa, Prayoon Songsiriritthigul, Nay Ming Huang, A practical carbon dioxide gas sensor using room-temperature hydrogen plasma reduced graphene oxide, Sensors and Actuators B: Chemical, vol. 193, pp. 692-700, 2014.
    [166] Pengxian Han, Haibo Wang, Zhihong Liu, Xiao Chen, Wen Ma, Jianhua Yao, Yuwei Zhu, Guanglei Cui, Graphene oxide nanoplatelets as excellent electrochemical active materials for VO2+/VO2+ and V2+/V3+ redox couples for a vanadium redox flow battery, Carbon, vol. 49, no. 2, pp. 693-700, 2011.
    [167] Codruța Varodi, Florina Pogăcean, Alexandra Cioriță, Ovidiu Pană, Cristian Leoștean, Bogdan Cozar, Teodora Radu, Maria Coroș, Raluca Ioana Ștefan-van Staden, Stela-Maria Pruneanu, Nitrogen and sulfur co-doped graphene as efficient electrode material for l-cysteine detection, Chemosensors, vol. 9, no. 6, p. 146, 2021.
    [168] Wei Ding, Zidong Wei, Siguo Chen, Xueqiang Qi, Tao Yang, Jinsong Hu, Dong Wang, Li‐Jun Wan, Shahnaz Fatima Alvi, Li Li, Space‐confinement‐induced synthesis of pyridinic‐and pyrrolic‐nitrogen‐doped graphene for the catalysis of oxygen reduction, Angewandte Chemie, vol. 125, no. 45, pp. 11971-11975, 2013.
    [169] Ni Zhou, Nan Wang, Zexing Wu, Ligui Li, Probing active sites on metal-free, nitrogen-doped carbons for oxygen electroreduction: A review, Catalysts, vol. 8, no. 11, p. 509, 2018.
    [170] Jhao-Yu Guo, Jou-An Chen, Song-Yu Chen, Meng-Lun Lee, Wei-Ren Liu, Yu-Lin Kuo, Reactive plasma oxygen-modified and nitrogen-doped soft carbon as a potential anode material for lithium-ion batteries using a tornado-type atmospheric pressure plasma jet, Electrochimica Acta, vol. 427, p. 140897, 2022.

    無法下載圖示 全文公開日期 2028/07/31 (校內網路)
    全文公開日期 2033/07/31 (校外網路)
    全文公開日期 2033/07/31 (國家圖書館:臺灣博碩士論文系統)
    QR CODE