簡易檢索 / 詳目顯示

研究生: 張光輝
Kuang-Hui Chang
論文名稱: 以常壓電漿束沉積無機氧化矽薄膜來提升鎂合金其耐腐蝕能力之研究
Carbon-Free SiOx film using atmospheric pressure plasma jet for enhancing the corrosion resistance of magnesium alloys
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 李志偉
王丞浩
丘群
黃駿
曾傳銘
劉志宏
郭俞麟
學位類別: 博士
Doctor
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 181
中文關鍵詞: 鎂合金常壓電漿噴射束類無機氧化矽抗腐蝕薄膜
外文關鍵詞: magnesium alloys, Atmospheric pressure plasma jet, inorganic-like silicon oxide (SiOx) thin films, anti-corrosion layers
相關次數: 點閱:200下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鎂及其合金近年來由於其優越的機械性質、回收再利用性佳,符合業界量產製程經濟效益之需求,使之成為常用之結構材料。然而鎂及其合金在大氣環境下耐蝕性較差,導致應用於室外或人體環境上的限制,其製品也因此而降低安全係數,使得於海事應用上仍有顧慮,侷限未來發展
    本研究以常壓電漿噴射沉積技術(Atmospheric-Pressure Plasma Jet; APPJ),沉積氧化矽薄膜於鎂合金AZ91D表面,且藉由電漿参數之改變來分析對於氧化矽薄膜成長結構與其表面物理對於提升耐腐蝕特性之影響與差異。例如前驅物TESO與HNDSN,載氣體種類改變(Ar & O2),載氣體流量之變化。來探討對於氧化矽薄膜表面形貌之變化、化學結構之組成之探討與分析。藉由各種理論分析與探討薄膜物理特性與化學結構來說明常壓電漿沉積氧化矽薄膜於鎂合金之結果。
    其後以電化學之動電位極化曲線以及阻抗頻譜分析之測量表明,相較於原始之鎂合金AZ91D試片,經過鍍膜後之試片其具有較高之腐蝕電位以及更低之腐蝕密度,此結果證實可利用沉積氧化矽薄膜於試片表面之方式,提升鎂合金AZ91D基材之抗腐蝕能力。最後,以在APPJ-1800製備的氧化矽薄膜,於3.5 wt%之NaCl水溶液中進行七十二小時之浸泡測試,而其結果顯示在經過七十二小時之浸泡後,所鍍薄膜試片之抗腐蝕能力仍然高於原始之鎂合金AZ91D試片,故表示本研究所鍍之氧化矽可有效的提升鎂合金AZ91D之抗腐蝕能力,為鎂合金之防腐蝕處理提供一有效且具有成本效益之方法。


    Magnesium alloys are used in many industries because of their excellent mechanical properties. Their high strength/weight ratio and excellent machinability make magnesium alloys ideal construction materials. In addition, the high recyclability of magnesium makes it very cost-effective for use in industrial manufacturing. However, poor corrosion resistance restricts the applications of magnesium and its alloys in marine environments and in biological applications. The ability to increase the corrosion resistance of magnesium and its alloys is crucial to increase the range of applications.The ability to increase the corrosion resistance of magnesium and its alloys is crucial to increase the range of applications. To improve the fault, it is important to impart a high corrosion resistance without losing the superior physical and mechanical properties.
    This study focused on the development of atmospheric pressure plasma jet (APPJ) deposit SiOx films on the surface of magnesium alloys with various operational conditions such two kinds of precursor, carrier gas (O2 & Ar) and carrier gas flow rate. SiOx films were characterized by a scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier-transform infrared spectroscopy (FTIR) to study the surface morphology, and composition. In addition, the corrosion protection afforded by such thin films was investigated by electrochemicaltechniques, and relationships among composition, structure, and electrochemical properties of these films are reported.
    The potentiodynamic polarization tests and electrochemical impedance spectroscopy (EIS) measurements show that both SiOx films coated on AZ91D alloys have more positive corrosion potential and lower corrosion current density than AZ91D substrates, indicating the corrosion resistance of AZ91D can be improved by depositing SiOx film on its surface. Finally, inorganic SiOx film (APPJ-1800) after immersion in 3.5 wt.% NaCl solution for 72 h showed that still batter corrosion resistance than AZ91D alloy.The SiOx film represent an interesting alternative for improving the anti-corrosion performance of various materials in a cost-effective approach.
    Keywords: magnesium alloys, Atmospheric pressure plasma jet, inorganic-like silicon oxide (SiOx) thin films, anti-corrosion layers

    中文摘要 I ABSTRACT II 目錄 V 表目錄 VIII 圖目錄 X 第一章 緒論 1 1.1 前言 1 1.2 新式抗腐蝕處理--常壓電漿技術 4 1.3 研究動機 6 第二章 文獻回顧 7 2.1 鎂金屬金屬與其腐蝕特性 7 2.1.1 金屬特性 7 2.1.2 鎂合金腐蝕 9 2.1.3 金屬元素對鎂之影響 13 2.2 表面處理以提升腐蝕能力之技術 20 2.2.1電鍍與無電鍍(Electro-plating and electroless-plating) 20 2.2.2化成處理(Conversion) 20 2.2.3陽極處理(Anodizing) 21 2.2.4微弧氧化 (Micro-Arc Oxidation) 21 2.2.5氣相沉積法(Vapor Deposition) 22 2.3電漿簡介 25 2.3.1 電漿態定義與原理 25 2.3.2 電漿化學反應 29 2.3.3 常壓電漿基本特性 31 2.4.4 常壓電漿應用之相關研究 36 第三章 實驗設備與程序 42 3.1 實驗目的 42 3.2 實驗藥品與耗材 44 3.3 實驗步驟 46 3.3.1 基材準備 46 3.3.2 實驗設備系統 46 3.3.3 實驗參數 48 3.3.4 實驗分析及儀器原理 49 第四章 結果與討論 63 4.1 氧化矽薄膜成長之性質分析 63 4.1.1前驅物TESO與HNDSN 65 4.1.2 載氣體流量效應之影響 76 4.1.3 不同種類之載氣氣體影響 102 4.2 氧化矽薄之腐蝕特性研究 111 4.2.1 動電位極化曲線分析 111 4.2.2 阻抗頻譜分析 115 4.3 長時效抗腐蝕之測試 122 4.3.1 綠光干涉儀腐蝕表面粗糙度分析 122 4.3.2 長時效測試之表面形貌觀察 131 4.3.3 傅立葉紅外線光譜分析 138 4.3.4 長時效之阻抗頻譜分析 140 4.4 常壓電漿沉積氧化矽薄膜理論之探討 145 第五章 結論 149 第六章 參考文獻 151 附 錄 163

    [1] F. Zhang, Z.G. Liu, R.C. Zeng, et al., Corrosion resistance of Mg–Al-LDH coatingon magnesium alloy AZ31, Surf. Coat. Technol. 258 (2014) 1152-1158.
    [2] A. Atrens, G.L. Song, F. Cao, et al., Advances in Mg corrosion and researchsuggestions, J. Magnes. Alloys 1 (3) (2013) 177-200.
    [3] F.S. Pan, X.H. Chen, T. Yan, et al., A novel approach to melt purification ofmagnesium alloys, J. Magnes. Alloys 4 (1) (2016) 8-14.
    [4] G.L. Song, A. Atrens, Corrosion mechanisms of magnesium alloys, Adv. Eng.Mater. 1 (1) (1999) 11–33.
    [5] A. Atrens, M. Liu, N.I.Z. Abidin, Corrosion mechanism applicable to biodegradable magnesium implants, Mater. Sci. Eng.: B 176 (20) (2011)1609-1636.
    [6] C. Taltavull, Z. Shi, B. Torres, et al., Influence of the chloride ion concentrationon the corrosion of high-purity Mg, ZE41 and AZ91 in buffered Hank’ssolution, J. Mater. Sci. 25 (2) (2014) 329-345.
    [7] A. Atrens, G.L. Song, M. Liu, et al., Review of recent developments in the field of magnesium corrosion, Adv. Eng. Mater. 17 (4) (2015) 400-453.
    [8] H. Hornberger, S. Virtanen, A.R. Boccaccini, Biomedical coatings on magnesium alloys–a review, Acta Biomater. 8 (7) (2012) 2442-2455.
    [9] S. Pommiers, J. Frayret, A. Castetbon, M. Potin-Gautier, Alternative conversion coatings to chromate for the protection of magnesium alloys, Corros. Sci. 84 (2014)
    135-146.
    [10] T. Lei, C. Ouyang, W. Tang, L. Li, L. Zhou, Preparation of MgO coatings onmagnesium alloys for corrosion protection, Surf. Coat. Technol. 204 (2010) 3798-3803.
    [11] C.H. Anja, G. Petra, S. Michael, J.U. Peter, On the biodegradation performance of an Mg-Y-RE alloy with various surface conditions in simulated body fluid, Acta Biomater. 5 (2009) 162-171.
    [12] W.J. Cheong, B.L. Luan, D.W. Shoesmith, Protective coating on Mg AZ91D alloy: the effect of electroless nickel (EN) bath stabilizers on corrosion behavior of Ni-P deposit, Corros. Sci. 49 (2007) 1777-1798.
    [13] B.L. Yu, X.L. Pan, J.Y. Uan, Enhancement of corrosion resistance of Mg-9 wt.% Al-1 wt.% Zn alloy by a calcite (CaCO3) conversion hard coating, Corros. Sci. 52 (2010) 1874–1878.
    [14] P. Mandal, S. C. Mondal, Investigation of Electro-Thermal property for Cu-MWCNT composite coating on anodized 6061 aluminium alloy, Appl. Surf. Sci. 454 (2018) 138-147.
    [15] L. Chen, X. Jin, Y. Qu, et al., High temperature tribological behavior of microarc oxidation film on Ti-39Nb-6Zr alloy, Surf. Coat. Technol. 347 (2018) 29-37.
    [16] H. Hoche, J. Schmidt, S. Groß, T. Troßmann, C. Berger, PVD coating and substrate pretreatment concepts for corrosion and wear protection of magnesium alloys, Surf. Coat. Technol. 205 (2011) S145-S150.
    [17] S. Tang, S. Gao, S. Wang, J. Wang, Q. Zhu, Y. Chen, X. Li, Characterization of CVD TiN coating at different deposition temperatures and its application in hydrocarbon pyrolysis, Surf. Coat. Technol. 258 (2014) 1060-1067.
    [18] S.E. Babayan, J.Y. Jeong, V.J. Tu, J. Park, G.S. Selwyn, R.F. Hicks, Deposition of silicon dioxide films with an atmospheric-pressure plasma jet, Plasma Sources Sci. Technol. 7 (1998) 286-288.
    [19] C.L. Wu, C.Y. Yang, T.P. An, J.W. Lin, C.K. Sung, Anti-adhesion treatment for nanoimprint stamps using atmospheric pressure plasma CVD (APPCVD), Appl. Surf. Sci. 261 (2012) 441–446.
    [20] G. Arnoult, T. Belmonte, G. Henrion, Self organization of SiO2 nanodots deposited by chemical vapor deposition using an atmospheric pressure remote microplasma, Appl. Phys. Lett. 96 (2010) 101505–101505-3.
    [21] L. Kotte, H. Althues, G. Mader, J. Roch, S. Kaskel, I. Dani, T. Mertens, F.J. Gammel, Atmospheric pressure PECVD based on a linearly extended DC arc for adhesion promotion applications, Surf. Coat. Technol. 234 (2013) 8–13.
    [22] Y. L. Kuo, K. H. Chang, T. S. Hung , K. S. Chen, N. Inagaki, Atmospheric-pressure plasma treatment on polystyrene for the photo-induced grafting polymerization of N-isopropylacrylamide, Thin Solid Films 518 (2010) 7568-7573.
    [23] A. V. Deynse, P. Cools, C. Leys, R. Morent, N. D. Geyter, Surface modification of polyethylene in an argon atmospheric pressure plasma jet, Surf. Coat. Technol. 276 (2015) 384-390.
    [24] G.L. Song, Recent progress in corrosion and protection of magnesium alloys,
    Adv. Eng. Mater. 7 (2005) 563–586.
    [25] K.U. Kainer, P. Bala Srinivasan, C. Blawert, W. Dietzel, Shreir’s Corrosion, vol. 3, Elsevier, Oxford, 2010.
    [26] J.E. Gray, B. Luan, Protective coatings on magnesium and its alloys - a critical review, J. Alloys Compd. 336 (2002) 88-113.
    [27] R.G. Hu, S. Zhang, J.F. Bu, C.J. Lin, G.L. Song, Recent progress in corrosion protection of magnesium alloys by organic coatings, Prog. Org. Coat. 73 (2012)
    129-141.
    [28] V.S. Y. Lin, K. Motesharei, K.-P.S. Dancil, M.J. Sailor, M.R. Ghadiri, A porous silicon- based optical interferometric biosensor, Science 278 (1997) 840-843.
    [29] S. Mariani, L.M. Strambini, G. Barillaro, Femtomole detection of proteins using a label-free nanostructured porous silicon interferometer for perspective ultrasensitive biosensing, Anal. Chem. 88 (2016) 8502–8509.
    [30] S. Mariani, L. Pino, L.M. Strambini, L. Tedeschi, G. Barillaro, 10 000-fold improvement in protein detection using nanostructured porous silicon interferometric aptasensors, ACS Sensors 1 (2016) 1471–1479.
    [31] R. Caroselli, D. Martín-Sanchez, S. Ponce Alcántara, F. Prats Quilez, L. Torrijos Morán, J. García-Ruperez, Real-time and in-flow sensing using a high sensitivity porous silicon microcavity-based sensor, Sensors 17 (2813) (2017) 1–12.
    [32] J.D. Verink,Simplified procedure for constructing Pourbaix diagrams Uhlig's Corros. Handb. (third ed.) (2011) 93-101.
    [33] G. Song, A. Atrens, D. Stjohn, J. Nairn, Y. Li, The electrochemical corrosion of pure magnesium in 1 N NaCl, Corros. Sci. 39 (1997) 855-875.
    [34] H.K. Lim, D.H. Kim, J.Y. Lee, W.T. Kim, D.H. Kim, Effects of alloying elements on microstructures and mechanical properties of wrought Mg–MM–Sn alloy, J. Alloys Compd. 468 (2009) 308-314.
    [35] R. Ambat, N. N. Aung, W. Zhou, Evaluation of microstructural effects on corrosion behavior of AZ91D magnesium alloy, Corros. Sci 42 (2000) 1433-1455.
    [36] R. Ambat, N. N. Aung, W. Zhou, Study on influence of chloride ion and pH on the corrosion and electrochemical behavior of AZ91D magnesium alloy, J. Appl. Electrochem. 30 (2000) 865-874.
    [37] W. M. Chan, F. T. Cheng, L. K. Leung, R. J. Horylev, T. M. Yue, Corrosion behavior of magnesium alloy AZ91 and its MMC in NaCl solution, Corrosion reviews, 16(1998) 43.
    [38] H. Inoue, K. Sugahara, A. Yamamoto, H. Tsubakino, Corrosion rate of magnesium and its alloys in buffered chloride solutions, Corros. Sci 44 (2000) 603-610.
    [39] O. Lunder, J. E. Lein, T. Kr. Aune, K. Nisancioglu, The role of Ma17Al12 phase in the corrosion of Mg alloy AZ91, Corrosion 45 (1989) 741.
    [40] P. Volovitch, T.N. Vu, C. Allely, A.A. Aal, K. Ogle, Understanding corrosion via corrosion product characterization: II. Role of alloying elements in improving the corrosion resistance of Zn–Al–Mg coatings on steel, Corros. Sci 53 (2011) 2437-2445.
    [41] X. Zhang, T.N. Vu, P. Volovitch, C. Leygraf, K. Ogle, I. Odnevall Wallinder, The initial release of zinc and aluminum from non-treated Galvalume and the formation of corrosion products in chloride containing media, Appl. Surf. Sci. 258 (2012) 4351-4359.
    [42] J. Duchoslav, M. Arndt, R. Steinberger, T. Keppert, et al., Nanoscopic view on the initial stages of corrosion of hot dip galvanized Zn-Mg-Al coatings Corros. Sci., 83 (2014) 327-334.
    [43] J. Sullivan, N. Cooze, C. Gallagher, et al., In situ monitoring of corrosion mechanisms and phosphate inhibitor surface deposition during corrosion of zinc-magnesium-aluminium (ZMA) alloys using novel time-lapse microscopy, Faraday Discuss. 180 (2015) 361-379.
    [44] T. Prosek, D. Persson, J. Stoulil, D. Thierry, Composition of corrosion products formed on Zn-Mg, Zn-Al and Zn-Al-Mg coatings in model atmospheric conditions, Corros. Sci. 86 (2014) 231-238,
    [45] R. Hausbrand, M. Stratmann, M. Rohwerder, Corrosion of zinc-magnesium coatings: mechanism of paint delamination, Corros. Sci. 51 (2009) 2107-2114.
    [46] H.Proffit, Magnesium and Magnesium Alloys, AMS Hanbook, vol. 2
    [47] J. Duchoslav, M. Arndt, T. Keppert, G. Luckeneder, D. Stifter, XPS investigation on the surface chemistry of corrosion products on ZnMgAl-coated steel,
    Anal. Bioanal. Chem. 405 (2013) 7133-7144.
    [48] S. Schuerz, M. Fleischanderl, G.H. Luckeneder, K. Preis, et al., Corrosion behaviour of Zn-Al-Mg coated steel sheet in sodium chloride-containing environment, Corros. Sci. 51 (2009) 2355-2363.
    [49] J. Elvins, J.A. Spittle, D.A. Worsley, Microstructural changes in zinc aluminium alloy galvanising as a function of processing parameters and their influence on corrosion, Corros. Sci. 47 (2005) 2740-2759.
    [50] J. Elvins, J.A. Spittle, J.H. Sullivan, D.A. Worsley, The effect of magnesium additions on the microstructure and cut edge corrosion resistance of zinc aluminium alloy galvanised steel Corros. Sci. 50 (2008) 1650-1658.
    [51] Y. Wang, S. Lü, Z. Zhou, W. Zhou, J. Guo, Z. Lan, Effect of transition metal on the hydrogen storage properties of Mg-Al alloy, J. Mater. Sci. 52 (5) (2017) 392-399.
    [52] H. Ning, Z.Y. Zhou, Z.Y. Zhang, W.Z. Zhou, G.X. Li, J. Guo, Hydrogen dissociation and incorporation on Mg17Al12(100) surface: a density functional theory study, Appl. Surf. Sci. 396 (2017) 851-856.
    [53] Z.Y. Zhang, X.Y. Zhou, H.L. Zhang, J. Guo, H. Ning, Hydrogen penetration and diffusion on Mg17Al12 (110) surface: a density functional theory investigation, Int. J. Hydrogen Energy 42 (41) (2017) 26013-26019.
    [54] H. Inoue, K. Sugahara, A. Yamamoto, H. Tsubakino, Corrosion rate of magnesium and its alloys in buffered chloride solutions, Corros. Sci. 44 (2002) 603-610.
    [55] C. R. S. Mathieu, J. Hazan, P. Steinmetz, "Corrosion behaviour of high pressure die-cast and semi-solid cast AZ91D alloys, Corros. Sci. 44 (2002) 2737-2756.
    [56] C. D. Yim K. S. Shin, Semi-solid processing of Magnesium alloys, Materials transactions 44 (2003) 558-561.
    [57] C. Gu, J. Lian, J. He, Z. Jiang, Q. Jiang, High corrosion-resistance nanocrystalline Ni coating on AZ91D magnesium alloy, Surf. Coat. Technol. 200 (2006) 5413-5418.
    [58] W.J. Cheong, B.L. Luan, D.W. Shoesmith, Protective coating on Mg AZ91D alloy –The effect of electroless nickel (EN) bath stabilizers on corrosion behaviour of Ni-P deposit, Corros. Sci. 49 (2007) 1777-1798.
    [59] J.E. Gray, B. Luan, Protective coatings on magnesium and its alloys-a critical review, J. Alloys. Compd. 336 (2002) 88-113.
    [60] H. Umehara, S. Terauchi, M. Takaya, Structure and Corrosion Behavior of Conversion Coatings on Magnesium Alloys, Materials Science Forum, 350-351 (2000) 273.-282.
    [61] A. U. Simaranov, S. L. Marshakov, Y. N. Mikhailovskii, The composition andprotective properties of chromate conversion coatings on magnesium, Protection of Metals 25 (1992) 576-580.
    [62] I. Azkarate, A. P. Cano, Del Barrio, M. Insausti, P. S. Coloma, Alternatives to Cr(VI) conversion coatings for magnesium alloys, International Congress Magnesium Alloys and their Applications (2000) 475-483.
    [63] M.A. Gonzalez-Nunez, C. A. Nunez-Lopez, P. Skeldon, G.E. Thompson, et al., A non-chromate conversion coating for magnesium alloys and magnesium-based metal matrix composites, Corros. Sci. 37 (1995) 1763-1772.
    [64] A.L. Rudd, C. B. Breslin, F. Mansfeld, The corrosion protection afforded by rare earth conversion coatings applied to magnesium, Corros. Sci. 42 (2000) 275-288.
    [65] L. Zaraska, W.J. Stępniowski, G.D. Sulka, E. Ciepiela, M. Jaskuła, Analysis of nanopore arrangement and structural features of anodic alumina layers formed by two-step anodizing in oxalic acid using the dedicated executable software, Appl. Phys. A 114 (2014) 571-577.
    [66] W.J. Stępniowski, A. Nowak-Stępniowska, M. Michalska-Domańska, M. Norek, T. Czujko, Z. Bojar, Fabrication and geometric characterization of highly-ordered hexagonally arranged arrays of nanoporous anodic alumina, Pol. J. Chem. Tech. 16 (2014) 63-69.
    [67] Z. Yao, P. Ju, Q. Xia, J. Wang, P. Su, H. Wei, D. Li, Z. Jiang, Preparation of thermal control coatings on Mg–Li alloys by plasma electrolytic oxidation, Surf. Coatings Technol. 307 (2016) 1236-1240.
    [68] Y. Liu, F.W. Yang, Z.L. Wei, Z. Zhang, Anodizing of AZ91D magnesium alloy using environmental friendly alkaline borate-biphthalate electrolyte, Trans. Nonferrous
    Met. Soc. China (English Ed. 22 (2012) 1778-1785.
    [69] Ch. Voulgaris, E. Amanatides, D. Mataras, S. Grassini, E. Angelini, F. Rosalbino, RF power and SiOxCyHz deposition efficiency in TEOS/O2 discharges for the corrosion protection of magnesium alloys, Surf. Coat. Technol. 200 (2006) 6618-6622.
    [70] H. Hoche, J. Schmidt, S. Groß, T. Troßmann, C. Berger, PVD coating and substrate pretreatment concepts for corrosion and wear protection of magnesium alloys, Surf. Coat. Technol. 205 (2011) S145-S150.
    [71] Y. T, Method for plating magnesium alloy (2007).
    [72] H. O. Pierson, Handbook of Refractory Carbides and Nitrides, Noyes publications, New Jersey (1996) 100-115.
    [73] I. Vlassiouk, P. Fulvio, H. Meyer, N. Lavrik, S. Dai, P. Datskos, et al., Large scale
    atmospheric pressure chemical vapor deposition of graphene, Carbon 54 (2013) 58-67.
    [74] C. Sella, J. Leceur, Y. Sampeur, and P. Catania, Layers of high speed steel with microstructures characteristics of heat-treated materials, Surf. Coat. Technol. (1993) 287-289.
    [75] B. Chapman, Glow Discharge: Sputtering and Plasma Etching, Wiley-Interscience, New York, 1980.
    [76] J. R. Roth, Industrial Plasma Engineering, Principles, of Physics Publishing, London 1 (1995).
    [77] S. Kanazawa, M. Kogoma, T. Moriwaki, S. Okazaki, Stable glow plasma at atmospheric pressure, J. Phys. D Appl. Phys. 21 (1988) 836-840.
    [78] J. Y. Jeong, S. E. Babayan, J. P. V. J. Tu, R. F. Hicks, S. Selwyn, Etching materials with an atmospheric-pressure plasma jet, Plasma Sources Sci. T. 7 (1998) 282-285.
    [79] T. Yokoyama, M Kogoma, T Moriwaki, S. Okazaki, T. Yokoyama, The mechanism of the stabilisation of glow plasma at atmospheric pressure, J. Phys. D Appl. Phys. 23 (1990) 1125-1128.vol.
    [80] K. Yamamoto, M. Tanaka, S. Tashiro , K. Nakata , K. Yamazaki , E. Yamamoto, K. Suzuki, A.B. Murphy, Numerical simulation of metal vapor behavior in arc plasma, Surf. Coat. Technol. 202 (2008) 5302-5305.
    [81] M. Bashir, Julia M. Rees, William B. Zimmerman, Plasma polymerization in a microcapillary using an atmospheric pressure dielectric barrier discharge, Surf. Coat. Technol. 234 (2013) 82-91.
    [82] D.J. Marchand, Z.R. Dilworth, R.J. Stauffer, et al., Atmospheric rf plasma deposition of superhydrophobic coatings using tetramethylsilane precursor, Surf. Coat. Technol. 234 (2013) 14-20.
    [83] M. Pantoja, N. Encinas, J. Abenojar, M.A. Martinez, Effect of tetraethoxysilane coating on the improvement of plasma treated polypropylene adhesion, Appl. Surf. Sci. 280 (2013) 850-857.
    [84] Y.W. Hsu, Y.J. Yang, C.Y. Wu, C.C. Hsu, Downstream characterization of an atmospheric pressure pulsed arc jet, Plasma Chem. Plasma Process. 30 (2010) 363-372.
    [85] J.-Y. Juang, T.-S. Chou, H.-T. Lin, Y.-F. Chou, C.-C. Weng, Trajectory effect on the properties of large area ZnO thin films deposited by atmospheric pressure plasma jet, Appl. Surf. Sci. 314 (2014) 1074-1081.
    [86] K.-M. Chang, S.-H. Huang, C.-J. Wu, W.-L. Lin, W.-C. Chen, C.-W. Chi, J.-W. Lin, C.-C.Chang, Transparent conductive indium-doped zinc oxidefilms prepared by atmospheric pressure plasma jet, Thin Solid Films 519 (2011) 5114-5117.
    [87] S. E. Babayan, J. Y. Jeong, V. J. Tu, A. Schutze, M. Moravej, G. S. Selwyn, et al., Deposition of silicon dioxide films with a non-equilibrium atmospheric-pressure plasma jet, Plasma Sources Sci. 10 (2001) 573-578.
    [88] L. Zhou, G.H. L, C. Ji, S.Z. Yang, Application of plasma polymerized siloxane films for the corrosion protection of titanium alloy, Thin Solid Films 520 (2012) 2505-2509.
    [89] U. Lommatzsch, J. Ihde, Plasma Polymerization of HMDSO with an Atmospheric Pressure Plasma Jet for Corrosion Protection of Aluminum and Low-Adhesion Surfaces, Plasma Process. Polym. 6 (2009) 642-648.
    [90] N.D. Boscher, P. Choquet, D. Duday, S. Verdier, Advantages of a Pulsed Electrical Excitation Mode on the Corrosion Performance of Organosilicon Thin Films Deposited on Aluminium Foil by Atmospheric Pressure Dielectric Barrier Discharge, Plasma Process. Polym. 7 (2010) 163-171.
    [91] C. Regula, J Ihde, U. Lommatzsch, R. Wilken, Corrosion protection of copper surfaces by an atmospheric pressure plasma jet treatment, Surf. Coat. Technol. 205 (2011) S355-S358.
    [92] R. Morent, N. D. Geyter, S. V. Vlierberghe , P. Dubruel, C. Leys, E. Schacht, Organic-inorganic behaviour of HMDSO films plasma-polymerized at atmospheric pressure, Surf. Coat. Technol. 203 (2009) 1366-1372.
    [93] N. Koshizaki, H. Umehara, T. Oyama, XPS characterization and optical properties of Si/SiO2, Si/Al2O3 and Si/MgO co-sputtered films, Thin Solid Films 325 (1998) 130-136.
    [94] L. J. Ward, W. C. E. Schofield, J. P. S. Badyal A. J. Goodwin P. J. Merlin, Atmospheric Pressure Glow Discharge Deposition of Polysiloxane and SiOx Films, Langmuir 19 (2003) 19 2110-2114.
    [95] J.F. Moulder, W.F. Stickle, P.E. Sobol, K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy, Physical Electronics, Inc., 1995.
    [96] G.R. Nowling, M. Yajima, S.E. Babayan, M. Moravej, X. Yang, W. Hoffman, R.F. Hicks, Chamberless plasma deposition of glass coatings on plastic, Plasma Sources Sci. Technol. 14 (2005) 477-484.
    [97] Y. Ding, Q. Pan, J. Jin, H.Jia, H. Shirai, Silicon oxide synthesized using an atmospheric pressure microplasma jet from a tetraethoxysilane and oxygen mixture, Thin Solid Films, 518 (2010) 3487-3491.
    [98] C. Huang, C.H. Liu; C.H. Su, W.T. Hsu, S.Y. Wu, Investigation of atmospheric-pressure plasma deposited SiOx films on polymeric substrates, Thin Solid Films 517 (2009) 5141-5145.
    [99] G.S. Chen, S.T. Chen, Y.W. Chen, Y.C. Hsu, Site-selective electroless metallization on porous organosilica films by multisurface modification of alkyl monolayer and vacuum plasma, Langmuir 29 (2013) 511-518.
    [100] J.S. Chou, S.C. Lee, Effect of porosity on infrared-absorption spectra of silicon dioxide, J. Appl. Phys. 77 (1995) 1805-1807.
    [101] S.E. Babayan, J.Y. Jeong, A. Sch¨utze1, V.J. Tu, M. Moravej, G.S. Selwyn, R.F. Hicks, Deposition of silicon dioxide films with a non-equilibrium atmospheric-pressure plasma jet, Plasma Sources Sci. Technol. 10 (2001) 573-578.
    [102]A. Sonnenfeld, T.M. Tun, L. Zajíˇckov ´, K.V. Kozlov, H.E. Wagner, J.F. Behnke, R. Hippler, Deposition process based on organosilicon precursors in dielectric barrier discharges at atmospheric pressure, Plasmas Polym. 6 (2002) 237-266.
    [103] A.C. Ritts, C.H. Liu, Q.S. Yu, SiOx plasma thin film deposition using a low-temperature cascade arc torch, Thin Solid Films 519 (2011) 4824-4829.
    [104] Y.L. Kuo, Y.M. Su, H.L. Chou, A facile synthesis of high quality nanostructured CeO2 and Gd2O3-doped CeO2 solid electrolytes for improved electrochemical performance, Phys. Chem. Chem. Phys. 17 (2015) 14193-14200.

    無法下載圖示 全文公開日期 2024/08/26 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE