簡易檢索 / 詳目顯示

研究生: 傅可棨
KE-CHI FU
論文名稱: 常壓電漿噴射束於聚二甲基矽氧烷親水化與高分子複合型藥物微球薄膜製備
Study on Polymeric Microsphere on Polydimethylsiloxan with Drug Carrier Membrane Based on Atmospheric Plasma Technique.
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 丘群
Chun Chiu
林其昌
Chi-Chang Lin
宮輔辰
FU-CHEN KUNG
王文
Wen Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 107
語文別: 中文
論文頁數: 100
中文關鍵詞: 常壓電漿噴射束二次電漿改質法親水性HEMA微球藥物釋放特性
外文關鍵詞: APPJ, TSPT method, Hydrophilic aging, HEMA micro-carrier, Drug releasing
相關次數: 點閱:242下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 聚二甲基矽烷(Polydimethylsiloxane,PDMS)由於具有化學特性、且易加工又具有良好機械特性而被廣用在生物技術中。雖有許多良好的特性,但親水性不佳,目前最廣用於改質PDMS親水性的技術為常壓電漿噴射束(Atmospheric pressure plasma jet,APPJ),但無法解決的問題是親水性會隨著時間漸漸變回疏水的狀況。為了克服此應用上的障礙,本研究以二次電漿改質法(Two step plasma treatment,TSPT)改質PDMS,進而達到永久親水,同時賦予表面載體功能。TSPT法第一步驟為將原本疏水的PDMS經過常壓電漿預改質,使表面親水化後,以旋轉塗佈法塗上HEMA微球溶液並以低溫去水烘乾;第二步驟在將吸附HEMA微球的PDMS進行第二次電漿改質,使表面聚合而減緩水降解特性。
    透過不同的APPJ激發功率(100W/150W/200W) 並加入1% O2/Ar作為主氣體。以水滴接觸角(Water contact angle)與DPPH自由基定量測量APPJ對PDMS之親水性變化。以反射式傅立葉轉換紅外光光譜儀(ATR-FTIR)測定載體薄膜化學特性。以SEM觀察載體微球形貌。後續以生物相容性確定薄膜不具生物毒性、以白蛋白吸附測定表面具有抗蛋白吸附特性、薄膜本身於金黃色葡萄球菌與大腸桿菌終能有效的隔絕細菌生長到薄膜上,具良好的抗菌特性,且載體薄膜於藥物釋放測試中,具有線性釋放之成果。

    關鍵字;常壓電漿噴射數(APPJ)、二次電漿改質法(TSPT)、親水性、HEMA微球、藥物釋放特性


    Polydimethylsiloxane (PDMS) is the most widely and one of the most versatile material used in the construction of biotechnology. However, the surface of PDMS is naturally hydrophobic limited its use. Atmospheric pressure plasma jet (APPJ) technology has been widely used for modify surface of PDMS. Conversely, the quick hydrophobic recovery is one of the main issues limiting the use of plasma technology. To overcome the problem of hydrophilic aging. HEMA microspheres solution were simultaneously grafted onto PDMS using a two-step plasma treatment (TSPT). The first step of this method: plasma pretreatment of the PDMS, spin-coating HEMA microspheres mixtures solution, and drying. The second step was carried out by plasma polymerization of preabsorbed reactive HEMA monomers on the surface of dried pretreated films.
    The PDMS sample were treated at different plasma power (100W/150W/200W) with 1% O2/Ar, while the wettability and ageing effects were study by water contact angle and DPPH radical test. Surface chemical compound were measured by ATR-FTIR which can prove the grafting film had been grafted onto PDMS. It was also observed the biocompatibility by cultured Fibroblast cells (L929), anti protein absorption character by absorbing Bovine serum albumin (BSA), drug delivering property by linear drug releasing and antibacterial character.

    Keywords: APPJ, TSPT method, Hydrophilic aging, HEMA micro-carrier, Drug releasing

    摘要 Abstract 致謝 總目錄 圖目錄 表目錄 第一章 緒論 1.1前言 1.2高分子於生醫產業的應用 1.3研究目的與動機 第二章 文獻回顧 2.1表面特性 2.2.1極性與非極性 2.2.2接觸角與表面自由能 2.2常壓電漿 2.2.1電漿基本介紹 2.2.2電漿反應機制 2.2.3電漿系統與分類 2.2.4常壓電漿工作型態分類 2.2.5電漿激發形式 2.2.6常壓電漿噴射束與表面改質 2.2.7電漿氣體效應 2.2.8電漿光譜診斷 2.3 高分子於表面技術應用 2.3.1智慧型高分子 2.3.2表面接枝聚合技術 2.2.3 高分子與電漿聚合反應 2.3.3高分子薄膜與生物技術實例 2.3.4抗蛋白質吸附特性 第三章 實驗方法 3.1實驗總覽 3.1.1材料與藥品 3.1.2實驗儀器簡介 3.2常壓電漿系統 3.2.1電漿束於基材熱累積溫度測量 3.2.2電漿物種診斷 3.2.3接觸角與表面能計算 3.2.4基材表面自由基定量 3.3載體薄膜製備 3.3.1載體薄膜前驅物製備 3.3.2載體薄膜塗佈 3.3.3載體薄膜聚合 3.3.4遠紅外光譜與薄膜化學特性測定 3.4薄膜進階應用 3.4.1生物相容性測試 3.4.2蛋白吸附特性測試 3.4.3載體薄膜導入外用藥物與釋放效果測定 第四章 實驗結果與討論 4.1 常壓電漿噴射束基本性質測定 4.1.1常壓電漿噴射束長度測定 4.1.2常壓電漿對基材表面升溫測定 4.1.3常壓電漿物種測定 4.1.4常壓電漿噴射束對表面親水性測定 4.1.5常壓電漿噴射束對基材表面自由基數量改變測定 4.1.6常壓電漿噴射束對基材表面自由能改變測定 4.2載體薄膜性質測定 4.2.1以DLS測定載體溶液粒徑大小 4.2.2以DSC測定載體薄膜之變性溫度 4.2.3以FTIR測定載體薄膜之化學特性 4.2.4以水滴接觸角測定載體薄膜親水性 4.2.5載體薄膜表面自由能測定 4.2.6以SEM觀察載體薄膜之表面特性 4.3載體薄膜之進階應用 4.3.1載體薄膜細胞貼附性測試 4.3.2載體薄膜抗蛋白特性測試 4.3.3藥物釋放測試 4.3.4抗菌測試 第五章 結論與未來展望 5.1 研究結論 5.2 未來展望 第六章 參考文獻

    [1] Maharjan, P., Woonton, B. W., Bennett, L. E., Smithers, G. W., DeSilva, K., & Hearn, M. T. (2008). Novel chromatographic separation—The potential of smart polymers. Innovative food science & emerging technologies, 9(2), 232-242.
    [2] 工研院IEK; 2014探索高分子材料在生醫產業發展與商機
    [3] Chu, P. K., Chen, J. Y., Wang, L. P., & Huang, N. (2002). Plasma-surface modification of biomaterials. Materials Science and Engineering: R: Reports, 36(5-6), 143-206.
    [4] A. Grill, IEEE, NY, 1994
    [5] Cheremisinoff, N. (1997). Handbook of engineering polymeric materials. New York: Marcel Dekker.
    [6] Quéré, D. (2002). Rough ideas on wetting. Physica A: Statistical Mechanics and its Applications, 313(1-2), 32-46.
    [7] 高玄同. (2010). SiO2–TiO2–ODS 系薄膜之超疏水性研究. 大同大學材料工程學系所學位論文, 1-103.
    [8] Rulison, C. (1999). So you want to measure surface energy. A tutorial designed to provide basic understanding of the concept solid surface energy, and its many complications, TN306/CR, 1-16.
    [9] De Izarra, C. (2000). UV OH spectrum used as a molecular pyrometer. Journal of Physics D: Applied Physics, 33(14), 1697.
    [10] Clarson, S. J., & Semlyen, J. A. (1993). Siloxane polymers. Prentice Hall.
    [11] Fonck, R. J., Darrow, D. S., & Jaehnig, K. P. (1984). Determination of plasma-ion velocity distribution via charge-exchange recombination spectroscopy. Physical Review A, 29(6), 3288.
    [12] 莊允中,電漿技術在半導體製程上之應用與市場分析,金工產業透析,2000
    [13] H.K. Hwang, C.H. Jeong, Y.J. Lee, Y.W. Ko, G.Y. Yeom, Surface and Coatings Technology, 2004, PP.705-710.
    [14] 李灝銘、張木彬,氣態污染物控制新技術-非熱電漿技術,工業污染防治 第89期,Jan. 2004,PP.169。
    [15] C.H. Yi, Y.H. Lee, G.Y. Yeom, Surface and Coatings Technology, 2003, PP.237-240.
    [16] 吳耀庭, 黃曉鳳, 溫俊祥, & 工研院材料所高分子界面工程技術部*副研究員,**經理. (2004). 電漿表面處理在生醫材料上之應用.
    [17] 工業材料研究所尖端材料實驗室 “淺談電漿表面處理技術” 工業材料, 123 , (1997) , pp.82.
    [18] Gao, Z. Chao LSI shi dai. Tai nan shi: Fu han.
    [19] 劉志宏 “以大氣電漿進行材料表面微米級圖案化之加工技術” 機械工業雜誌,306,66 2008
    [20] 楊士賢. (2005). 以脈衝式電漿輔助化學氣相沉積法製備氟化非晶碳膜之研究. 中原大學化學工程研究所學位論文, 1-117.
    [21] Tendero, C., Tixier, C., Tristant, P., Desmaison, J., & Leprince, P. (2006). Atmospheric pressure plasmas: A review. Spectrochimica Acta Part B: Atomic Spectroscopy, 61(1), 2-30.
    [22] 翁志強. (2001). 順流式遠端電漿對單層有機金屬表面 反應機制之研究. 中原大學醫學工程研究所學位論文, 1-97.
    [23] Boulos, M. I. “Thermal plasma processing, IEEE Trans”. Plasma Sci, Vol.20, pp.1127-1149 (1998)
    [24] Kusano, Y., Mortensen, H., Stenum, B., Goutianos, S., Mitra, S., Ghanbari-Siahkali, A., ... & Bindslev, H. (2007). Atmospheric pressure plasma treatment of glassy carbon for adhesion improvement. International Journal of Adhesion and Adhesives, 27(5), 402-408.
    [25] Park, S. J., Lee, E. J., & Kim, B. J. (2008). A study of atmospheric-pressure CHF3/Ar plasma treatment on dielectric characteristics of polyimide films. Journal of colloid and interface science, 319(1), 365-369.
    [26] Goldman, M., & Goldman, A. (1978). Corona discharges. Gaseous Electronics, 1, 219-290.
    [27] Kment, S., Kluson, P., Zabova, H., Churpita, A., Chichina, M., Cada, M., ... & Hubicka, Z. (2009). Atmospheric pressure barrier torch discharge and its optimization for flexible deposition of TiO2 thin coatings on various surfaces. Surface and Coatings Technology, 204(5), 667-675.
    [28] Roth, J., Sherman, D., & Wilkinson, S. (1998, January). Boundary layer flow control with a one atmosphere uniform glow discharge surface plasma. In 36th AIAA Aerospace Sciences Meeting and Exhibit (p. 328).
    [29] Pochner, K., Neff, W., & Lebert, R. (1995). Atmospheric pressure gas discharges for surface treatment. Surface and Coatings Technology, 74, 394-398.
    [30] Kment, S., Kluson, P., Zabova, H., Churpita, A., Chichina, M., Cada, M., ... & Hubicka, Z. (2009). Atmospheric pressure barrier torch discharge and its optimization for flexible deposition of TiO2 thin coatings on various surfaces. Surface and Coatings Technology, 204(5), 667-675.
    [31] Chen, J. (2012). Surface Modification of Flexible Substrates using Low-Temperature Atmospheric Pressure Jet for Grafting Thermosensitive Polymer (master). National Taiwan University of Science and Technology.
    [32] 馗鼎奈米科技股份有限公司 ” 表面處理於R2R壓印製程之應用-6” 2010
    [33] Kim, M. C., & Masuoka, T. (2009). A study on the degradation property of a hydrophilic polycarbonate film treated by inductively coupled plasma using CO2 as reactive gas. Applied Surface Science, 255(8), 4684-4688.
    [34] Kanazawa, S., Kogoma, M., Moriwaki, T., & Okazaki, S. (1988). Study of The Plasma Surface Modification and The Preparation for Electric Conductivity of Polyester Fabric . Journal of Physics D: Applied Physics, 21(5), 838.
    [35] Schneider, S., Lackmann, J. W., Ellerweg, D., Denis, B., Narberhaus, F., Bandow, J. E., & Benedikt, J. (2012). The role of VUV radiation in the inactivation of bacteria with an atmospheric pressure plasma jet. Plasma Processes and Polymers, 9(6), 561-568.
    [36] Malcolm Carter, J., Flynn, H. E., Meenaghan, M. A., Natiella, J. R., Akers, C. K., & Baier, R. E. (1981). Organic surface film contamination of Vitallium implants. Journal of Biomedical Materials Research Part A, 15(6), 843-851.
    [37] Sarani, A., Nikiforov, A. Y., De Geyter, N., Morent, R., & Leys, C. (2011). Surface modification of polypropylene with an atmospheric pressure plasma jet sustained in argon and an argon/water vapour mixture. Applied Surface Science, 257(20), 8737-8741.
    [38] Takamatsu, T., Uehara, K., Sasaki, Y., Miyahara, H., Matsumura, Y., Iwasawa, A., ... & Okino, A. (2014). Investigation of reactive species using various gas plasmas. RSC Advances, 4(75), 39901-39905.
    [39] OXFORD公司 “Foundry-Master X’Pert光譜分光儀技術手冊” 1990
    [40] Dechana, A., Thamboon, P., & Boonyawan, D. (2014). Microwave remote plasma enhanced-atomic layer deposition system with multicusp confinement chamber. Review of Scientific Instruments, 85(10), 103510.
    [41] Lewis, G. T., Nowling, G. R., Hicks, R. F., & Cohen, Y. (2007). Inorganic surface nanostructuring by atmospheric pressure plasma-induced graft polymerization. Langmuir, 23(21), 10756-10764.
    [42] Bohorquez, M., Koch, C., Trygstad, T., & Pandit, N. (1999). A study of the temperature-dependent micellization of pluronic F127. Journal of colloid and interface science, 216(1), 34-40.
    [43] Khodabandehloo, H., Zahednasab, H., & Hafez, A. A. (2016). Nanocarriers usage for drug delivery in cancer therapy. Iranian journal of cancer prevention, 9(2).
    [44] Jung, S. H., Park, S. M., Park, S. H., & Kim, S. D. (2004). Surface modification of fine powders by atmospheric pressure plasma in a circulating fluidized bed reactor. Industrial & engineering chemistry research, 43(18), 5483-5488.
    [45] Sergeyeva, T. A., Matuschewski, H., Piletsky, S. A., Bendig, J., Schedler, U., & Ulbricht, M. (2001). Molecularly imprinted polymer membranes for substance-selective solid-phase extraction from water by surface photo-grafting polymerization. Journal of Chromatography A, 907(1-2), 89-99.
    [46] Gancarz, I., Poźniak, G., Bryjak, M., & Frankiewicz, A. (1999). Modification of polysulfone membranes. 2. Plasma grafting and plasma polymerization of acrylic acid. Acta polymerica, 50(9), 317-326.
    [47] Guan, J., Gao, C., Feng, L., & Shen, J. (2000). Functionalizing of polyurethane surfaces by photografting with hydrophilic monomers. Journal of applied polymer science, 77(11), 2505-2512.
    [48] Kuo, Y. L., Chang, K. H., Hung, T. S., Chen, K. S., & Inagaki, N. (2010). Atmospheric-pressure plasma treatment on polystyrene for the photo-induced grafting polymerization of N-isopropylacrylamide. Thin Solid Films, 518(24), 7568-7573.
    [49] Inagaki, N. (2014). Plasma surface modification and plasma polymerization. CRC Press.
    [50] Belford, R. E., & Sood, S. (2007). Surface activation using remote plasma for hydrophilic bonding at elevated temperature. Electrochemical and solid-state letters, 10(5), H145-H148.
    [51] Colman, R. W. (1984). Surface-mediated defense reactions. The plasma contact activation system. The Journal of clinical investigation, 73(5), 1249-1253.
    [52] Johnsen, K., Kirkhorn, S., Olafsen, K., Redford, K., & Stori, A. (1996). Modification of polyolefin surfaces by plasma‐induced grafting. Journal of applied polymer science, 59(10), 1651-1657.
    [53] "Ionization Energy | Chemistry". Encyclopedia Britannica, 2018, https://www.britannica.com/science/ionization-energy. Accessed 16 June 2018.
    [54] Yokoyama, T., Kogoma, M., Moriwaki, T., & Okazaki, S. (1990). The mechanism of the stabilisation of glow plasma at atmospheric pressure. Journal of Physics D: Applied Physics, 23(8), 1125.
    [55] Karkhaneh, A., Mirzadeh, H., & Ghaffariyeh, A. R. (2007). Simultaneous graft copolymerization of 2‐hydroxyethyl methacrylate and acrylic acid onto polydimethylsiloxane surfaces using a two‐step plasma treatment. Journal of applied polymer science, 105(4), 2208-2217.
    [56] Dowling, D. P., Miller, I. S., Ardhaoui, M., & Gallagher, W. M. (2011). Effect of surface wettability and topography on the adhesion of osteosarcoma cells on plasma-modified polystyrene. Journal of biomaterials applications, 26(3), 327-347.
    [57] Lin, L., Wang, Y., Huang, X. D., Xu, Z. K., & Yao, K. (2010). Modification of hydrophobic acrylic intraocular lens with poly (ethylene glycol) by atmospheric pressure glow discharge: A facile approach. Applied Surface Science, 256(24), 7354-7364.
    [58] Salati, A., Keshvari, H., Karkhaneh, A., & Taranejoo, S. (2011). Design and fabrication of artificial skin: chitosan and gelatin immobilization on silicone by poly acrylic acid graft using a plasma surface modification method. Journal of Macromolecular Science, Part B, 50(10), 1972-1982.
    [59] Siddique, A., Meckel, T., Stark, R. W., & Narayan, S. (2017). Improved cell adhesion under shear stress in PDMS microfluidic devices. Colloids and Surfaces B: Biointerfaces, 150, 456-464.
    [60] Rabinow, B. E., Ding, Y. S., Qin, C., McHalsky, M. L., Schneider, J. H., Ashline, K. A., ... & Albrecht, R. M. (1995). Biomaterials with permanent hydrophilic surfaces and low protein adsorption properties. Journal of Biomaterials Science, Polymer Edition, 6(1), 91-109.
    [61] Sariri, P. R., & Toosi, A. E. K. (2003). Lecithin treatment to prevent protein adsorption onto contact lenses. Russian journal of organic chemistry, 39(4), 471-474.
    [62] Benissad, N., Boisse-Laporte, C., Vallée, C., Granier, A., & Goullet, A. (1999). Silicon dioxide deposition in a microwave plasma reactor. Surface and Coatings Technology, 116, 868-873.
    [63] Clay, K. J., Speakman, S. P., Amaratunga, G. A. J., & Silva, S. R. P. (1996). Characterization of a‐C: H: N deposition from CH4/N2 rf plasmas using optical emission spectroscopy. Journal of applied physics, 79(9), 7227-7233.
    [64] Andrieux, M., Badie, J. M., Ducarroir, M., & Thomas, L. (1998). Optical emission spectroscopy of RF and microwave plasmas used for chemical vapor deposition in the Si-CH-Ar system. In Annales de chimie-Sciences des materiaux (Vol. 5, No. 23, pp. 743-752).
    [65] Timmermans, E. A. H., Jonkers, J., Rodero, A., Quintero, M. C., Sola, A., Gamero, A., ... & van der Mullen, J. A. M. (1999). The behavior of molecules in microwave-induced plasmas studied by optical emission spectroscopy. 2: Plasmas at reduced pressure. Spectrochimica Acta Part B: Atomic Spectroscopy, 54(7), 1085-1098.
    [66] Bogaerts, A., Quentmeier, A., Jakubowski, N., & Gijbels, R. (1995). Plasma diagnostics of an analytical Grimm-type glow discharge in argon and in neon: Langmuir probe and optical emission spectrometry measurements. Spectrochimica Acta Part B: Atomic Spectroscopy, 50(11), 1337-1349.
    [67] Cho, B. O., Lao, S., Sha, L., & Chang, J. P. (2001). Spectroscopic study of plasma using zirconium tetra-tert-butoxide for the plasma enhanced chemical vapor deposition of zirconium oxide. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 19(6), 2751-2761.
    [68] Bogaerts, A., Quentmeier, A., Jakubowski, N., & Gijbels, R. (1995). Plasma diagnostics of an analytical Grimm-type glow discharge in argon and in neon: Langmuir probe and optical emission spectrometry measurements. Spectrochimica Acta Part B: Atomic Spectroscopy, 50(11), 1337-1349.
    [69] Renevier, N., Czerwiec, T., Collignon, P., & Michel, H. (1998). Diagnostic of arc discharges for plasma nitriding by optical emission spectroscopy. Surface and Coatings Technology, 98(1-3), 1400-1405.
    [70] Kułakowska-Pawlak, B., Żyrnicki, W., Miernik, K., & Walkowicz, J. (1999). Optical emission diagnostics of the linear magnetron sputtering discharge. Surface and Coatings Technology, 116, 1076-1082.
    [71] Bodas, Dhananjay, and Chantal Khan-Malek. "Formation of more stable hydrophilic surfaces of PDMS by plasma and chemical treatments." Microelectronic engineering 83.4-9 (2006): 1277-1279.

    無法下載圖示 全文公開日期 2023/11/07 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE