簡易檢索 / 詳目顯示

研究生: 黃慧婷
Huei-Ting Huang
論文名稱: 以常壓電漿噴射束製備鑭鍶錳氧化物固態燃料電池陰極材料之研究
The Study of La0.5Sr0.5MnO3 as SOFC Cathode by Atmospheric Pressure Plasma Jet
指導教授: 郭俞麟
Yu-Lin Kuo
口試委員: 周宏隆
Hung-lung Chou
施劭儒
Shao-ju Shih
韋文誠
Wen-cheng Wei
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 113
中文關鍵詞: 常壓電漿噴射束固態氧化物燃料電池鑭鍶錳氧化物
外文關鍵詞: Atmospheric Pressure Plasma Jet, Solid Oxide Fuel Cell, Strontium-doped Lanthanum Manganite
相關次數: 點閱:185下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用常壓電漿噴射束系統(Atmospheric pressure plasma jet, APPJ)製備三元鑭鍶錳氧化物(La0.5Sr0.5MnO3, LSM)之奈米顆粒,應用於固態氧化物燃料電池之陰極端。實驗以硝酸鑭、硝酸鍶與硝酸錳混合水溶液作為前驅物來源,結合噴霧熱解法與電漿噴塗法製程之特性製備出其材料。本研究之架構主要分為二大部分,第一部分以粉體之製備為主,藉由氧氣載氣氣體將前驅物通入電漿束口製備出LSM粉體後,分別以X光繞射儀(XRD)分析其熱處理前後之結晶性質、以全反射X光螢光分析儀(TXRF)鑑定其化學成分、雷射粒徑分析(DLS)確定其顆粒尺寸大小,並以掃描式電子顯微鏡(SEM)與穿透式電子顯微鏡(TEM)觀察其表面形貌與微結構。由實驗結果顯示,剛沉積之LSM粉體之表面形貌為接近球狀之中空奈米顆粒,經由1000℃燒結後其相結構鑑定確認為La0.5Sr0.5MnO3晶體,粒徑大小約40nm,其化學成分分析結果也指出經由電漿製程所製備出的LSM與起始所配置之前驅物溶液摻雜比例結果一致。此外亦可推測LSM粉體之顆粒成形機制為溶質過飽和在表面先行析出固相(surface precipitation),產生的中空球狀顆粒隨著熱處理中之燒結聚集效應使得球殼開始塌陷,同時伴隨著氧化反應最後形成多孔之鑭鍶錳氧化物顆粒。第二部分以常壓電漿噴射束沉積LSM薄膜於8YSZ碇材,同樣以O2為載氣氣體,以不同噴塗距離之電漿參數探討對薄膜品質之影響,最後針對LSM鍍層進行電化學分析,以建立常壓電漿噴射束製備多孔陰極薄膜之目標,期望能應用於SOFC之固態陰極材料上。實驗結果顯示,在電漿功率500W、乾燥空氣30 slm、載氣氣體1slm搭配噴塗距離為25mm時,有較多孔隙結構。本研究之電化學分析結果顯示,對稱式半電池(LSM/YSZ/LSM)在操作溫度600~900°C空氣氣氛下,其最大交換電流密度約為65.2 mA/cm2;交流阻抗分析結果也顯示,LSM粗糙的多孔性表面會造成電雙層(Double layer)現象。氫氣氣氛下非對稱式半電池(LSM/YSZ/Pt)發電功率(Power density)之輸出大小約為46 mW/cm^2,換算其ASR值約5.72 Ωcm-2,整體電位輸出介於0.94~1.01 V之間。由上述結果可知,本研究可透過常壓電將噴射束成功製備出LSM薄膜應用於固態氧化物燃料電池之陰極材料。


    Strontium-doped lanthanum manganite La1-xSrxMnO3-δ (LSM) has been widely used as a cathode for SOFC, because of its excellent thermal and chemical compatibility with the YSZ electrolyte. However, its catalytic activity is inadequate for low-temperature applications. In order to improve its electrochemical performance and understand the detailed mechanism of oxygen reduction reaction (ORR) at cathode side, novel atmospheric pressure plasma jet (APPJ) process was applied to synthesize LSM cathode materials via precursor solutions of nitrate salts. A modified method combines the atomization process of spray pyrolysis and plasma enhanced chemical vapor deposition technology. Our research group has successfully synthesized the ZrO2, CeO2 and Gd2O3 doped CeO2 (GDC) by this APPJ fabrication. Now we are focus on the he preparation of ternary-metal oxide, La1-xSrxMnO3 as SOFC cathode materials.
    In this study, two topics are discussed. First one is the synthesis of LSM particles. XRD results show well-crystalline structure of perovskite La0.5Sr0.5MnO3, while the grain size increased to 40 nm as the sintering temperature increased to 1000℃. The microstructure of LSM was found to be hollow and porous particles by SEM and TEM. The chemical compositions of LSM particles after APPJ process analyzed by TXRF were close to 0.5:0.5:1 for average atomic ratios (La:Sr:Mn) which was the same as the prepared nitrate solution. The results showed that the feasibility of preparation of well-crystallized La0.5Sr0.5MnO3 particles by APPJ system was successfully achieved.
    The second part is the investigation of LSM film deposition by changing the distance between nozzle and substrate. The optimal plasma parameters for obtaining LSM film as cathode layer are the distance of 25 mm and applied power at 500 W. The morphology of 1000℃-sintered LSM films represented interconnected particles with near spherical shape and a porosity of 37.8%.
    About the electrochemical performance of LSM half cell was measured by two-probe electrode method. The highest exchange current density of symmetric half cell (LSM/YSZ/LSM) is 65.2 mA/cm2 at 900℃. However, rough and porous surfaces result in electrical double layer phenomenon from the ac impedance fitting analysis. Electrochemical behaviors of non-symmetric half cell (LSM/YSZ/Pt) at 900℃ represented the OCV value of 0.94 V, the ASR value of 5.72 Ωcm-2, and power density of 46 mWcm-2, indicating the feasibility of using APPJ to prepare LSM film as cathode mateials was achieved.

    中文摘要I 英文摘要III 目錄VI 圖索引IX 表索引XII 第一章緒論1 1.1前言1 1.2研究目的與動機4 第二章文獻回顧5 2.1固態氧化物燃料電池5 2.1.1 固態氧化物燃料電池簡介5 2.1.2 固態氧化物燃料電池之工作原理6 2.2陽極材料8 2.2.1 陶金電極8 2.2.2 氧化物電極10 2.3電解質材料11 2.4陰極材料13 2.4.1 陰極材料特性13 2.4.2 鈣鈦礦結構陰極15 2.5陰極氧還原反應(Oxygen Reduction Reaction, ORR)22 2.6陰極與電解質界面電化學23 2.6.1 燃料電池極化現象23 2.6.2 活化極化24 2.6.3 歐姆極化25 2.6.4 濃度極化26 2.7交流阻抗分析法之原理簡介27 2.8陰極材料之製備技術32 2.8.1 粉體合成技術32 2.8.2 薄膜製備技術38 第三章材料與方法44 3.1實驗藥品44 3.2實驗設備44 3.3實驗步驟47 3.4電漿內部物種分析49 3.4.1 光學放射光譜儀49 3.4.2 電漿內部物種分析50 3.5材料分析51 第四章結果與討論56 4.1常壓電漿噴射束於LSM固態陰極粉體材料之特性研究57 4.1.1 前驅物與霧化液滴之理論計算57 4.1.2 粉體製備分析58 4.2以常壓電漿噴射束製備LSM薄膜於YSZ基材並進行不同電漿參數 之材料分析與電性量測70 4.2.1 初步以大氣常壓電漿噴束製備LSM之實驗結果72 4.2.2 電漿噴頭與基材之距離對鍍膜之影響72 4.3LSM電化學分析79 4.3.1 LSM陰極活性分析探討79 4.3.2 LSM551陰極極化曲線分析探討80 4.3.3 AC-Impedance交流阻抗分析80 4.3.4 LSM551半電池之電功率分析探討83 4.3.5 LSM551半電池之燃料轉化率計算84 4.3.6 LSM551半電池反應後之表面形貌分析86 4.3.7 摻雜不同Sr%比例之LSM半電池其交流阻抗分析86 4.3.8 以GDC當作擴散阻障層之LSM半電池其交流阻抗分析87 第五章結論與未來展望101 5.1常壓電漿噴射束於LSM固態陰極粉體之製程分析101 5.2以常壓電漿噴射束製備LSM薄膜於於YSZ基材並進行不同電漿參 數之材料分析與電化學量測103 5.3未來展望105 第六章 參考文獻106 圖索引 圖1-1全球大氣中二氧化碳之月平均濃度值2 圖2-1 Bloom Energy之SOFC模組提供Google雲端運算之電力6 圖2-2固態氧化物燃料電池操作原理6 圖2-3 Ni-YSZ複合陽極之電子及氧離子傳導示意圖9 圖2-4鈣鈦礦(Perovskite)結構11 圖2-5磷灰石(Apatite)結構12 圖2-6氟化鈣(Fluorite)結構12 圖2-7 GDC和YSZ/GDC雙層電解質之全電池微結構及電功率示意圖13 圖2-8三相界活性位置示意圖14 圖2-9純電子導材料三相界只存在接陰極觸電解質之處(左),混合離子電子導其三相界發生在具多孔性三維結構(中、右)15 圖2-10鈣鈦礦結構示意圖15 圖2-11容忍因子(t)與不同摻雜比例鍶離子之關係圖17 圖2-12 (La,Sr)MnO3在不同溫度下的電導率17 圖2-13以LSCF作為陰極於700°C之I-V曲線(上)與長期電池測試圖(下)20 圖2-14 Sr–Zr–O化合物雜相產生在LSCF-SDC(Ce0.8Sm0.2O1.9)介面21 圖2-15 Ni/YSZ/SDC/LSM之全電池長效期電池穩定性測試21 圖2-16陰極三相點之反應步驟圖22 圖2-17陰極傳導示意圖(a)單相電子傳導(b)單相混合傳導(c)複合相混合傳導23 圖2-18理想與實際電壓(V)-電流(I)輸出圖形24 圖2-19活化極化相對於其他極化影響25 圖2-20交流電壓與交流電流在角頻率為ω時之關係圖28 圖2-21電化學阻抗頻譜圖或奈奎斯圖29 圖2-22各種電子元件及其組合在電化學阻抗頻譜圖中的形式: (a)純電阻 (b)純電容 (c)電阻與電容串聯 (d)電阻與電容並聯30 圖2-23球磨法(Ball-milling method)33 圖2-24球磨45分鐘後經1000度鍛燒12小時獲得La0.8Sr0.2MnO3粉體33 圖2-25共沉澱法(Coprecipitation method) 35 圖2-26溶膠-凝膠法Sol-Gel Technologies and their product36 圖2-27氨酸燃燒法(glycine nitrate process, GNP)36 圖2-28以Pechini法製備LSCF於GDC上之截面構造圖與ASR圖38 圖2-29常壓熱電漿噴塗法之裝置示意圖40 圖2-30為其常壓電漿噴塗法裝置示意圖42 圖2-31溶液前驅物電漿噴塗裝置示意圖42 圖3-1常壓電漿噴射束製備LSM551之實驗設備示意圖46 圖3-2常壓電漿噴射束製備LSM陰極材料之實驗流程圖48 圖3-3電漿功率為500W時之OES圖譜50 圖3-4對稱式LSM551/YSZ/LSM551半電池之示意圖54 圖3-5非對稱式LSM551/YSZ/Pt半電池之示意圖54 圖3-6以常壓電漿噴射束製備LSM551之電池封裝設備示意圖55 圖3-7以常壓電漿噴射束製備LSM551之電池封裝設備示意圖55 圖4-1 LSM粉體材料與其相對應之標準卡號JCPDS card之XRD圖譜63 圖4-2 LSM粉體材料之XRD窄掃描圖譜63 圖4-3以大氣常壓噴射束製備LSM551顆粒剛沉積時之表面形貌64 圖4-4經1000℃燒結3小時LSM551粉體材料之表面形貌64 圖4-5經1000℃燒結3小時LSM粉體材料之放大倍率表面形貌64 圖4-6 LSM粉體經1000℃燒結TEM明視野平面圖(a)低倍率(b)高倍率65 圖4-7 LSM粉體經1000℃燒結TEM明視野平面圖與選區電子繞射圖65 圖4-8 (a)由雷射粒徑分析儀(DLS)鑑定LSM粉體之粒徑分布圖(分散前)67 圖4-8 (b)由雷射粒徑分析(DLS)鑑定LSM粉體之粒徑分布圖(分散後)67 圖4-10製備LSM粉體之 EDS微區域化學成份分析69 圖4-11常壓電漿噴射束製備LSM粉體之顆粒成形機制示意圖69 圖4-13 (a)常壓電漿噴射束沉積LSM經900°C燒結之SEM圖75 圖4-13 (b)常壓電漿噴射束沉積LSM經900°C燒結之EDX圖75 圖4-14分別為不同噴塗距離之LSM膜層之表面形貌76 圖4-15 (a)噴塗距離25 mm噴塗120次之LSM (1000°C_3h)表面形貌77 圖4-15 (b)噴塗距離25 mm噴塗120次之LSM (1000°C_3h)橫截面77 圖4-16噴塗距離25 mm噴塗120次之LSM經燒結1000°C之XRD圖78 圖4-17 LSM551對稱式半電池於操作溫度600~900°C之塔弗曲線圖89 圖4-18 LSM551對稱式半電池於操作溫度600~900°C之陰極極化曲線90 圖4-19以常壓電漿噴射束製備LSM551/YSZ/Pt半電池交流阻抗頻譜91 圖4-20 LSM551/YSZ/Pt半電池之模擬等效電路圖91 圖4-21 LSM551/YSZ/Pt半電池等效電路阻抗以ln(1/Rp)對1000/T做圖92 圖4-22利用常壓式電漿噴射束製備(Pt/LSM/YSZ/Pt)半電池之電功率93 圖4-23 (Pt/LSM/YSZ/Pt) 半電池其反應後之氫氣轉化率96 圖4-24 (Pt/LSM/YSZ/Pt) 半電池其反應後之表面形貌圖97 圖4-25 (Pt/LSM/YSZ/Pt) 半電池其反應後之橫截面圖97 圖4-26不同組成之LSM/YSZ/Pt半電池以ln(1/Rp)對1000/T做圖98 圖4-27以常壓電漿噴射束製備LSM551-GDC半電池之交流阻抗頻譜99 圖4-28半電池之交流阻抗以ln(1/Rp)對1000/T做圖100 表索引 表1-1各種燃料電池之基本分類與特性應用3 表2-2等效電路個別元件介紹29 表2-3液相法優缺點比較37 表4-1 LSM粉體經1000℃燒結之平面間距與晶格常數66 表4-2 LSM粉體之TXRF定量分析結果68 表4-3以常壓電漿噴射束製備LSM薄膜於YSZ基材之製程參數71 表4-4 LSM551對稱式半電池之交換電流密度數值。89 表4-5 LSM551半電池各個相對應fitting之等效電路元件數值92 表4-6 LSM551半電池其燃料轉換效率計算之各單位數值94 表4-6 LSM551半電池其燃料轉換效率計算之各單位數值94 表4-7 LSM551半電池其燃料轉換效率計算之各單位數值95 表4-8 LSM551半電池其能源轉換效率計算之各單位數值96 表4-9 LSM/551YSZ/Pt半電池與其他組成之活化能值98

    [1]"World Energy Outlook", Organization for Economic Co-operation and Development (OECD)/ International Energy Agency(IEA), Paris (2014).
    [2]"http://www.iea.org."
    [3]"http://zh.wikipedia.org/wiki/反聖嬰現象."
    [4]黃鎮江,“燃料電池”,全華科技圖書 (2004)。
    [5]Briannabesch, "EERE Fuel Cell Comparison Chart." (2011)
    [6]薛康琳,“燃料電池的原理、應用、與結構”,工業技術研究院 (2006).
    [7]肖鋼,“燃料電池技術”,全華科技圖書 (2010)。
    [8]A. D. James Larminie, Fuel Cell Systems Explained. West Sussex PO19 8SQ, England: John Wiley & Sons Ltd (2003).
    [9]R. M. Ormerod, "Solid oxide fuel cells," The Royal Society of Chemistry, vol. 32, pp. 17-28 ( 2003).
    [10]N. Minh, "Solid oxide fuel cell technology-features and applications," Solid State Ionics, vol. 174, pp. 271-277 (2004).
    [11]左峻德,“行政院原子能委員會委託研究計畫研究報告-SOFC技術標準與安規及應用市場研析”,計畫編號:1002001INER051 (2011)。
    [12]J. Chen, F. Liang, L. Liu, S. Jiang, B. Chi, J. Pu, et al., "Nano-structured (La, Sr)(Co, Fe)O3 + YSZ composite cathodes for intermediate temperature solid oxide fuel cells," Journal of Power Sources, vol. 183, pp. 586-589 (2008).
    [13]E. T. A. Boudghene Stambouli, "Solid oxide fuel cells (SOFCs): a review of an environmentally clean and efficient source of energy," Renewable and Sustainable Energy Reviews, vol. 6, pp. 433–455 (2002).
    [14]S. P. S. B. K. Foger, "Solid Oxide Electrolyte Fuel Cell Review," Ceramics International, vol. 22, pp. 257-265 (1996).
    [15]R. O’Hayre, D. M. Barnett, and F. B. Prinz, "The Triple Phase Boundary," Journal of The Electrochemical Society, vol. 152, p. A439 (2005).
    [16]A. Atkinson, S. Barnett, R. J. Gorte, J. T. S. Irvine, A. J. McEvoy, M. Mogensen, et al., "Advanced anodes for high-temperature fuel cells," Nat Mater, vol. 3, pp. 17-27 (2004).
    [17]K. C. Wincewicz and J. S. Cooper, "Taxonomies of SOFC material and manufacturing alternatives," Journal of Power Sources, vol. 140, pp. 280-296, (2005).
    [18]J. Mizusaki, H. Tagawa, Y. Miyaki, S. Yamauchi, K. Fueki, I. Koshiro, et al., "Kinetics of the electrode reaction at the CO-CO2, porous Pt/stabilized zirconia interface," Solid State Ionics, vol. 53–56, Part 1, pp. 126-134 (1992).
    [19]I.-M. f. E. a. E. Engineering, "Ni-based Cermet Anodes for Solid Oxide Fuel Cells," 449 x 416 (2009).
    [20]S. Jiang and S. Chan, "A review of anode materials development in solid oxide fuel cells," Journal of Materials Science, vol. 39, pp. 4405-4439 (2004).
    [21]R. Peng, C. Xia, X. Liu, D. Peng, and G. Meng, "Intermediate-temperature SOFCs with thin Ce0.8Y0.2O1.9 films prepared by screen-printing," Solid State Ionics, vol. 152–153, pp. 561-565 (2002).
    [22]A. Ringuedé, J. A. Labrincha, and J. R. Frade, "A combustion synthesis method to obtain alternative cermet materials for SOFC anodes," Solid State Ionics, vol. 141–142, pp. 549-557 (2001).
    [23]W. Z. Zhu and S. C. Deevi, "A review on the status of anode materials for solid oxide fuel cells," Materials Science and Engineering: A, vol. 362, pp. 228-239 (2003).
    [24]R. J. Gorte, H. Kim, and J. M. Vohs, "Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbon," Journal of Power Sources, vol. 106, pp. 10-15 (2002).
    [25]Y. Matsuzaki and I. Yasuda, "The poisoning effect of sulfur-containing impurity gas on a SOFC anode: Part I. Dependence on temperature, time, and impurity concentration," Solid State Ionics, vol. 132, pp. 261-269 (2000).
    [26]D. Waldbillig, A. Wood, and D. G. Ivey, "Thermal analysis of the cyclic reduction and oxidation behaviour of SOFC anodes," Solid State Ionics, vol. 176, pp. 847-859 (2005).
    [27]S. Tao and J. T. S. Irvine, "A redox-stable efficient anode for solid-oxide fuel cells," Nat Mater, vol. 2, pp. 320-323 (2003).
    [28]Y.-H. Huang, R. I. Dass, Z.-L. Xing, and J. B. Goodenough, "Double Perovskites as Anode Materials for Solid-Oxide Fuel Cells," Science, vol. 312, pp. 254-257 (2006).
    [29]K. B. Yoo and G. M. Choi, "Performance of La-doped strontium titanate anode on LaGaO3-based SOFC," Solid State Ionics, vol. 180, pp. 867-871 (2009).
    [30]K. Huang and J. B. Goodenough, "A solid oxide fuel cell based on Sr- and Mg-doped LaGaO3 electrolyte: the role of a rare-earth oxide buffer," Journal of Alloys and Compounds, vol. 303–304, pp. 454-464 (2000).
    [31]S. Nakayama, T. Kageyama, H. Aono, and Y. Sadaoka, "Ionic conductivity of lanthanoid silicates, Ln10(SiO4)6O3(Ln = La, Nd, Sm, Gd, Dy, Y, Ho, Er and Yb)," Journal of Materials Chemistry, vol. 5, pp. 1801-1805 (1995).
    [32]S. P. S. Badwal, "Stability of solid oxide fuel cell components," Solid State Ionics, vol. 143, pp. 39-46 (2001).
    [33]Y.-M. Chiang, D. P. Birnie, and W. D. Kingery, Physical ceramics : principles for ceramic science and engineering. New York: John Wiley & Sons (1997).
    [34]S. M. Haile, "Fuel cell materials and components," Acta Materialia, vol. 51, pp. 5981-6000 (2003).
    [35]H. Yahiro, K. Eguchi, and H. Arai, "Ionic conduction and microstructure of the ceria-strontia system," Solid State Ionics, vol. 21, pp. 37-47 (1986).
    [36]K. Eguchi, "Ceramic materials containing rare earth oxides for solid oxide fuel cell," Journal of Alloys and Compounds, vol. 250, pp. 486-491 (1997).
    [37]B. C. H. Steele and A. Heinzel, "Materials for fuel-cell technologies," Nature, vol. 414, pp. 345-352 (2001).
    [38]S. Cho, Y. Kim, J.-H. Kim, A. Manthiram, and H. Wang, "High power density thin film SOFCs with YSZ/GDC bilayer electrolyte," Electrochimica Acta, vol. 56, pp. 5472-5477 (2011).
    [39]C. Sun, R. Hui, and J. Roller, "Cathode materials for solid oxide fuel cells: a review," Journal of Solid State Electrochemistry, vol. 14, pp. 1125-1144 (2009).
    [40]韋文誠, “固態燃料電池技術”,高力圖書 (2013)。
    [41]J. N. M. Neil L. Robertson, "Oxygen Exchange on Platinum Electrodes in Zirconia Cells: Location of Electrochemical Reaction Sites," Journal of The Electrochemical Society, vol. 137, pp. 129-135 (1990).
    [42]A. Weber and E. Ivers-Tiffée, "Materials and concepts for solid oxide fuel cells (SOFCs) in stationary and mobile applications," Journal of Power Sources, vol. 127, pp. 273-283 (2004).
    [43]A. Chroneos, R. V. Vovk, I. L. Goulatis, and L. I. Goulatis, "Oxygen transport in perovskite and related oxides: A brief review," Journal of Alloys and Compounds, vol. 494, pp. 190-195 (2010).
    [44]G. C. Kostogloudis and C. Ftikos, "Properties of A-site-deficient La0.6Sr0.4Co0.2Fe0.8O3−δ-based perovskite oxides," Solid State Ionics, vol. 126, pp. 143-151 (1999).
    [45]G. Kühn, O. Muller, R. Roy. "The major ternary structural families, " Crystal Chemistry of Non-Metallic Materials. Editor: R. Roy. Vol. 4 Springer-Verlag Berlin-Heidelberg-New York 1974. IX, 487 Seiten, 46 Abbildungen, zahlreiche Tabellen, Leinen, Preis geb. DM 76, Kristall und Technik, vol. 10, pp. K86-K86 (1975).
    [46]J. Richter, P. Holtappels, T. Graule, T. Nakamura, and L. Gauckler, "Materials design for perovskite SOFC cathodes," Monatshefte für Chemie - Chemical Monthly, vol. 140, pp. 985-999 (2009).
    [47]S. Xu, Y. Moritomo, K. Ohoyama, and A. Nakamura, "Neutron Structural analysis of La1-xSrxMnO3 Variation of One-Electron Bandwidth W with Hole Doping," Journal of the Physical Society of Japan, vol. 72, pp. 709-712 (2003).
    [48]A. Sundaresan, P. L. Paulose, R. Mallik, and E. V. Sampathkumaran, "Bandwidth-controlled magnetic and electronic transitions in La0.5Ca0.5-xSrxMnO3 (0<x<0.5) distorted perovskite," Physical Review B, vol. 57, pp. 2690-2693 (1998).
    [49]T. Negas and R. S. Roth, "The system SrMnO3−x," Journal of Solid State Chemistry, vol. 1, pp. 409-418 (1970).
    [50]Y. Y. Junichiro Mizusaki, Hiroyuki Kamata etal., "Electronic conductivity, Seebeck coefficient, defect and electronic structure of nonstoichiometric La1-x Srx MnO3," Solid State Ionics, vol. 132, pp. 167-180 (2000).
    [51]C. R. S. Kjell Wiik, Sonia Faaland, Senem Shamsili, Mari-Ann Einarsrud and Tor Grande, "Reactions between Strontium Substituted Lanthanum Manganite and Yttria-Stabilized Zirconia: I, Powder Samples," Journal of the American Ceramic Society, vol. 82, pp. 721-728 (1999).
    [52]M. Gaudon, C. Laberty-Robert, F. Ansart, L. Dessemond, and P. Stevens, "Evaluation of a sol–gel process for the synthesis of La1−xSrxMnO3+δ cathodic multilayers for solid oxide fuel cells," Journal of Power Sources, vol. 133, pp. 214-222 (2004).
    [53]J. Fleig, "Solid Oxide Fuel Cell Cathodes: Polarization Mechanisms and Modeling of the Electrochemical Performance," Annual Review of Materials Research, vol. 33, pp. 361-382 (2003).
    [54]T. K. S. Wang, S. Nagata, T. Kaneko, N. Iwashita, T. Honda, and M. Dokiya, "Electrodes and performance analysis of a ceria electrolyte SOFC," Solid State Ionics, vol. 152-153, pp. 477-484 (2002).
    [55]F. Tietz, V. A. C. Haanappel, A. Mai, J. Mertens, and D. Stöver, "Performance of LSCF cathodes in cell tests," Journal of Power Sources, vol. 156, pp. 20-22 (2006).
    [56]M. D. A. S. P. Simner, M. H. Engelhard and J. W. Stevenson, "Degradation Mechanisms of La-Sr-Co-Fe-O3 SOFC Cathodes," Electrochemical and Solid-State Letters, vol. 9, pp. A478-A481 (2006).
    [57]R. K. Y. Takeda, M. Noda, Y. Tomida, and O. Yamamoto, "Cathodic Polarization Phenomena of Perovskite Oxide Electrodes with Stabilized Zirconia," Journal of The Electrochemical Society vol. 134, pp. 2656-2661 (1987).
    [58]S. B. Adler, "Factors Governing Oxygen Reduction in Solid Oxide Fuel Cell Cathodes," Chemical Reviews, vol. 104, pp. 4791-4843 (2004).
    [59]J. Chen, F. Liang, L. Liu, S. Jiang, B. Chi, J. Pu, et al., "Nano-structured (La, Sr)(Co, Fe)O3-YSZ composite cathodes for intermediate temperature solid oxide fuel cells," Journal of Power Sources, vol. 183, pp. 586-589 (2008).
    [60]D. A. Noren and M. A. Hoffman, "Clarifying the Butler–Volmer equation and related approximations for calculating activation losses in solid oxide fuel cell models," Journal of Power Sources, vol. 152, pp. 175-181 (2005).
    [61]K. K. S.C. Singhal, " High Temperature Solid Oxide Fuel Cell-Fundamentals" Elsevier (2003).
    [62]J. R. M. Evgenij Barsoukov, Impedance Spectroscopy, Theory Experiment and Applications, 2ed, Wiley-Interscience (2005).
    [63]A. J. B. a. L. R. Faulkner, "Electrochemical methods," Bard Faulkner, 2ed: Wiley-Blackwell (2000).
    [64]M. S.-R. G. J. Brug, J. H. Sluyters, "The analysis of electrode impedances complicated by the presence of a constant phase element," Journal of Electroanalytical Chemistry, vol. 176, pp. 275-295 (1984).
    [65]L. R. F. Allen J. Bard, "Electrochemical Method: Fundamentals and Applications, " 2ed, New York: John Wily & Sons (2001).
    [66]張家瑜,“以常壓電漿噴射束製備氧化釓摻雜氧化鈰固態電解質材料”,碩士論文,機械工程所,國立台灣科技大學 (民102年)。
    [67]蘇昱銘,“利用溶膠凝膠法合成製備燒結促進劑摻雜於氧化釓摻雜氧化鈰電解質之材料特性與電性能研究”,碩士論文,機械工程所,國立台灣科技大學 (民98年)。
    [68]D. Grossin and J. G. Noudem, "Synthesis of fine La0.8Sr0.2MnO3 powder by different ways," Solid State Sciences, vol. 6, pp. 939-944 (2004).
    [69]Q. Zhang, T. Nakagawa, and F. Saito, "Mechanochemical synthesis of La0.7Sr0.3MnO3 by grinding constituent oxides," Journal of Alloys and Compounds, vol. 308, pp. 121-125 (2000).
    [70]J. Chaichanawong, K. Sato, H. Abe, K. Murata, T. Fukui, T. Charinpanitkul, et al., "Formation of strontium-doped lanthanum manganite (La0.8Sr0.2MnO3) by mechanical milling without media balls," Advanced Powder Technology, vol. 17, pp. 613-622 (2006).
    [71]王世敏,許祖勛,傅晶編著,陳憲偉校訂, “奈米材料原理與製備”,五南書局 (民93年)。
    [72]N. M. S. Masashi Mori, Geoff A. Tompsett, "Fabrication processing condition for dense sintered La0.6AE0.4MnO3 perovskites synthesized by the coprecipitation method(AE=Ca and Sr)," Journal of Power Sources, vol. 86, pp. 395–400 (2000).
    [73]"http://www.chemat.com/chemattechnology/images/logo2.jpg"
    [74]P. M. P, "Method of preparing lead and alkaline earth titanates and niobates and coating method using the same to form a capacitor," Google Patents (1967).
    [75]K. Dumaisnil, D. Fasquelle, M. Mascot, A. Rolle, P. Roussel, S. Minaud, et al., "Synthesis and characterization of La0.6Sr0.4Co0.8Fe0.2O3 films for solid oxide fuel cell cathodes," Thin Solid Films, vol. 553, pp. 89-92 (2014).
    [76]D. Beckel, A. Bieberle-Hütter, A. Harvey, A. Infortuna, U. P. Muecke, M. Prestat, et al., "Thin films for micro solid oxide fuel cells," Journal of Power Sources, vol. 173, pp. 325-345 (2007).
    [77]R. A. Baragiola, "Sputtering: survey of observations and derived principles," Philosophical Transactions of the Royal Society A: Mathematical Physical and Engineering Sciences, vol. 362, pp. 25-93 (2004).
    [78]P. J. Kelly and R. D. Arnell, "Magnetron sputtering: a review of recent developments and applications," Vacuum, vol. 56, pp. 159-172 (2000).
    [79]I. Safi, "Recent aspects concerning DC reactive magnetron sputtering of thin films: a review," Surface and Coatings Technology, vol. 127, pp. 203-218 (2000).
    [80]J. Musil, P. Baroch, J. Vlček, K. H. Nam, and J. G. Han, "Reactive magnetron sputtering of thin films: present status and trends," Thin Solid Films, vol. 475, pp. 208-218 (2005).
    [81]C. Tendero, C. Tixier, P. Tristant, J. Desmaison, and P. Leprince, "Atmospheric pressure plasmas: A review," Spectrochimica Acta Part B: Atomic Spectroscopy, vol. 61, pp. 2-30 (2006).
    [82]C.-J. Li, X.-J. Ning, and C.-X. Li, "Effect of densification processes on the properties of plasma-sprayed YSZ electrolyte coatings for solid oxide fuel cells," Surface and Coatings Technology, vol. 190, pp. 60-64 (2005).
    [83]L. Soukup, Z. Hubička, A. Churpita, M. Čada, P. Pokorný, J. Zemek, et al., "Investigation of the atmospheric RF torch-barrier plasma jet for deposition of CeOx thin films," Surface and Coatings Technology, vol. 169–170, pp. 571-574 (2003).
    [84]C. Huang, C.-H. Liu, C.-H. Su, W.-T. Hsu, and S.-Y. Wu, "Investigation of atmospheric-pressure plasma deposited SiOx films on polymeric substrates," Thin Solid Films, vol. 517, pp. 5141-5145 (2009).
    [85]T. Aita, K. Ogawa, Y. Saito, Y. Sumiyoshi, T. Higuchi, and S. Sato, "Microstructures of SiO2 and TiOX films deposited by atmospheric pressure inductively coupled micro-plasma jet," Surface and Coatings Technology, vol. 205, pp. 861-866 (2010).
    [86]Y.-w. Hsu, H.-C. Li, Y.-J. Yang, and C.-c. Hsu, "Deposition of zinc oxide thin films by an atmospheric pressure plasma jet," Thin Solid Films, vol. 519, pp. 3095-3099 (2011).
    [87]Z. Wang, R. Hui, N. Bogdanovic, Z. Tang, S. Yick, Y. Xie, et al., "Plasma spray synthesis of ultra-fine YSZ powder," Journal of Power Sources, vol. 170, pp. 145-149 (2007).
    [88]Y. Wang and T. W. Coyle, "Solution Precursor Plasma Spray of Porous La1−xSrxMnO3 Perovskite Coatings for SOFC Cathode Application," Journal of Fuel Cell Science and Technology, vol. 8, pp. 021005-021005 (2010).
    [89]X.-M. Wang, C.-X. Li, C.-J. Li, and G.-J. Yang, "Microstructure and polarization of La0.8Sr0.2MnO3 cathode deposited by alcohol solution precursor plasma spraying," International Journal of Hydrogen Energy, vol. 37, pp. 12879-12885 (2012).
    [90]Y.-L. Kuo, Y.-M. Su, and J.-Y. Chang, "A facile method for the deposition of Gd2O3-doped ceria films by atmospheric pressure plasma jet," Thin Solid Films, vol. 570, Part B, pp. 215-220 (2014).
    [91]P. Laboratatory, "NIST: Atomic Spectra Database" National Institute of Standards and Techonology, Available: http://www.nist.gov/pml/data/asd.cfm
    [92]A. Y. N. X. L. Deng, P. Vanraes,and Ch. Leys, "Direct current plasma jet at atmospheric pressure operating in nitrogen and air " Journal of Applied Physics, vol. 113, p. 023305 (2013).
    [93]R. E. Walkup, K. L. Saenger, and G. S. Selwyn, "Studies of atomic oxygen in O2+CF4 rf discharges by two‐photon laser‐induced fluorescence and optical emission spectroscopy," The Journal of Chemical Physics, vol. 84, pp. 2668-2674 (1986).
    [94]S. Behle, A. Georg, Y. Yuan, J. Engemann, and A. Brockhaus, "Imaging of atomic oxygen in a microwave excited oxygen plasma with two-dimensional optical emission spectroscopy," Surface and Coatings Technology, vol. 97, pp. 734-741 (1997).
    [95]R. J. Lang, "Ultrasonic Atomization of Liquids," The Journal of the Acoustical Society of America vol. 34, pp. 6-8 (1962).
    [96]A. Gurav, T. Kodas, T. Pluym, and Y. Xiong, "Aerosol Processing of Materials," Aerosol Science and Technology, vol. 19, pp. 411-452 (1993).
    [97]Y.-L. K. Yu-Ming Su, Chun-Ming Lin, Sun-Fen Lee, "One-step fabrication of tetragonal ZrO2 particles by atmospheric pressure plasma jet " Powder Technology, vol. 267, pp. 74-79 (2014).
    [98] Jeff N. Soderberg, Li Sun, Partho Sarkar, and Viola I. Birss, "Oxygen Reduction at LSM–YSZ Cathodes Deposited on Anode-Supported Microtubular Solid Oxide Fuel Cells," The Electrochemical Society, vol. 156 (6), pp. B721-B728 (2009).
    [99]S. B. Adler, "Reference Electrode Placement in Thin Solid Electrolytes," Journal of The Electrochemical Society, vol. 149, pp. E166-E172 (2002).
    [100]T. H. H. Huang, and F. B. Prinz, "Oxygen Reduction Characteristics on Ag, Pt, and Ag-Pt Alloys in LTSOFC," ECS Transactions, vol. 3, pp. 31-40 (2007).
    [101]F. Berthier, J. P. Diard, B. Le Gorrec, and C. Montella, "Method for Determining the Faradaic Impedance of an Electrode Reaction: Application to Metal Corrosion Rate Measurements," Corrosion, vol. 51, pp. 105-115 (1995).
    [102]L. J. G. A. Mitterdorfer, "La2Zr 2O7 formation and oxygen reduction kinetics of the La0.85 Sr0.15 MnyO3 , O(g) / YSZ system," Solid State Ionics, vol. 111, pp. 185-218 (1998).

    [103]陳牧民,“使用生質燃料的固態燃料電池組之開發及測試”,碩士論文,材料科學與工程學研究所,國立台灣大學 (民102年)。
    [104]E. S. A. Hammouche, A. Hammou, "Crystallographic, thermal and electrochemical properties of the system La1−xSrxMnO3 for high temperature solid electrolyte fuel cells," Materials Research Bulletin, vol. 34, pp. 367–380 (1989).
    [105]C. L.-R. Manuel Gaudon, Florence Ansart, Philippe Stevens, Abel Rousset, "Preparation and characterization of La1-XSrxMnO3+δ (0<x<0.6) powder by sol-gel processing," Solid State Sciences, vol. 4, pp. 125–133 (2002).
    [106]H. T. Hideaki Inaba, "Ceria-based solid electrolytes," Solid State Ionics, vol. 83, pp. 1-16 (1996).
    [107]B. C. H. Steele, "Interfacial reactions associated with ceramic ion transport membranes," Solid State Ionics, vol. 75, pp. 157-165 (1995).
    [108]Y. B. Kim, T. P. Holme, T. M. Gür, and F. B. Prinz, "Surface-Modified Low-Temperature Solid Oxide Fuel Cell," Advanced Functional Materials, vol. 21, pp. 4684-4690 (2011).
    [109]Z. Fan, J. An, A. Iancu, and F. B. Prinz, "Thickness effects of yttria-doped ceria interlayers on solid oxide fuel cells," Power Sources, vol. 218, pp. 187-191 (2012).
    [110] A. Barbucci, M. Viviani, M. Panizza, M. Delucchi and G. Cerisola, "Analysis of the oxygen reduction process on SOFC composite electrodes," Applied Electrochemistry, vol.35, pp.399–403 (2005).

    QR CODE