簡易檢索 / 詳目顯示

研究生: 陳永修
Yong-siou Chen
論文名稱: 射頻反應性濺鍍法成長氧化釓摻雜氧化鈰固態電解質薄膜及其退火行為之研究
Gadolinia-doped Ceria Solid Electrolyte Thin Films Prepared by RF Reactive Sputtering and Its Annealing Behavior
指導教授: 李嘉平
Chia-Pyng Lee
黃炳照
Bing-Joe Hwang
郭俞麟
Yu-Lin Kuo
口試委員: 王孟菊
Meng-Jiy Wang
林順堂
Shun-tang Lin
李文鴻
Wen-hung Lee
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 134
中文關鍵詞: 固態氧化物燃料電池氧化釓摻雜氧化鈰射頻反應性濺鍍法
外文關鍵詞: Solid Oxide Fuel Cells (SOFCs), Gadolinia-doped Ceria (GDC), RF reactive sputtering
相關次數: 點閱:249下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 摘要
    本研究主要提出氧化釓摻雜氧化鈰(Gadolinia-doped Ceria, GDC)薄膜於固態氧化物燃料電池中固態電解質層應用的可行性評估。GDC薄膜係以射頻反應性濺鍍法(RF-Reactive Sputtering)成長於商業化氧化鋁基板及NiO-GDC基板上,並藉由觀察O2/Ar流量比與退火溫度對GDC薄膜之沈積速率、表面型態、結晶結構以及離子傳導率之影響,以尋求符合中低溫型固態氧化物燃料電池中固態電解質層的需求。
    由實驗結果所顯示的O2/Ar流量比效應發現,GDC薄膜之表面結構隨著O2/Ar流量比的增加而有柱狀結構(Columnar Structure)的產生,且薄膜之結晶結構亦逐漸由未完全氧化之(Ce,Gd)Ox結構轉變為完全氧化之GDC立方螢石結構。
    由實驗結果所顯示的退火溫度效應發現,GDC薄膜在經過700°C兩小時的退火處理後,其在初沈積薄膜中所觀察到屬於未完全氧化之(Ce,Gd)Ox結構,已在退火處理後完全氧化為GDC立方螢石結構;且當退火溫度增加至900°C時,原本在高氧氣流量的條件下所發現之柱狀結構已完全消失並轉而形成ㄧ平坦且緻密之結構;然而,在退火溫度再增加至1100°C時,薄膜則因為其熱膨脹係數與基材之差異過大,因而造成薄膜表面有不規則裂痕的產生。
    由交流阻抗分析儀(AC impedance)分析經退火處理後之電解質薄膜可以發現,退火溫度為700°C時,隨著氧氣流量的增加,薄膜之氧離子傳導率隨之下降,且其傳導模式隨著氧氣流量的增加而逐漸由晶粒傳導為主之機制轉為由晶界傳導為主之機制;在退火溫度增加至900°C時,其氧離子傳導率在所有的氧氣流量條件下均較退火溫度700°C高,且其傳導模式亦隨著退火溫度的增加而轉以晶粒傳導為主之機制;在退火溫度為1100°C時,則因為薄膜有裂縫之產生,因而導致氧離子傳導率的下降,使其傳導模式再度轉以晶界傳導為主之機制。

    關鍵字:固態氧化物燃料電池、氧化釓摻雜氧化鈰、射頻反應性濺鍍法


    Abstract
    This study is to evaluate the feasibility and application of Gadolinia-doped Ceria (GDC) thin films as solid electrolyte for Solid Oxide Fuel Cells (SOFCs). GDC thin films were deposited on commercialized alumina substrates and NiO-GDC substrates by RF reactive sputtering in various O2/Ar flow ratio and then treated with the thermal treatments. Experiment results indicated that the deposition rate, surface morphology, crystalline structure, and ionic conductivity of the deposited films depend on the O2/Ar flow ratio and annealing temperatures.
    Our results showed the surface morphology of as-deposited GDC thin films were found to be an assembly of columnar crystallites and the crystalline structure was varied from incompletely-oxidized (Ce,Gd)Ox to completely-oxidized GDC as increasing the O2/Ar flow ratio.
    GDC thin films were cubic fluorite structure as the annealing temperature was 700°C, and surface morphology became denser as increasing upto 900°C. However, when the annealing temperature was raised up to 1100°C, cracks on the surface of GDC thin films were apparently observed because of the thermal expansion conefficient mismatch between GDC films and alumina substrate.
    The governing mechanism of conduction of annealed GDC thin films were mainly dominated by grain contribution at lower oxygen flow rate when the annealing temperature was 700°C, while the mechanism was gradually chaged to grain boundary contribution with deacresing the ionic conductivity at higher oxygen flow rate. At 900°C, the governing mechanism of conduction of annealed GDC thin films were changed to grain contribution with increasing the ionic conductivity. However, when the annealing temperature was raised to 1100°C, the governing mechanism of conduction of annealed GDC thin films were changed to grain boundary contribution with the lower ionic conductivity because of the existence of the cracks on surface.

    Keywords:Solid Oxide Fuel Cells (SOFCs), Gadolinia-doped Ceria (GDC), RF reactive sputtering

    目錄 摘要 I Abstract Ⅲ 致謝 Ⅴ 目錄 ⅤⅡ 圖索引 X 表索引 XⅤⅢ 第一章 緒論 1 1-1 前言 1 1-2 燃料電池簡介 3 1-2-1 燃料電池之原理 3 1-2-2 燃料電池之優點 4 1-2-3 燃料電池之種類與應用 5 1-3 研究動機 8 第二章 文獻回顧 10 2-1 固態氧化物燃料電池(SOFC)簡介 10 2-1-1 固態氧化物燃料電池(SOFC)之特色 10 2-1-2 固態氧化物燃料電池(SOFC)之發電原理 10 2-1-3 固態氧化物燃料電池(SOFC)之內部元件 11 2-2 固態電解質 13 2-2-1 固態電解質之種類 13 2-2-1-1氧化鋯(ZrO2)系統 14 2-2-1-2 氧化鈰(CeO2)系統 18 2-2-1-3 鑭酸鎵(LaGaO3, ABO3)系統 21 2-3 真空薄膜技術與SOFC應用 24 2-3-1 真空沈積技術 26 2-3-2 DC直流濺鍍原理 27 2-3-3 RF射頻濺鍍原理 28 2-3-4 磁控式濺鍍原理 29 2-3-5 反應性濺鍍原理 30 2-4 阻抗分析法 31 2-4-1 阻抗分析法之原理簡介 32 2-4-2 阻抗分析法在固態電解質之應用 36 第三章 實驗設備與程序 38 3-1 實驗設備 38 3-2 分析儀器、材料及藥品 39 3-3 實驗程序 43 3-3-1 反應性濺鍍氧化釓摻雜氧化鈰(GDC)薄膜於氧化鋁基板 43 3-3-2 反應性濺鍍氧化釓摻雜氧化鈰(GDC)薄膜於NiO-GDC陽極基板 46 第四章 結果與討論 47 4-1 反應性濺鍍氧化釓摻雜氧化鈰(GDC)薄膜於氧化鋁基板 47 4-1-1 氧氣/氬氣流量比效應 47 4-1-2 退火行為 66 4-2 反應性濺鍍氧化釓摻雜氧化鈰(GDC)薄膜於NiO-GDC陽極基板 122 第五章 結論 123 第六章 參考文獻 126

    【1】 黃鎮江,“燃料電池”,全華科技圖書 2004。
    【2】 The Birth of the Fuel Cell 1835 – 1845, Ulf Bossell, Switzerland, 2000 and Fuel Cells ; Power for the 21st Century, US Dept of Energy, (2004) 7.
    【3】 W. R. Grove, Philos. Mag., 14 (1839) 127.
    【4】 J. Larminie and A. Dicks, “Fuel Cell Systems Explained” Chichester, West Sussex : Wiley (2003) 2ed.
    【5】 S. R. Narayanan and S. Gottesfeld, “Proceedings of the international symposium” (2001).
    【6】 衣寶廉,“燃料電池-高效、環保的發電方式”,五南圖書,2003。
    【7】 A. B. Stambouli and E. Traversa, Renewable & Sustainable Energy Reviews, 6 (2002) 433.
    【8】 S. C. Singhal and K. Kendall, “High Temperature Solid Oxide Fuel Cells”, New York : Elsevier Advanced Technology (2003).
    【9】 http://www.seca.doe.gov
    【10】 Y. M. Chiang, D. P. Birnie and W. D. Kingery, “Physical Ceramics”, New York : J. Wiley (1997).
    【11】 陳誦英,王峰雲,鄭淑芬,“固體氧化物燃料電池(SOFC)研究進展和發展動態”,財團法人中技社。
    【12】 M. Yashima, M. Kakihana and M. Yoshimura, Solid State Ionics, 86/88 (1996) 1131.
    【13】 W. A. Surdoval, S. C. Singhal and G. L. McVay, in “Proceedings of the 7th International Symposium on Solid Oxide Fuel Cells”, H. Yokokawa and S. C. Singhal (Eds.), The Electrochemical Society, Pennington, NJ (2001).
    【14】 O. Yamamoto, in “Solid State Electrochemistry”, P. G. Bruce (Ed.), Cambridge University Press, Cambridge, Chapter 11, (1995) 292.
    【15】 R. A. Miller, J. L. Smialek, and R. G. Garlik, in “Science and Technology of Zirconia”, A. H. Heuer and L. W. Hobbs (Eds.), Advances in Ceramics, vol. 3, Am. Ceram. Soc., Columbus, OH, (1981) 241.
    【16】 E. Koch and C. Wangner, Z. Phys. Chem., 38 (1937) 295.
    【17】 F. Kroger and H. J. Vink, in “Solid State Physics”, Vol. 3, F. Seitz and D. Turnbull (Eds.), Academic Press, New York, (1965) 304.
    【18】 E. C. Subbarao, Plenum New York (1980) 109.
    【19】 E. C. Subbarao and H. S. Maiti, Solid State Ionics, 11 (1984) 317.
    【20】 黃炳照,鄭銘堯,“固態氧化物燃料電池之進展”,化工技術,第111期,民國91年6月pp.135。
    【21】 J. F. Baumard and P. Abelard, in“Science and Technology of Zirconia Ⅱ”, N. Claussen, M. Ruhle and A. H. Heuer (Eds.), Am. Ceram. Soc., Columbus, OH, (1984) 555.
    【22】 V. Butler, C. R. A. Catlow, B. E. F. Fender and J. H. Harding, Solid State Ionics, 8 (1983) 109.
    【23】 馬志芳,梁廣川,梁金生,“鹼土金屬氧化物摻雜氧化鈰基電解質材料中的晶格缺陷”,物理化學學報,21(6) (2005) pp.633。
    【24】 J. A. Kilner and R. J. Brook, Solid State Ionics, 6 (1982) 237.
    【25】 Y. Arachi, H. Sakai, O. Yamamoto, Y. Takeda and N. Imanishi, Solid State Ionics, 121 (1999) 133.
    【26】 H. Yahiro, T. Ohuchi, K. Eguchi and H. Arai, J. Mater. Sci., 23 (1988) 1036.
    【27】 H. Yahiro, K. Eguchi and H. Arai, Solid State lonics, 36 (1989) 71.
    【28】 K. Eguchi, T. Setoguchi, T. Inoue and H. Arai, Solid State Ionics, 52 (1992) 165.
    【29】 H. Yahiro, Y. Eguchi, K. Eguchi and H. Arai, J. Appl. Electrochem., 18 (1988) 527.
    【30】 H. L. Tuller and A. S. Nowick, J. Electrochem. Soc., 122 (1975) 255.
    【31】 J. W. Petterson, J. Electrochem. Soc., 118 (1971) 1033.
    【32】 M. Godickemeier and L. J. Gauckler, J. Electrochem. Soc., 145 (1998) 417.
    【33】 M. O’Connell, A. K. Norman, C. F. Huttermann and M. A. Morris, Catalysis Today, 47 (1999) 123.
    【34】 W. Vielstich, A. Lamm and H. A. Gasteiger, “Handbook of Fuel Cells”, Vol.4, West Sussex : Wiley (2003).
    【35】 M. Cherry, M. S. Islam and C. R. A. Catlow, J. Solid State Chem., 118 (1995) 125.
    【36】 T. Ishihara, H. Matsude and Y. Takita, in “Ionic and Mixed Conducting Ceramics”, T. A. Ramanarayanan, W. L. Worrell and H. L. Tuller (Eds.), The Electrochemical Society Proceedings, Pennington, NJ, PV92-12, (1994) 85.
    【37】 T. Ishihara, H. Matsuda and Y. Takita, J. Am. Chem. Soc., 116 (1994) 3801.
    【38】 P. Majewski, M. Rozumek and F. Aldinger, J. Alloys Compounds, 329 (2001) 253.
    【39】 K. Yamaji, T. Horita, M. Ishikawa, N. Sakai, H. Yokokawa and
    M. Dokiya, in ”Solid Oxide Fuel Cells V”, U. Stimming, S. C.
    Singhal, H. Tagawa and W. Lehnert (Eds.), The Electrochemical
    Society Proceedings, Pennington, NJ, PV97-40, (1997) 301.
    【40】 S. D. Souza, S. J. Visco and L. C. D. Jonghe, J. Electrochem. Soc., 144 (1997) 35.
    【41】 I. Taniguchi, R.C. van Landschoot and J. Schoonman, Solid State Ionics, 160 (2003) 271.
    【42】 H. Song, C. Xia, G. Meng and D. Peng, Thin Solid Films, 434 (2003) 244.
    【43】 B. Hobein, Tietz, D. Stover, M. Cekada and P. Panjan, J. Europe. Ceram. Soc., 21 (2001) 1843.
    【44】 H. Huang, M. Nakamura, P. Su, R. Fasching, Y. Saito and F. B. Prinz, J. of Electrochem. Soc., 154 (2007) 20.
    【45】 白木靖寬,吉田貞史編著,王建義編譯,“薄膜工程學”,全華科技圖書,2006。
    【46】 羅吉宗,“薄膜科技與應用”,全華科技圖書,2005。
    【47】 田民波著,顏怡文校訂,“薄膜技術與薄膜材料”,五南圖書,2007。
    【48】 J. A. Kilner and B. C. H. Steele, in “Nonstoichiometric Oxides”, O. T., Sorensen (Ed.), Academic Press : New York, (1990).
    【49】 E. Barsoukov and J. R. Macdonald., “Impedance spectroscopy : theory, experiment, and applications”, N.J. : Wiley-Interscience (2005) 2ed.
    【50】 A. J. Bard and L. R. Faulkner, “Electrochemical methods fundamentals and applications”, Wiley-Blackwell (2000) 2ed.
    【51】 A. Pfau and K. D. Schierbaum, Surf. Sci., 71 (1994) 321.
    【52】 L. S. Wang, E. S. Thiele and S. A. Barnett, Solid State Ionics, 52 ( 1992 ) 261.
    【53】 P. Terzieff and K. Lee, J. Appl. Phys., 50 (1979) 3565.
    【54】 Y. Uwamino, T. Ishizuka and H. Yamatera, J. Electron Spectrosc. Related Phenom., 34 (1984) 67.
    【55】 M. V. Rao and T. Shripathi, J. Electron Spectrosc. Related Phenom., 87 (1997) 121.
    【56】 E. Paparazzo, Surf. Sci. Lett., 234 (1990) 253.
    【57】 D, Briggs and M. P. Seah, “Practical Surface Analysis”, J. Wiley : New York (1990) 2ed.
    【58】 L. M. Jennifer, Chem. Mater., 19 (2007) 1134.
    【59】 H. L. Tuller and A. S. Nowick, J. Phys. Chem. Solids, 38 (1977) 859.
    【60】 E. Paparazzo, G. M. Ingo and N. Zacchetti, J. Vac. Sci. Technol., A, 9 (1991) 1416.
    【61】 S. Kim, R. Merkle and J. Maier, Solid State Ionics, 161 (2003) 113.
    【62】 M. Prin, M. Pijolat, M. Soustelle and O. Touret, Thermochim. Acta, 186 (1991) 273.
    【63】 P. Briois and A. Billard, Surface & Coatings Technology, 201 (2006) 1328.
    【64】 J. E. Bauerle, J. Phys. Chem. Solids, 30 (1969) 2657.
    【65】 I. Kosacki and H.U. Anderson, Ionics, 6 (2000) 294.
    【66】 I. Kosacki and H.U. Anderson, Encyclopedia of Materials: Science.
    【67】 T. Suzuki, I. Kosacki and H.U. Anderson, Solid State Ionics, 151 (2002) 111.
    【68】 P. Briois, E. Gourba, A. Billard, A. Ringuedé and M. Cassir, Ionics, 11 (2005) 301.
    【69】 E. Gourba, P. Briois, A. Ringuedé, M. Cassir and A. Billard, J. Solid State Electrochem., 8 (2004) 633.
    【70】 曹楚南,張鑒清,“電化學阻抗譜導論”,科學出版社,2002。
    【71】 B. C. H. Steele, Solid State Ionics, 129 (2000) 95.
    【72】 B. Steele, C. R. Acad. Sci. Ser. IIc, 1 (1998) 533.
    【73】 E. Wanzenberg, F. Tietz, D. Kek, P. Panjan and D. Stöver, Solid State Ionics, 164 (2003) 121.

    QR CODE