簡易檢索 / 詳目顯示

研究生: 蘇建瑋
Chien-Wei Su
論文名稱: 以銀-銅-鈦活性填料接合固態氧化物燃料電池不銹鋼雙極板與鎳-釔安定化氧化鋯陶金陽極之界面反應與時效之研究
Study on the Interfacial Reaction of Breazing Stainless Steel interconnector and Nickel-Yttria Stabilized Zirconia Cermet Anode by using Ag-Cu-Ti Active Filler and Aging Reaction
指導教授: 顏怡文
Yee-wen Yen
口試委員: 高振宏
C. Robert Kao
李嘉平
Chia-pyng Lee
陳志銘
Chih-ming Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2007
畢業學年度: 95
語文別: 中文
論文頁數: 100
中文關鍵詞: 固態氧化物燃料電池真空硬銲界面反應鉻-鐵-鎳等溫橫截面圖
外文關鍵詞: solid oxide fuel cell, vacuum brazing, interfacial reaction, Cr-Fe-Ni isothermal section
相關次數: 點閱:212下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在固態氧化物燃料電池系統中,鎳-釔安定化氧化鋯陶金為目前較為普遍的陽極材料的選擇;而雙極板部分主要以不鏽鋼材料較為熱門。本研究旨在探討真實操作環境下所產生陽極與雙極板間的界面反應以及封裝材料的長期穩定性。
    為暸解界面反應的生成物,首先對Cr-Fe-Ni三元合金相平衡圖進行研究。以目前固態氧化物燃料電池操作的溫度範圍750至850℃為選擇,配置不同組成的三元合金進行相與結構的分析。並基於此初步研究,探討Fe-Cr / Ni反應偶的界面反應,當Fe-Cr合金組成為Fe-16wt% Cr時,界面主要為γ與γ+α’的兩相混合區。隨著Cr含量與反應時間的增加,α’析出相數量增加並整齊排列於界面處。與文獻上採取在真空下反應的實驗結果比較,無論是反應層的出現順序與界面組織形態等皆無太大改變。α’相在Fe - 94wt% Cr / Ni的750℃大氣下反應360小時並未出現均勻連續的反應層。
    本研究亦探討以商用活性填料接合雙極板430SS與陽極Ni-YSZ之行為,採真空硬銲的方式進行。在430SS/活性填料/8YSZ的液/固反應中,主要生成相為TiO與Cu-Ti-O的化合物,隨著溫度與持溫時間的增加,Cu-Ti-O化合物會逐漸溶回填料基地內。在靠近不鏽鋼端的生成物以EPMA進行 mapping,顯示其主要組成為Cu-Ti化合物。隨著反應溫度與時間的增加,Ti原子會不斷往界面擴散,填料基地組織最後只剩富Cu區、富Ag區與Cu-Ag共晶。將真空硬銲的接合結果進行700、750℃時效反應,反應時間為24小時。實驗結果顯示在長時間的高溫時效後,在靠近8YSZ端的界面,TiO相會轉為穩定的TiO2相,而Cu與Ag原子亦會擴散穿越氧化鈦層。Cu原子隨即與存在於界面的O原子反應生成CuO與Cu2O。Ag原子仍與富Ag區存在於界面。同樣的,O原子亦會擴散進入填料基地與原先的富Cu區反應生成CuO。隨著反應溫度與時間的增加,TiO2反應層會逐漸溶回基地形成鬆散結構,亦提供Cu、O、Ag原子的擴散路徑。


    Nickel- Yttria stabilizied Zirconia (Ni-8YSZ) cermet is the universal material in the Solid Oxide Fuel Cell (SOFCs) system presently. The popular material of interconnector is stainless steel. This study confers to the interfacial reaction between the anode and the interconnector and the stability of the sealing material for long-range used mainly.
    In order to realize the products of the interfacial reaction, this study work to Cr-Fe-Ni ternary phase diagram first. Choose the 750-850℃working range of the SOFCs being reaction temperature, and prepares different ternary alloys for the analysis of the phase and the structure. This study confers the interfacial reaction of the Fe-Cr/Ni reaction couple based on it. When the component of the Fe-Cr alloy is Fe-16wt%Cr, there are γ phase and γ+α’ mixing zone exist the interface. With the increasing of the amount of the chromium and reaction time, the increasing the amount of the α’ phase and spread regularly in the interface. Compare the experimental result of papers that carried out in sealed to keep vacuum. It have a few different regardless of the sequence of the reaction layers and the interface morphology. There is no continuous α’ reaction layer for Fe-94wt%Cr/Ni reacts for 360 hours at 750℃ in atmosphere.
    This study also confers to the brazing behavior of the 430stainless steel (430SS) interconnector and the Ni-8YSZ by using the commercial active filler that adopt in vacuum brazing. The mainly reaction layers are TiO and Cu-Ti-O compounds in the liquid/solid interfacial reaction of the 430SS/active filler/8YSZ. The Cu-Ti-O compounds will dissolve into the filler base structure with the increasing of the reaction temperature and time. The mapping result shows that there is Cu-Ti compound in the interface near the 430SS by EPMA. The titanium atoms will diffuse into the interface continuously with the increasing of the reaction temperature and time, that there are Cu-rich, Ag-rich and Ag-Cu eutectic in the filler base structure finally. To carried the brazing results out the 700, 750℃aging reaction, and the aging time is 24 hours. The experimental results show that the TiO will trans to TiO2 after aging reaction in the interface near the 8YSZ. Cu and Ag atoms diffuse through the TiO2 reaction layer into the interface, and react to CuO and Cu2O with the oxygen atoms that exist in the interface. The Ag atoms exist the interface in Ag-rich form. Similarly, the oxygen atoms diffuse into the filler base structure, and react with the Cu-rich formerly in the filler become to CuO, and TiO2 reaction layer will dissolve into the filler back and trans to the loose structure gradually with the increasing of the reaction temperature and time, that also provides the diffusion path for Cu, O and Ag atoms.

    中文摘要.....................................................................................................I 目錄..........................................................................................................IV 圖目錄.....................................................................................................VII 表目錄.....................................................................................................XII 第一章 前言................................................................................................1 第二章 文獻回顧與理論基礎....................................................................4 2-1 固態氧化物燃料電池簡介.................................................................5 2-2相平衡..................................................................................................7 2-3 鉻-鐵-鎳三元系統相平衡................................................................14 2-4 界面反應...........................................................................................19 2-5 金屬與陶瓷的接合技術...................................................................26 2-5.1 玻璃銲料接合........................................................................27 2-5.2 擴散接合..............................................................................27 2-5.3 真空硬銲..............................................................................29 2-6 不鏽鋼與氧化物陶瓷接合之相關研究文獻...................................30 2-6.1 非銀基活性填料相關研究文獻............................................30 2-6.2 銀基活性填料相關文獻........................................................33 2-7 微硬度測試.......................................................................................37 第三章 實驗方法....................................................................................38 3-1 Cr-Fe-Ni三元相圖合金製備............................................................37 3-2 界面反應偶製備...............................................................................41 3-3 YSZ塊材製備....................................................................................42 3-4 真空硬銲...........................................................................................43 3-5 試片分析...........................................................................................45 第四章 結果與討論................................................................................46 4-1 : 相平衡實驗.....................................................................................46 4-1.1 : Cr-Fe-Ni三元系統在750℃的相平衡.................................46 4-1.2 : Cr-Fe-Ni三元系統在850℃的相平衡.................................56 4-2 : Fe-Cr合金 / Ni基材界面反應.......................................................65 4-2.1 與在真空下進行界面反應的比較結果................................73 4-3 : 430SS / 商用Cusil ABA填料/ 8YSZ基材液固反應....................76 4-4 時效反應...........................................................................................83 第五章 結論............................................................................................90 5-1Cr-Fe-Ni三元相圖..............................................................................90 5-2 Fe-Cr/Ni界面反應.............................................................................90 5-3 430SS / Cusil ABA / 8YSZ的接合行為............................................91 5-4 430SS / Cusil ABA / 8YSZ的時效反應結果....................................91 第六章 參考文獻....................................................................................92 附錄........................................................................................................100

    1. SECA Core Technology Program-SOFC interconnect Meeting, July28-29, (2004).
    2. 費定國,卓永達,陳貞吟,江凱崙,“固態氧化物燃料電池之連接板材料介紹”工業材料雜誌,239期,pp172-180(2006)。
    3. 李堅雄,“SOFC燃料電池技術發展現況與趨勢”電力電子,Vol. 3, No. 6 (2005)。
    4. T. L. Wen, D. Wang, M. Chen, H. Tu, Z. Lu, Z. Zhang, H. Nie, W. Huang, “Material research for planar SOFC stack”, Solids State Ionics, vol. 148, pp. 513-519 (2002)
    5. http://www.pa.msu.edu/~bauer/talks/Honnef2000/sld003.htm.
    6. Frederick N. Rhines, “Phase Diagram in Metallurgy”, Metal research Labortory.
    7. T. B Massalski, H. Okamoto in, “Binary Alloy Phase Diagrams, 2nd Edition, Vol. 2”, ed. by T. B Massalski and H. Okamoto, ASM International, Materials Park, Ohio, USA, pp. 1271-1773 (1990).
    8. P. Nash, in “Binary Alloy Phase Diagrams, 2nd Edition, Vol. 2”, ed. by T. B Massalski and H. Okamoto, ASM International, Materials Park, Ohio, USA , pp. 1298, 1301-1302 (1990).
    9. L. J. Swartzendruber, V. P. Itkin, C. B. Alcock, in “Binary Alloy Phase Diagrams, 2nd Edition, Vol. 2”, ed. by T. B Massalski and H. Okamoto, ASM International, Materials Park, Ohio, USA, pp. 1735-1738 (1990).
    10. J. F. Bates, W. G. Johnston, “Proc. Internat. Conf. on Radiation Effects in Breeder Reactor Structural Material”, AZ, June pp. 625 (1977).
    11. Y. Y. Chuang, Y. A. Chang, “A Thermodynamic Analysis and Calculation of the Fe-Ni-Cr Phase diagram”, Metallurgical transactions A, vol. 18A, May (1987).
    12. K. Chvatalova, J. Houserova, M. Sob, J. Vrest, “ Firs-principles calculation of energetics of sigma phase formation and thermodynamic modeling in Fe-Ni-Cr system”, Alloy and Compounds 378 pp.71-74 (2004).
    13. R. J. Tarento, G. Blaise, Acta Metallurgica, Vol. 37, pp. 2305-2312 (1989).
    14. D. R. Askeland 原著,蔡丕樁,蔡明雄,陳文照,廖金喜編譯, “材料科學與工程”,第三版,pp. 2-74。
    15. F. J. J. van Loo, J. A. van beek, G. F. Bastin, and R. Metselaar, in “Diffusion in Solids: Recent Developments”, ed. By M. A. Dayananda and G. E. Murch, The metallurgical Society, Inc., Warrendale, Pennsylvania.
    16. J. S. Kirkaldy, L. C. Brown, Canadian Metallurgical Quarterly, vol. 2, pp. 89-117 (1963).
    17. W. B. Lee, M. Schmuecker, U. A. Mereardo, G. Biallas, S. B. Jung, “Interfacial reaction in steel-alumium joints made by friction stir welding”, Scripta Materialia, 55 pp. 355-358 (2006).
    18. C. L. Ou, R. K. Shiue, “Microstructural evolution of brazing 422 stainless steel using the BNi-3 braze alloy”, Journal of materials science 38 pp. 2337-2346 (2003).
    19. W. A. Meulenberg, A. Gil, E. Wessel, H. P. Buchkremer, “Corrosion and inter-diffusion in a Ni/Fe-Cr-Al Couple Used for the anode side of Multi-Layered Interconnector for SOFC Application”, Oxidation of Metals, vol. 57, Nos. 1/2, February (2002).
    20. 林世明、周長彬、張有全,“碳化矽陶瓷與金屬材料之接合技術與其應用介紹”銲接與切割,16卷,3期,pp. 26-30 (2006)。
    21. 黃和悅、陳輝達、蕭永湶、周長彬、曾光宏,“Metal-Can雷射二極體組件之玻璃與金屬密封接合技術”銲接與切割,15卷,1期 (2005)。
    22. 黃和悅、陳輝達、蕭永湶、周長彬、曾光宏,“玻璃與金屬之密封接合機制與指程技術介紹”銲接與切割,15卷,2期,pp. 33-36 (2005)。
    23. 王建義,“鎂合金之擴散接合”工業材料雜誌,211期,7月, pp. 99-103 (2004)。
    24. 陳明哲、吳威德,”固態接合ARB製程簡述”銲接與切割,14卷,3期,9月,pp. 15-17 (2004)。
    25. 曲文卿、莊鴻壽、孟膠東、蘇程裕”鋁合金與純銅擴散接合研究”銲接與切割,12卷,5期,9月,pp. 34-38 (2002)。
    26. 謝鴻志、張鑑嘉、吳威德、林東毅,”金屬材料擴散接合製程參數之影響”銲接與切割,15卷,2期,6月, pp. 37-40 (2005)。
    27. 莊東漢,”擴散接合技術探討”機械月刊,21卷,12期,pp. 198-209 (1995)。
    28. 蘇程裕、蘇裕超、周長彬,”陶瓷與金屬的硬銲接合研究”中華民國陶業研究學會會刊,20卷,2期,pp. 24-36 (2001)。
    29. 黃財賞,”活性擴散硬銲之原理與應用” 機械月刊,23卷,6期,pp. 323-340 (1997)。
    30. 蘇程裕、酈唯誠、周長彬、黃財賞,”Mar-M247暫態液相擴散接合組織及其機械性質研究”銲接與切割,9卷,2期,pp. 66-75 (1999)。
    31. 薛人愷,”硬銲之基本原理及應用”銲接與切割,7卷,3期,pp. 33-43 (1997)。
    32. 莊東漢,”陶瓷與金屬接合技術及應用”中華民國陶業研究學會會刊,7卷,4期,pp. 20-33 (1988)。
    33. 蘇程裕、周長彬、吳柏成、劉茂賢,”真空硬銲的原理與應用”工業材料,120期,pp. 58-62 (1996)。
    34. A. M. Kliauga, M. Ferrante, “Interface compounds formed during the diffusion bonding of Al2O3¬ to Ti”, Journal of Materials Science 35, pp. 4243-4249 (2000).
    35. J. Y. Kim, J. S. Hardy, K. S.Weil, “Novel Metal-Ceramic Joining for Planar SOFCs”, Journal of the Electrochemical Society, 152, pp. J52-J58 (2005).
    36. N. Iwanoto, H. Yokoo, “Joining of zirconia to metals using Zr-Cu alloy”, Engineering Fracture Mechanics, vol.40, pp. 931-940 (1991).
    37. R. Yue, Y. Wang, C. Chen, Chuanxiang Xu, “Interface reaction of Ti and mullite ceramic substrate”, Applied Surface Science 126, pp. 255-264 (1998).
    38. K. L. Lin, C. C. Lin,“Effects of Annealing Temperture on Microstructural Development at the Interface Between Zirconia and Titanium”, Journal of the American Ceramic Society, 90[3], pp.893-899 (2007).
    39. J. P. Hammond, S. A. David, M. L. Santella, “Brazing ceramic oxides to metals at low temperatures”, Welding Journal, vol.67, pp. 227s-232s (1988).
    40. Y. H. Chai, T. H. Chuang, “Brazing of zirconia ceramic with superalloys by active filler metal”, Chinese Journal of Materials Science, vol.27, pp. 171-177 (1995).
    41. J. X. Zhang, R. S. Chandel, H. P. Seow, “Effects of chromium on the interface and bond strength of metal-ceramic joints”, Materials Chemistry and Physics, vol.75, pp. 256-259 (2002).
    42. M. Singh, T. P. Shpargel, R. Asthana, “Brazing of stainless steel to YSZ using silver-base brazes”, Ceramic Engineering and Science Proceedings, vol.26, pp. 383-390 (2005).
    43. G. Chaumat, B. Drevet, L. Vernier, Reactive Brazing Study of a Silicon Nitride to Metal Joining”, Journal of the European Ceramic Society 17, pp. 1925-1927 (1997).
    44. M. Brochu, M. D. Pugh, R.A.L. Drew, “Joining silicon nitride ceramic using a composite powder as active alloy”, Materials Science and Engineering A 374, pp. 34-42 (2004).
    45. S. Ohta, D. Gotoh, N. Sakaguchi, H. Takahashi, “Nanoscale Analysis of Multilayer Interfaces of W/Al2O3/Ti/Cu, Interface Science 7, pp. 191-196 (1999).
    46. J. H. Kim, Y. C. Yoo, “Bonding of alumina to metals with Ag-Cu-Zr brazing alloy”, Journal of Materials Science Letters, vol.16 pp. 1212-1215 (1997).
    47. Abed, I. S. Jalham and A. Hendry, “Wetting and reaction between β’-sialon, stainless steel and Cu-Ag brazing alloy containing Ti”, Journal of the European Ceramic Society, vol.21, pp. 283-290 (2001).
    48. R. M. Do Nascimento, A. E. Martinalli, A. J. De A. Buschinelli, U. Reisgen, J. Remmel, “Microstructure of brazed joints between mechanically metallized Si3N4 and stainless steel”, Journal of Materials Science (2005).
    49. M. C. Tucker, Craig P. Jacobson, Lutgard C. De Jonghe, Steven J. Visco, “A braze system for metal-supported solid oxide fuel cell”, Journal of Power Sources 160, pp. 1049-1057 (2006).
    50. F. Barier, C. Peytour and A. Revcolevschi, “Microstructural study of the brazed joint between Alumina and Ti-6Al-4V alloy”, Journal of the American Society, vol.73, pp. 1582-1586 (1990).
    51. S. Mandal, A. K. Ray, A. K. Ray, “Correlation between the mechanical properties and the microstructural behaviour of Al2O3- (Ag-Cu-Ti) brazed joints”, Materials Science and Engineering A 383, pp. 235-244 (2004).
    52. H. Q. Hao, Y. L. Wang, Z. H. Jin and X. T. Wang, “Joining of zirconia to zirconia using Ag-Cu-Ti filler metal”, Journal of Materials Processing Technology, vol.52, pp. 238-247 (1995).
    53. O. Smorygo, J. S. Kim, M. D. Kim, T. G. Eom, “Evolution of the interlayer and the fracture modes of the zirconia/Cu-Ag-Ti filler/Ti active brazing joints”, Materials Letters 61, pp.613-616 (2007).
    54. T. Iseki, H. Matsuzaki, J. K. Boadi, “Brazing of silicon carbide to stainless steel”, American Ceramic Society Bulletin, vol.64, pp. 322-324 (1985).
    55. J. V. Emiliano, R. N. Correia, P. Moretto, S. D. Peteves, “Zirconia -Titanium Joint Interfaces”, Materials Science Forum, vol.207-209, pp. 145-148 (1996).
    56. H. Ning, Z. Geng, J. Ma, F. Huang, Z. Qian, Z. Han, “Joining of sapphire and hot pressed Al2O3 using Ag70.5Cu27.5Ti2 brazing filler metal”, Ceremics International 29 (2003), pp. 689-694 (2003).
    57. 洪敏雄主編,“工程材料實驗(I)-金屬材料實驗”,民全書局,民88, pp. 54-57。
    58. R. W. Bene, “First nucleation rule for solid-state nucleation in metal-metal thin film systems”, Applied Physics Letters, vol. 41, pp. 529-531 (1982).
    59. T. B Massalski, H. Okamoto, Binary Alloy Phase Diagrams, ASM International, Materials Park, Ohio, pp. 6, 29, 65, 142, 186, 1444, 1495, 2875, 2926 (1990).
    60. R. M. Do Nascimento, A. E. Martinelli, A. J. DE A. Buschinelli, A. N. Klein, “Brazing Al2O3 to sintred Fe-Ni-Co alloys”, Journal of materials sciences, vol. 34, pp. 5839-5845 (1999).
    61. 黃東平、顏怡文,碩士論文,鐵鉻合金與鎳-釔安定化氧化鋯陶金之界面反應及接合之研究,國立台灣科技大學材料科技研究所,民95。

    QR CODE