簡易檢索 / 詳目顯示

研究生: 謝喻明
Yu ming Hseih
論文名稱: 多層漸進式陰陽極及貴金屬添加對甲烷為燃料之單氣室固態氧化物燃料電池的影響
The effects of multi-layer cathode and anode and noble metal addition on the methane-fueled SC-SOFC
指導教授: 蕭敬業
Ching-Yeh Shiau
口試委員: 劉端祺
Tuan-Chi Liu
周振嘉
Chen-Chia Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2010
畢業學年度: 98
語文別: 中文
論文頁數: 122
中文關鍵詞: 電泳沈積法單氣室固態氧化物燃料電池SDC電解質甲烷多層陰陽極貴金屬 
外文關鍵詞: Single chamber solid state oxide fuel cell, multi-layercathode and anode, Samaria doped cerium electrolyte, Electrophoretic deposition method
相關次數: 點閱:289下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主旨在以不同方法改善單氣室固態氧化物燃料電池之陰、陽兩極。在改善陰極方面,以不同比例及粒徑的 Sm0.5Sr0.5CoO3 (SSC) / Sm0.2Ce0.8O1.9 (SDC) 粉末,來製作不同材料組成的多層式陰極。在改善陽極部分,則使用不同比例的 NiO、SDC、孔洞生成劑同時添加陽極功能層來製備多層的陽極,同時也摻雜貴金屬 Pd 及 Rh 於各層陽極中。藉由電子顯微鏡、交流阻抗及電功率密度測試的分析結果,探討陰陽兩極的改變對電池的影響,電功率密度測試以體積流量比2:1之甲烷與空氣為進料氣體,操作溫度則為 500℃ 至 700℃。
      由實驗結果得知,陽極以NiO-SDC 重量比為 7:3 所製備之電池擁有較佳的電化學性質;而陰極以 SSC-SDC 重量比為 7:3 組成的陰極所製作之電池具有較佳的電化學表現;相較於單一結構之陰極,擁有不同粒徑與不同材料比例結構之陰極能有效提升電化學效率,其中 SSC 以四層陰極結構,且在第一層使用較小粒徑之陰極,其製備之電池擁有較佳電功密度 414.39 mW/ cm2;在陽極方面,不同粉末粒徑、梯度孔洞以及材料組成之多層陽極結構也優於均一結構之陽極,其中以三層之陽極結構,而陽極功能層使用粒徑較小之粉末,其所製備之電池於 600℃下之測試電功密度為 478.06 mW/ cm2;摻雜 Pd 於多層陽極靠近電解質的中間層及外側層能提升電池電化學效率,若於陽極內側層添加 Pd 則會抑制電池電化學表現。而陽極表面積碳量與電池電功密度皆隨 Pd 摻雜量提升而增加,而當 Pd 添加量達 7 wt%,相較其他有摻雜 Pd之電池反倒擁有較佳電功密度 535.86 mW/cm2;就 Rh 滴定於陽極表面之實驗結果顯示,電化學功率表現隨著 Rh 滴定量增加而提升,而比起其他不同摻雜量之電池,當 Rh 滴定量達 0.3 wt % 時有較佳電功密度 520.97 mW/cm2,且於陽極表面無積碳現象產生。


      The purpose of this study intends to use different methods to improve the anode and cathode for improvement of cell performance of single-chamber solid state oxide fuel cell (SC-SOFC). To reach the goal, Sm0.5Sr0.5CoO3 (SSC)/ Sm0.2Ce0.8O1.9 (SDC) of different ratios, particle size and composition of the multi-layer cathode was investigated. For anode, diverse ratio of NiO and SDC, pore former (graphite) for preparation of anode functional layer were considered for multi-layer electrode purpose. In addition, the influence of precious metal (Pd, Rh) added in each anode layer was realized. The as prepared anodes and cathodes were characterized by scanning electron microscope (SEM), AC impedance and electrochemical analysis. The performance of the cell was examined at the temperature range of 500-700℃. Methane and air were used as fuel resource and the ratio of volume flow rate is 2:1.
      First of all, the experimental results show that the best composition ratio for the both NiO/SDC anode and SSC/SDC cathode were 7:3. It is also noted that the cathode made of diverse particle size as well as functional graded SSC (content in four-layer cathode and the particle size in 1st layer is smaller than others) shows better performance than that of homogeneous layer does. For SSC-SDC cathode, the maximum power density of the cell of four layer electrode with smaller particle size for first layer was able to deliver 414.39 mW/cm2 at 600℃. For NiO-SDC anode, a three-layer of various particle size and porosity-graded structure were superior to a homogeneous one. It was found that the maximum power density of cell with three-layer electrode of anode functional layer (AFL) could reach 478.06 mW/cm2 at 600℃.
      Finally, the benefit of the addition of noble metal to the anode is demonstrated. Pd was added to the middle and outer layers of the three-layer anode. It is found that the maximum power density was 535.86 mW/cm2 with 7 wt% Pd at 600℃. However, carbon deposition on the anode surface was not able to be avoided. Once Pd was incorporated into the other layer attached to the electrolyte, reduction of the cell performance was found. For addition of Rh to the anode side, similar power density of 520 mW/cm2 was obtained with only Rh loading of 0.3 wt% at 600℃. Surprisingly, no carbon deposition was found on the anode.

    目錄 摘要 I Abstract III 目錄 VI 圖目錄 X 表目錄 XV 第一章 緒論 1 1-1 前言 1 1-2 研究動機 2 第二章 文獻回顧與理論基礎 4 2-1 固態氧化物燃料電池基本原理 4 2-1-1 雙氣室固態氧化物燃料電池 (DC - SOFC) 5 2-1-2 單氣室固態氧化物燃料電池 (SC–SOFC) 6 2-2固態氧化物燃料電池電解質 8 2-2-1氧化鋯電解質系列 8 2-2-2氧化鈰電解質系列 10 2-2-3氧化鉍電解質系列 12 2-2-4鑭鎵氧系列電解質 12 2-3固態氧化物燃料電池陽極 14 2-3-1 陽極材料 14 2-4固態氧化物燃料電池陰極 18 2-5 電極改質 21 2-5-1 孔洞生成劑 21 2-5-2 電極功能層與梯度結構電極 22 2-5-3 貴金屬摻雜 25 2-6 粉體製備 27 2-7 電泳沈積 29 第三章 實驗方法與步驟 32 3-1 實驗方法 32 3-2 儀器設備 34 3-3 實驗藥品 35 3-4 電池元件的製備 36 3-4-1 製備 SDC 電解質與 SSC 陰極粉末 36 3-4-2 製備陽極基材 ( NiO - SDC - 孔洞生成劑 - 貴金屬) 39 3-4-3 配置電泳懸浮液 41 3-4-4 製備 SDC 電解質層 41 3-4-5 調製陰極網印用膠 43 3-4-6 製備陰極電極 43 3-4-7 製備電流收集器 43 3-4-8 陽極 ( NiO – SDC ) 之還原 44 3-5 燃料電池之特性鑑定與分析 44 3-5-1 SEM 表面影像分析 44 3-5-2 EDX元素分析 44 3-5-3 交流阻抗分析 45 3-6 燃料電池之測試 45 第四章 結果與討論 46 4-1 不同NiO - SDC比例之陽極 47 4-1-1 電功密度與交流阻抗測試 47 4-1-2 SEM與EDS分析 51 4-2 不同SSC - SDC比例之陰極 55 4-2-1 SEM與EDS分析 55 4-2-2 電功率密度與交流阻抗測試 57 4-3 粒徑分析 59 4-4 梯度材料之陰極 60 4-4-1 SEM分析 61 4-4-2 電功密度與交流阻抗測試 62 4-5 梯度材料、孔洞率及功能層之陽極 64 4-5-1 SEM分析 66 4-5-2 電功率密度與交流阻抗測試 68 4-5-2-1 梯度孔洞率 68 4-5-2-2 AFL之添加 70 4-5-2-3 梯度材料陽極 73 4-6 陽極摻雜貴金屬 76 4-6-1 Pd 76 4-6-1-1 陽極摻雜 5 wt% Pd 之電池電功密度及交流阻抗測試 76 4-6-1-2 陽極摻雜不同含量 Pd 之電功密度及交流阻抗測試 79 4-6-1-3 測試後陽極 SEM 與 EDS 分析 82 4-6-2 Rh 添加 84 4-6-2-1 交流阻抗分析 84 4-6-2-2 SEM 與EDS分析 87 4-6-3 長效測試與 EDS 分析 89 第五章 結論 92 參考文獻 94

    參考文獻
    [1] J. Canales-V´azquez, J. C. Ruiz-Morales , D. Marrero-L´opez ,J. Pe˜na-Mart´ınez, P. N´u˜nez, P. G´omez-Romero, Fe-substituted (La,Sr)TiO3 as potential electrodes for symmetrical fuel cells (SFCs). Journal of Power Sources 171 552–557 (2007).
    [2] J. L. Brett, A. Atkinson, N. P. Brandon and S. J. Skinner, Interdediate temperature solid oxide fuel cells. Chemical Society, Rev. 37, 1568-1578 (2008).
    [3] J. Carlos Ruiz-Morales, J. Canales-V´azquez , J. Pe˜na-Mart´ınez, D. M. L´opez, P. N´u˜nez, On the simultaneous use of La0.75Sr0.25Cr0.5Mn0.5O3−δ as both anode andcathode material with improved microstructure in solid oxide fuel cells. Electrochimica Acta 52 278–284 (2006).
    [4] M. Yano, A. Tomita, M. Sano, T. Hibino, Recent advances in single-chamber solid oxide fuel cells: A review. Solid State Ionics 177 3351–3359 (2007).
    [5] T. Hibino, A. Hashimoto, M. Suzuki, M. Yano, S-I Yoshida, and M. Sano, A Solid Oxide Fuel Cell with a Novel Geometry That Eliminates the Need for Preparing a Thin Electrolyte Film. Journal of The Electrochemical Society, 149 (2) A195-A200 (2002).
    [6] R.J. Gorte, and J.M. Vohs, Novel SOFC anodes for the direct electrochemical oxidation of hydrocarbons. Journal of Catalysis 216 477–486 (2003).

    [7] M. L. Liu, Z. Lü, B. Wei, R. Zhu, X. Q. Huang, K. F. Chen, G. Ai, and W. H. Sua , Anode-Supported Micro-SOFC Stacks Operated under Single-Chamber Conditions. Journal of The Electrochemical Society, 154 (6) B588-B592 (2007).
    [8] Y. Hao, Z. P. Shao, J. Mederos , W. Lai ,D. G. Goodwin, S. M.
    Haile, Recent advances in single-chamber fuel-cells: Experiment
    and modeling. Solid State Ionics 177 2013–2021 (2006).
    [9] I. Riess , On the single chamber solid oxide fuel cells. Journal of Power Sources 175 325–337 (2008).
    [10] P. Jasinski, T. Suzuki, F. Dogan, H.U. Anderson, Impedance
    spectroscopy of single chamber SOFC. Solid State Ionics 175
    35–38 (2004).
    [11] T. Hibino, A. Hashimoto, M. Yano, M. Suzuki, S-I Yoshida and M.
    Sano, High Performance Anodes for SOFCs Operating in
    Methane-Air Mixture at Reduced Temperatures. Journal of The
    Electrochemical Society, 149 (2) A133-A136 (2002).
    [12] M. Yano, T. Kawai, K. Okamoto, M. Nagao, M. Sano, A. Tomita, and T. Hibino, Single-Chamber SOFCs Using Dimethyl Ether and Ethanol. Journal of The Electrochemical Society, 154 (8) B865-B870 (2007).
    [13] Y. Arachi, H. Sakai, O. Yamamoto, Y. Takeda, N. Imanishai, Electrical conductivity of the ZrO2 –Ln2O3 (Ln = lanthanides)
    System. Solid State Ionics 121 133–139 (1999).
    [14] J. Molenda , K. Swierczek, W. Zajac, Functional materials for the IT-SOFC. Journal of Power Sources 173 657–670 (2007).

    [15] S. P. S. Badwal and K. Foger, Solid Oxide Electrolyte Fuel Cell Review. Ceramics International 22 257-265 (1996).
    [16] X. Zhang , M. Robertson, C. Dec`es-Petit, Y. S. Xie, R. Hui, W. Qu, O. Kesler, R. Maric, D. Ghosh, Solid oxide fuel cells with bi-layered electrolyte structure. Journal of Power Sources 175 800–805 (2008).
    [17] D. Hirabayashi , A. Tomita , S. Teranishi , T. Hibino, M. Sano, Improvement of a reduction-resistant Ce0.8Sm0.2O1.9 electrolyte by optimizing a thin BaCe1-xSmxO3-a layer for intermediate- temperature SOFCs. Solid State Ionics 176 881–887 (2005).
    [18] R. Doshi, V. L. Richards, J. D. Carter, X. P. Wang and M. Krumpelt, Development of Solid-Oxide Fuel Cells That Operate at 500 oC. Journal of The Electrochemical Society, 146 (4) 1273-1278 (1999).
    [19] M. Koyama, C-J Wen, and K. Yamadab, La0.6Ba0.4CoO3 as a cathode material for solid oxide fuel cells using a BaCeO3 electrolyte. Journal of The Electrochemical Society, 147 (1) 87-91 (2000).
    [20] M. Mogensen, N. M. Sammes, G. A. Tompsett, Physical, chemical and electrochemical properties of pure and doped ceria. Solid State Ionics 129 63–94 (2000).
    [21] D. Xua, X. M. Liu, D. J. Wang , G. Y. Yi, Y. Gao, D. S. Zhang, W. H. Su,, Fabrication and characterization of SDC–LSGM composite electrolytes material in IT-SOFCs. Journal of Alloys and Compounds 429 292–295 (2007).
    [22] CH.Y. Kang , H. Kusaba, H. Yahiro , K. Sasaki, Y. Teraoka , Preparation, characterization and electrical property of Mn-doped ceria-based oxides. Solid State Ionics 177 1799–1802 (2006).
    [23] A. Tomita, S. Teranishi, M. Nagao, T. Hibino, and M. Sano, Comparative Performance of Anode-Supported SOFCs Using a Thin Ce0.9Gd0.1O1.95 Electrolyte with an Incorporated BaCe0.8Y0.2O3−α Layer in Hydrogen and Methane. Journal of The Electrochemical Society, 153 (6) A956-A960 (2006).
    [24] M. Matsuda, T. Hosomi, K. Murata, T. Fukui, M. Miyake, Fabrication of bilayered YSZ/SDC electrolyte film by electrophoretic deposition for reduced-temperature operating anode-supported SOFC. Journal of Power Sources 165 102–107 (2007).
    [25] H. Iwahara, T. Esaka, And T. Sato, Formation of High Oxide Ion Conductive Phases in the Sintered Oxides of the System Bi2O3 –Ln2O3 (Ln = La - Yb). Journal of Solid State Chemistry 39, 173-180 (1981).
    [26] M. Hrovat, A. A. Khanlou, Z. Samardz˘ija, and J. Holc, Internteractions between Lanthanum Gallate Based Solid Electrolyte anc Ceria. PII S0025-5408 00220 -2 (1999).
    [27] W. M. Guo, J. Liu, C. Jin, H. B. Gao, Y. H. Zhang, Electrochemical evaluation of La0.6Sr0.4Co0.8Fe0.2O3−δ – La0.9Sr0.1Ga0.8Mg0.2O3−δ composite cathodes for La0.9Sr0.1Ga0.8Mg0.2O3−δ electrolyte SOFCs. Journal of Alloys and Compounds 473 43–47 (2009).
    [28] T. Setoguchi, T. Inoue, H. Takeba, K. Eguchi, K. Morinaga and H. Arai, Fabrication and Evaluation of Flat Thick Film Type Solid Oxide Fuel Cells. Solid State Ionics 37 217-221 (1990).

    [29] C. M. Grgicak1, M. M. Pakulska, J. S. O’Brien, J. B. Giorgi *, Synergistic effects of Ni1−xCox-YSZ and Ni1−xCux-YSZ alloyed cermet SOFC anodes for oxidation of hydrogen and methane fuels containing H2S. Journal of Power Sources 183 26–33 (2008).
    [30] S. K. Jung, C. Lu, H. P. He, K. Y. Ahn, R.J. Gorte, J.M. Vohs*,
    Influence of Composition and Cu Impregnation Method on the
    Performance of Cu/CeO2/YSZ SOFC Anodes. Journal of Power
    Sources 154 42–50 (2006).
    [31] S-I Lee, J. M. Vohs,and R. J. Gorte , A study of SOFC anodes based
    on Cu-Ni and Cu-Co bimetallics in CeO2-YSZ. Journal of The
    Electrochemical Society, 151 (9) A1319-A1323 (2004).
    [32] T. Hibino, A. Hashimoto, T. Inoue, J-I Tokuno, S-I Yoshida, and M Sano, A Solid Oxide Fuel Cell Using an Exothermic Reaction as the Heat Source. Journal of The Electrochemical Society, 148 (6) A544-A549 (2001).
    [33] Z.G. Lu, J.H. Zhu, Z.H. Bi, X.C. Lu, A Co–Fe alloy as alternative anode for solid oxide fuel cell. Journal of Power Sources 180 172–175 (2008).
    [34] M Asamoto, S. J. Miyake, Y. Itagaki, Y. Sadaoka, H. Yahiro, Electrocatalytic performances of Ni/SDC anodes fabricated with EPD techniques for direct oxidation of CH4 in solid oxide fuel cells. Catalysis Today 139 77–81 (2008).
    [35] H. Y. Tu, H. Lv, Q. C. Yu, K. Hu, X. J. Zhu, Ce0.8M0.2Ο2-δ (M=Mn, Fe, Ni, Cu) as SOFC Anodes for Electrochemical Oxidation of Hydrogen and Methane.

    [36] M. Asamoto, S. Miyake, K. Sugihara, H. Yahiro*, Improvement of Ni/SDC anode by alkaline earth metal oxide addition for direct methane–solid oxide fuel cells. Electrochemistry Communications 11 1508–1511 (2009).
    [37] X.C. Lu, J.H. Zhu, Cu(Pd)-impregnated La0.75Sr0.25Cr0.5Mn0.5O3 − δ anodes for direct utilization of methane in SOFC. Solid State Ionics 178 1467–1475 (2007).
    [38] T. Wei, Y. Ji, X. W. Meng, Y. L. Zhang, Sr2NiMoO6-d as anode material for LaGaO3-based solid oxide fuel cell. Electrochemistry Communications 10 1369–1372 (2008).
    [39] Z. Liu, M-F Han*, W-T Miao, Preparation and characterization of graded cathode La0.6Sr0.4Co0.2Fe0.8O3−δ. Journal of Power Sources 173 837–841 (2007).
    [40] M.J. Santillán , A. Caneiro, N. Quaranta, A.R. Boccaccini, Electrophoretic deposition of La0.6Sr0.4Co0.8Fe0.2O3−δ cathodes on Ce0.9Gd0.1O1.95 substrates for intermediate temperature solid oxide fuel cell (IT-SOFC). Journal of the European Ceramic Society 29 1125–1132 (2009).
    [41] B. W. Liu, Y. Zhang, Ba0.5Sr0.5Co0.8Fe0.2O3 nanopowders prepared by glycine–nitrate process for solid oxide fuel cell cathode. Journal of Alloys and Compounds 453 418–422 (2008).
    [42] S. H. Lee, Y. H. Lim, E. A. Lee , H. J. Hwang , J-W Moon, Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) and La0.6Ba0.4Co0.2Fe0.8O3−δ (LBCF) cathodes prepared by combined citrate-EDTA method for IT-SOFCs. Journal of Power Sources 157 848–854 (2006).

    [43] X. F. Ding, L. Gao & Y. J. Liu, Y. F. Zhen ,L. C. Guo, Thermal expansion and electrochemical properties of La0.7AE0.3CuO3−δ (AE=Ca, Sr, Ba) cathode materials for IT-SOFCs. J Electroceram 18:317–322 (2007).
    [44] B. Lin, J. F. Chen, Y. H. Ling, X. Z. Zhang, Y. Z. Jiang, L. Zhao, X. Q. Liu, G. Y. Meng, Low-temperature solid oxide fuel cells with novel La0.6Sr0.4Co0.8Cu0.2O3−δ perovskite cathode and functional graded anode. Journal of Power Sources 195 1624–1629 (2010).
    [45] K. F. Chen , X. J. Chen, Z.e Lu, N. Ai, X. Q. Huang ,W. H. Su, Performance of an anode-supported SOFC with anode functional layers. Electrochimical Acta 53 7825–7830 (2008).
    [46] N. Ai , Z. L¨u, K. F. Chen, X. Q. Huang, X. B. Du, W. H. Su, Effects of anode surface modification on the performance of low temperature SOFCs. Journal of Power Sources 171 489–494 (2007).
    [47] L. Zhang, S. P. Jiang, W. Wang, Y. J. Zhang, NiO/YSZ, anode-supported, thin-electrolyte, solid oxide fuel cells fabricated by gel casting. Journal of Power Sources 170 55–60 (2007).
    [48] D. M. Lo’pez , J.C. Ruiz-Morales, J. Pen˜a-Martı’nez , J. Canales-Va’zquez, P. Nu’n˜ez, Preparation of thin layer materials with macroporous microstructure for SOFC applications. Journal of Solid State Chemistry 181 685–692 (2008).
    [49] F. Y.Wang, G. B. Jung, A. Su, S. H. Chan, X. Hao, Y. C. Chiang, Porous Ag–Ce0.8Sm0.2O1.9 cermets as anode materials for intermediate temperature solid oxide fuel cells using CO fuel. Journal of Power Sources 185 862–866 (2008).
    [50] H. Moon, S. D. Kim, E. W. Park, S. H. Hyun, H. S. Kim, Characteristics of SOFC single cells with anode active layer via tape casting and co-firing. International Journal of Hydrogen Energy 33 2826 – 2833 ( 2008 ).
    [51] C. M. An, J. H. Song, I. Y. Kang, N. Sammes, The effect of porosity gradient in a Nickel/Yttria Stabilized Zirconia anode for an anode-supported planar solid oxide fuel cell. Journal of Power Sources 195 821–824 (2010).
    [52] E. Arico A F. Tabuti A F. C. Fonseca A.D. Z. de Florio A A. S. Ferlauto, Carbothermal reduction of the YSZ–NiO solid oxide fuel cell anode precursor by carbon-based materials. J Therm Anal Calorim 97:157–161 (2009).
    [53] J. S. Ahn, H. Yoon, K. T. Lee,M. A. Camaratta, E. D.Wachsman, Performance of IT-SOFC with Ce0.9Gd0.1O1.95 functional Layer at the Interface of Ce0.9Gd0.1O1.95 Electrolyte and Ni-Ce0.9Gd0.1O1.95 Anode. FUEL CELLS 09 No. 5, 643–649 (2009).
    [54] M. Ni, M. K.H. Leung, Dennis Y.C. Leung, Micro-scale modelling of solid oxide fuel cells with micro-structurally graded electrodes. Journal of Power Sources 168 369–378 (2007).
    [55] P. Holtappels , C. Bagger, Fabrication and performance of advanced multi-layer SOFC cathodes. Journal of the European Ceramic Society 22 41–48 (2002).

    [56] C. Jin, J. Liu, W. M. Guo, Y. H. Zhang, Electrochemical characteristics of an La0.6Sr0.4Co0.2Fe0.8O3–La0.8Sr0.2MnO3 multi-layer composite cathode for intermediate-temperature solid oxide fuel cells. Journal of Power Sources 183 506–511 (2008).
    [57] X. Y. Xu, C. R. Xia, G. L. Xiao, D. K. Peng, Fabrication and performance of functionally graded cathodes for IT-SOFCs based on doped ceria electrolytes. Solid State Ionics 176 1513 – 1520 (2005).
    [58] M. A. Sukeshini , R. Cummins, T. L. Reitz and R. M. Miller, Ink-Jet Printing: A Versatile Method for Multilayer Solid Oxide Fuel Cells Fabrication. J. Am. Ceram. Society, 92 (12) 2913–2919 (2009).
    [59] W. S. Xia, H. O. Zhang, G. L. Wang and Y. Z. Yang, Functionally Graded Layers Prepared by Atmospheric Plasma Spraying for Solid Oxide Fuel Cells. Advanced Engineering Materials, 11, No. 1-2 (2009).
    [60] Y. M. Ye, T. M. He, Y. B. Li, E. H. Tang, T. L. Reitz, and S. P. Jiang, Pd-Promoted La0.75Sr0.25Cr0.5Mn0.5O3 /YSZ Composite Anodes for Direct Utilization of Methane in SOFCs. Journal of The Electrochemical Society, 155 (8) B811-B818 (2008).
    [61] Y. Nabae , I. Yamanaka, Alloying effects of Pd and Ni on the catalysis of the oxidation of dry CH4 in solid oxide fuel cells. Applied Catalysis A: General 369 119–124 (2009).
    [62] Z.F. Zhou, R. Kumar, S.T. Thakur, L.R. Rudnick, H. Schobert, S.N. Lvov, Direct oxidation of waste vegetable oil in solid-oxide fuel cells. Journal of Power Sources 171 856–860 (2007).

    [63] D. Ding, Z. B. Liu, L. Li, C. R. Xia, An octane-fueled low temperature solid oxide fuel cell with Ru-free anodes. Electrochemistry Communications 10 1295–1298 (2008).
    [64] B. C. Enger, R. Lødeng, A. Holmen, Effects of Noble Metal Promoters on In Situ Reduced Low Loading Ni Catalysts for Methane Activation. Catalyst Lett 134:13–23 (2010).
    [65] 林秉宏,以電泳沈積法製備 SDC 薄膜應用於固態氧化物燃料電池之研究(2008).國立台灣科技大學碩士論文
    [66] 張仁禎,陽極孔洞大小及貴金屬添加對單氣室固態氧化物燃料電池的影響(2009). 國立台灣科技大學碩士論文
    [67] O. O. Van der Biest, L. J. Vandeperre, Electrophoretic deposition of materials. Annual Reviews Incorporation, Palo Alto, CA, United States, p. 327-352(1999).
    [68] T. Ishihara, K. Sato, Y. Takita, Electrophoretic deposition of Y2O3-stabilized ZrO2 electrolyte films in solid oxide fuel cells. Journal of the American Ceramic Society, 79(4): p. 913-919 (1996).
    [69] Z. H. Wang , N. Q. Zhang , J. S. Qiao , K. I. Sun, P. Xu , Improved SOFC performance with continuously graded anode functional layer. Electrochemistry Communications 11 1120–1123 (2009).

    無法下載圖示 全文公開日期 2015/07/05 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE