簡易檢索 / 詳目顯示

研究生: 榮翌穅
Yi-Kang Rong
論文名稱: 鈷氮鍵結修飾有機金屬架構之觸媒應用於鹼性陰離子交換膜燃料電池
Co-N Bonding Decorated MOF-derived Catalyst for Alkaline Anion Exchange Membrane Fuel Cell
指導教授: 王丞浩
Chen-Hao Wang
口試委員: 陳燦耀
Tsan-Yao Chen
王冠文
Kuan-Wen Wang
邱德威
Te-Wei Chiu
黃信智
Hsin-Chih Huang
王丞浩
Chen-Hao Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 94
中文關鍵詞: 氧氣還原反應燃料電池非貴金屬觸媒MOF-808觸媒鈷-氮結構
外文關鍵詞: Oxygen Reduction Reaction, Fuel cell, Non-precious metal catalysts, MOF-808 structure, Co-N structure
相關次數: 點閱:249下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氫能是當今非常有發展潛力的能源之一,因其廣泛的應用領域以及在反應後產生較乾淨、低汙染且可再生的產物,成為全球矚目的替代能源之一。鹼性陰離子交換膜燃料電池是其中一種重要的應用,它以高效率的方式將化學能轉化為電能供應使用。然而由於鹼性陰離子交換膜燃料電池使用的白金觸媒價格昂貴,造成無法大規模普及的問題。因此,近年來研究的趨勢是開發成本較低且高效能的非白金觸媒,以減少對貴金屬的使用量,以此來解決觸媒成本高昂的問題。
    本研究選用MOF-808作為觸媒前驅物,通過鈷氮元素的添加,分別做二次熱處理,即可製備出最佳條件之觸媒(MOF-Co-900-NH3)。在電化學測試中此觸媒有優秀的氧氣還原活性,且電子轉移數可達3.99,非常接近理想電子轉移數4.00,在30,000圈穩定性測試後,半波電位僅衰退35 mV。將觸媒於鹼性陰離子交換膜燃料電池下進行全電池測試,可展現出359.2 mW/cm2之高輸出功率,由此可知此觸媒在鹼性環境中具備極佳之穩定性與效能。
    材料的結構分析可由X光繞射分析儀(XRD)中看出觸媒擁有t-ZrO2,而穿透式電子顯微鏡(TEM)影像分析可進一步確認其結構結構。觸媒在X光吸收光譜(XAS)證實Co-N結構之存在,且X射線光電子能譜(XPS)的分析中也可再次確認Co-N鍵結,並含有高比例的Pyridinic-N官能基。因MOF-808之穩定性,以及含有高比例的含氮官能基與Co-N基團,使此觸媒(MOF-Co-900-NH3)在氧氣還原反應中表現出優異的性能。


    Hydrogen energy is one of the most promising alternative energy sources today, as it has wide-ranging applications and produces clean, low-pollution, and renewable byproducts after reactions. Among its important applications is the alkaline anion exchange membrane fuel cell, which efficiently converts chemical energy into electrical energy for use. However, the use of platinum catalysts in alkaline anion exchange membrane fuel cells leads to high costs and hinders large-scale adoption. Therefore, recent research trends focus on developing cost-effective and high-performance non-platinum catalysts to reduce the reliance on precious metals and address the issue of expensive catalysts.
    In this study, MOF-808 was chosen as the catalyst precursor, and by introducing cobalt and nitrogen elements and conducting secondary heat treatment, the optimized catalyst (MOF-Co-900-NH3) was synthesized. The electrochemical tests showed excellent oxygen reduction activity for this catalyst, with an electron transfer number close to the ideal value of 4.00 (measured at 3.99). After 30,000 cycles of stability testing, the half-wave potential only decayed by 35 mV, indicating remarkable stability. Full-cell testing of the catalyst in alkaline anion exchange membrane fuel cells exhibited a high power density of 359.2 mW/cm2, indicating outstanding performance in alkaline environments.
    The structural analysis of the catalyst revealed the presence of t-ZrO2 through X-ray diffraction (XRD), and transmission electron microscopy (TEM) further confirmed its structure. X-ray absorption spectroscopy (XAS) confirmed the existence of Co-N bonds in the catalyst, and X-ray photoelectron spectroscopy (XPS) analysis also confirmed the Co-N bonding and the high proportion of Pyridinic-N functional groups. The stability of MOF-808 and the high content of nitrogen functional groups and Co-N moieties contributed to the excellent performance of the MOF-Co-900-NH3 catalyst in the oxygen reduction reaction.

    中文摘要 I Abstract II 致謝 IV 目錄 VI 圖目錄 IX 表目錄 XII 第一章 緒論 1 1.1 研究背景 1 1.2 綠色能源之燃料電池介紹 4 1.2.1 燃料電池的種類 6 1.2.2 陰離子交換膜燃料電池(AEMFC)介紹 8 1.2.3 陰離子交換膜燃料電池結構介紹 9 1.2.4 燃料電池的極化現象 11 第二章 電化學原理與文獻探討 14 2.1 電化學原理 14 2.1.1 氧化還原反應 14 2.1.2 氧氣還原途徑 14 2.1.3 氧氣還原反應機制 16 2.1.4 氧氣還原反應之電化學催化 18 2.2 文獻探討 20 2.2.1 氮摻雜之非貴金屬觸媒 20 2.2.2 金屬有機架構(MOF)之非貴金屬觸媒 22 2.2.3 鈷氮鍵結有機金屬框架之觸媒 24 2.3 研究動機 27 第三章 實驗步驟與研究方法 28 3.1 實驗規劃 28 3.2 實驗材料及藥品 29 3.3 實驗流程 30 3.4 實驗儀器與設備 31 3.5 實驗步驟 32 3.5.1 陰極觸媒製備 32 3.5.2 半電池觸媒工作電極製備 33 3.6 儀器分析原理 34 3.6.1 X光繞射分析儀(X-ray diffraction Spectrometer,XRD) 34 3.6.2場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope,FSEM) 36 3.6.3 X射線光電子能譜(X-ray Photoelectron Spectroscopy,XPS) 37 3.6.4 X光吸收光譜(X-ray Absorption Spectroscopy,XAS) 38 3.6.5穿透式電子顯微鏡(Transmission Electron Microscope,TEM) 41 3.6.6比表面積分析儀(Surface Area Analyzer ) 42 3.6.7拉曼光譜分析儀(Raman Spectrum) 43 3.6.8 電化學分析儀 44 3.6.9 燃料電池測試儀 47 第四章 結果與討論 48 4.1 MOF-Co之合成 48 4.1.1 觸媒之形貌分析 49 4.1.2 MOF-Co與常見MOF的氧氣還原反應活性比較 50 4.2 不同熱處理方式之MOF-Co 52 4.2.1 觸媒氧氣還原反應活性比較 52 4.2.2 不同熱處理方式觸媒之X光繞射圖譜分析 56 4.2.3 觸媒之形貌與結構分析 58 4.2.4 不同熱處理方式觸媒之X光電子能譜分析 63 4.2.5 不同熱處理方式觸媒之X光吸收光譜分析 66 4.2.6 MOF-Co-900-NH3觸媒之穩定性測試 69 4.2.7 MOF-Co-900-NH3觸媒之單電池測試 71 第五章 結論 73 第六章 參考文獻 75

    [1] Y. Wang, K.S. Chen, J. Mishler, S.C. Cho, X.C. Adroher, A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research, Applied energy, 88 (2011) 981-1007.
    [2] O. Gröger, H.A. Gasteiger, J.-P. Suchsland, Electromobility: Batteries or fuel cells?, Journal of The Electrochemical Society, 162 (2015) A2605.
    [3] Y. Nonobe, Development of the fuel cell vehicle mirai, IEEJ Transactions on Electrical and Electronic Engineering, 12 (2017) 5-9.
    [4] T. Suzuki, Fuel cell stack technology of Toyota, ECS Transactions, 75 (2016) 423.
    [5] H.R. Ellamla, I. Staffell, P. Bujlo, B.G. Pollet, S. Pasupathi, Current status of fuel cell based combined heat and power systems for residential sector, Journal of Power Sources, 293 (2015) 312-328.
    [6] X. Chen, T. Li, J. Shen, Z. Hu, From structures, packaging to application: A system-level review for micro direct methanol fuel cell, Renewable and Sustainable Energy Reviews, 80 (2017) 669-678.
    [7] A. Gong, D. Verstraete, Fuel cell propulsion in small fixed-wing unmanned aerial vehicles: Current status and research needs, International journal of hydrogen energy, 42 (2017) 21311-21333.
    [8] T. Ioroi, Z. Siroma, S.i. Yamazaki, K. Yasuda, Electrocatalysts for PEM fuel cells, Advanced Energy Materials, 9 (2019) 1801284.
    [9] F. Zhao, Z. Mu, H. Hao, Z. Liu, X. He, S. Victor Przesmitzki, A. Ahmad Amer, Hydrogen fuel cell vehicle development in China: An industry chain perspective, Energy Technology, 8 (2020) 2000179.
    [10] L. Yang, B. Yu, G. Malima, B. Yang, H. Chen, Y.-M. Wei, Are electric vehicles cost competitive? A case study for China based on a lifecycle assessment, Environmental Science and Pollution Research, (2022) 1-18.
    [11] Z. Zhan, Current Status and Future Development of Fuel Cell Ships in China, Journal of Physics: Conference Series, IOP Publishing, 2022, pp. 012061.
    [12] 蔡宜君, 全球燃料電池車發展現況及臺灣機會, 機械工業雜誌, (2022) 116-120.
    [13] 衣寶廉編著,黃朝榮、林修正修訂, 燃料電池-原理與應用, 五南圖書出版股份有限公司2005.
    [14] N. Ramaswamy, S. Mukerjee, Fundamental mechanistic understanding of electrocatalysis of oxygen reduction on Pt and non-Pt surfaces: acid versus alkaline media, Advances in Physical Chemistry, 2012 (2012).
    [15] Z. Pan, L. An, T. Zhao, Z. Tang, Advances and challenges in alkaline anion exchange membrane fuel cells, Progress in Energy and Combustion Science, 66 (2018) 141-175.
    [16] L. Carrette, K. Friedrich, U. Stimming, Fuel cells-fundamentals and applications, Fuel cells, 1 (2001).
    [17] N.A. Anastasijević, V. Vesović, R.R. Adžić, Determination of the kinetic parameters of the oxygen reduction reaction using the rotating ring-disk electrode: Part I. Theory, Journal of electroanalytical chemistry and interfacial electrochemistry, 229 (1987) 305-316.
    [18] K. Kinoshita, Electrochemical Oxygen Technology, New York: Jhon Wiley & Sons, (1992) 37.
    [19] J. Zhang, Z. Wang, Z. Zhu, The inherent kinetic electrochemical reduction of oxygen into H2O on FeN4-carbon: a density functional theory study, Journal of Power Sources, 255 (2014) 65-69.
    [20] L. Geniès, R. Faure, R. Durand, Electrochemical reduction of oxygen on platinum nanoparticles in alkaline media, Electrochimica Acta, 44 (1998) 1317-1327.
    [21] J.P. Hoare, The Electrochemistry of Oxygen, New York: John Wiley & Sons, (1968) 26-91.
    [22] N.M. Marković, P.N. Ross Jr, Surface science studies of model fuel cell electrocatalysts, Surface Science Reports, 45 (2002) 117-229.
    [23] B.E. Conway, Comprehensive Treatise of Electrochemistry, New York: Kluwer Acadwmic Pub, (1983) 26-91.
    [24] 肖鋼、管衍德、廖福源、陳本源, 燃料電池技術, 全華圖書股份有限公司2010.
    [25] R. Othman, A.L. Dicks, Z. Zhu, Non precious metal catalysts for the PEM fuel cell cathode, International Journal of Hydrogen Energy, 37 (2012) 357-372.
    [26] J. Zagal, P. Bindra, E. Yeager, A Mechanistic Study of  O 2 Reduction on Water Soluble Phthalocyanines Adsorbed on Graphite Electrodes, Journal of The Electrochemical Society, 127 (1980) 1506-1517.
    [27] S. Gupta, D. Tryk, I. Bae, W. Aldred, E. Yeager, Heat-treated polyacrylonitrile-based catalysts for oxygen electroreduction, Journal of Applied Electrochemistry, 19 (1989) 19-27.
    [28] H. Wang, R. Côté, G. Faubert, D. Guay, J.P. Dodelet, Effect of the Pre-Treatment of Carbon Black Supports on the Activity of Fe-Based Electrocatalysts for the Reduction of Oxygen, The Journal of Physical Chemistry B, 103 (1999) 2042-2049.
    [29] Z. Chen, D. Higgins, A. Yu, L. Zhang, J. Zhang, A review on non-precious metal electrocatalysts for PEM fuel cells, Energy & Environmental Science, 4 (2011) 3167-3192.
    [30] M. Lefèvre, E. Proietti, F. Jaouen, J.-P. Dodelet, Iron-Based Catalysts with Improved Oxygen Reduction Activity in Polymer Electrolyte Fuel Cells, Science, 324 (2009) 71-74.
    [31] H. Meng, N. Larouche, M. Lefèvre, F. Jaouen, B. Stansfield, J.-P. Dodelet, Iron porphyrin-based cathode catalysts for polymer electrolyte membrane fuel cells: Effect of NH3 and Ar mixtures as pyrolysis gases on catalytic activity and stability, Electrochimica Acta, 55 (2010) 6450-6461.
    [32] Q. Wang, L. Shang, D. Sun‐Waterhouse, T. Zhang, G. Waterhouse, Engineering local coordination environments and site densities for high‐performance Fe‐N‐C oxygen reduction reaction electrocatalysis, SmartMat, 2 (2021) 154-175.
    [33] Y. Gu, H. Luo, W. Xu, W. Zhou, Y. Sun, Fabrication of MOF-808 (Zr) with abundant defects by cleaving ZrO bond for oxidative desulfurization of fuel oil, Journal of Industrial and Engineering Chemistry, 105 (2022) 435-445.
    [34] K. Xuan, Y. Pu, F. Li, J. Luo, N. Zhao, F. Xiao, Metal-organic frameworks MOF-808-X as highly efficient catalysts for direct synthesis of dimethyl carbonate from CO2 and methanol, Chinese Journal of Catalysis, 40 (2019) 553-566.
    [35] Y.-S. Chang, J.-H. Li, Y.-C. Chen, W.H. Ho, Y.-D. Song, C.-W. Kung, Electrodeposition of pore-confined cobalt in metal–organic framework thin films toward electrochemical H2O2 detection, Electrochimica Acta, 347 (2020) 136276.
    [36] V.T. Veettil, M. Mohankumar, D. Zitoun, Site‐Engineered Tetragonal ZrO2 Nanoparticles: A Promising Oxygen Reduction Catalyst with High Activity and Chemical Stability in Alkaline Medium, Advanced Materials Interfaces, 9 (2022) 2101802.
    [37] X. Li, B.N. Popov, T. Kawahara, H. Yanagi, Non-precious metal catalysts synthesized from precursors of carbon, nitrogen, and transition metal for oxygen reduction in alkaline fuel cells, Journal of Power Sources, 196 (2011) 1717-1722.
    [38] C. Zhang, J. Sha, H. Fei, M. Liu, S. Yazdi, J. Zhang, Q. Zhong, X. Zou, N. Zhao, H. Yu, Single-atomic ruthenium catalytic sites on nitrogen-doped graphene for oxygen reduction reaction in acidic medium, Acs Nano, 11 (2017) 6930-6941.
    [39] S.-T. Chang, C.-H. Wang, H.-Y. Du, H.-C. Hsu, C.-M. Kang, C.-C. Chen, J.C.S. Wu, S.-C. Yen, W.-F. Huang, L.-C. Chen, M.C. Lin, K.-H. Chen, Vitalizing fuel cells with vitamins: pyrolyzed vitamin B12 as a non-precious catalyst for enhanced oxygen reduction reaction of polymer electrolyte fuel cells, Energy Environ. Sci., 5 (2012) 5305-5314.
    [40] Y. Zhang, Q. He, Z. Chen, Y. Chi, J. Sun, D. Yuan, L. Zhang, Hierarchically porous Co@ N-doped carbon fiber assembled by MOF-derived hollow polyhedrons enables effective electronic/mass transport: An advanced 1D oxygen reduction catalyst for Zn-air battery, Journal of Energy Chemistry, 76 (2023) 117-126.
    [41] J. Gao, Y. Hu, Y. Wang, X. Lin, K. Hu, X. Lin, G. Xie, X. Liu, K.M. Reddy, Q. Yuan, MOF Structure Engineering to Synthesize Co N C Catalyst with Richer Accessible Active Sites for Enhanced Oxygen Reduction, Small, 17 (2021) 2104684.
    [42] 國家同步輻射中心, 國家同步輻射, https://www.nsrrc.org.tw/.
    [43] S. Bagi, S. Yuan, S. Rojas-Buzo, Y. Shao-Horn, Y. Román-Leshkov, A continuous flow chemistry approach for the ultrafast and low-cost synthesis of MOF-808, Green Chemistry, 23 (2021) 9982-9991.
    [44] M. Parsaei, K. Akhbari, Synthesis and Application of MOF-808 Decorated with Folic Acid-Conjugated Chitosan as a Strong Nanocarrier for the Targeted Drug Delivery of Quercetin, Inorganic Chemistry, 61 (2022) 19354-19368.
    [45] Y. Tao, B. Yang, F. Wang, Y. Yan, X. Hong, H. Xu, M. Xia, F. Wang, Green synthesis of MOF-808 with modulation of particle sizes and defects for efficient phosphate sequestration, Separation and Purification Technology, 300 (2022) 121825.
    [46] X. Sun, W. Huang, H. Xu, Z. Qu, J. Wu, N. Yan, Insight into H2S production from CS2 hydrolysis for heavy metals treatment: In-situ FT-IR and DFT studies over crystalline phase-dependent ZrO2, Separation and Purification Technology, 310 (2023) 123194.
    [47] O.A. Ojelade, S.F. Zaman, Ammonia decomposition for hydrogen production: a thermodynamic study, Chemical Papers, 75 (2021) 57-65.
    [48] M. Peña-Álvarez, E. del Corro, F. Langa, V.G. Baonza, M. Taravillo, Morphological changes in carbon nanohorns under stress: a combined Raman spectroscopy and TEM study, RSC advances, 6 (2016) 49543-49550.
    [49] L. Li, B. An, A. Lahiri, P. Wang, Y. Fang, Doublet of D and 2D bands in graphene deposited with Ag nanoparticles by surface enhanced Raman spectroscopy, Carbon, 65 (2013) 359-364.
    [50] G. Ferrero, K. Preuss, A. Fuertes, M. Sevilla, M.-M. Titirici, The influence of pore size distribution on the oxygen reduction reaction performance in nitrogen doped carbon microspheres, Journal of Materials Chemistry A, 4 (2016) 2581-2589.
    [51] T.J. Bandosz, Revealing the impact of small pores on oxygen reduction on carbon electrocatalysts: A journey through recent findings, Carbon, 188 (2022) 289-304.
    [52] L. Lai, J.R. Potts, D. Zhan, L. Wang, C.K. Poh, C. Tang, H. Gong, Z. Shen, J. Lin, R.S. Ruoff, Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction, Energy & Environmental Science, 5 (2012) 7936-7942.
    [53] B. Zhang, C. Wang, D. Liu, Y. Liu, X. Yu, L. Wang, Boosting ORR electrocatalytic performance of metal-free mesoporous biomass carbon by synergism of huge specific surface area and ultrahigh pyridinic nitrogen doping, ACS Sustainable Chemistry & Engineering, 6 (2018) 13807-13812.
    [54] J. Liu, P. Song, W. Xu, Structure-activity relationship of doped-nitrogen (N)-based metal-free active sites on carbon for oxygen reduction reaction, Carbon, 115 (2017) 763-772.
    [55] A.P. Grosvenor, J.E. Greedan, Analysis of Metal Site Preference and Electronic Structure of Brownmillerite-Phase Oxides (A2B′ x B2− x O5; A= Ca, Sr; B′/B= Al, Mn, Fe, Co) by X-ray Absorption Near-Edge Spectroscopy, The Journal of Physical Chemistry C, 113 (2009) 11366-11372.
    [56] T.-H. Hsieh, S.-N. Chen, Y.-Z. Wang, K.-S. Ho, J.-K. Chuang, L.-C. Ho, Cobalt-Doped Carbon Nitride Frameworks Obtained from Calcined Aromatic Polyimines as Cathode Catalyst of Anion Exchange Membrane Fuel Cells, Membranes, 12 (2022) 74.
    [57] J. Lilloja, M. Mooste, E. Kibena-Põldsepp, A. Sarapuu, B. Zulevi, A. Kikas, H.-M. Piirsoo, A. Tamm, V. Kisand, S. Holdcroft, Mesoporous iron-nitrogen co-doped carbon material as cathode catalyst for the anion exchange membrane fuel cell, Journal of Power Sources Advances, 8 (2021) 100052.
    [58] A. Sokka, M. Mooste, M. Käärik, V. Gudkova, J. Kozlova, A. Kikas, V. Kisand, A. Treshchalov, A. Tamm, P. Paiste, Iron and cobalt containing electrospun carbon nanofibre-based cathode catalysts for anion exchange membrane fuel cell, International Journal of Hydrogen Energy, 46 (2021) 31275-31287.
    [59] J. Zhang, Y. Pei, W. Zhu, Y. Liu, Y. Yin, Y. Qin, M.D. Guiver, Ionomer dispersion solvent influence on the microstructure of Co–N–C catalyst layers for anion exchange membrane fuel cell, Journal of Power Sources, 484 (2021) 229259.

    QR CODE