簡易檢索 / 詳目顯示

研究生: 黃塏鈞
Kai-Chung Huang
論文名稱: 微生物燃料電池串聯之效能最佳化
The performance optimization of microbial fuel cells in series
指導教授: 蘇忠傑
Jung-Chieh Su
口試委員: 李奎毅
Kuei-Yi Lee
葉秉慧
Ping-Hui Sophia Yeh
林保宏
Pao-hung Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2022
畢業學年度: 111
語文別: 中文
論文頁數: 97
中文關鍵詞: 微生物燃料電池串聯位移電流快速傅立葉轉換
外文關鍵詞: Microbial Fuel Cell, in series, displacement current, Fast Fourier Transform
相關次數: 點閱:228下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本實驗探討串聯微生物燃料電池(Microbial Fuel Cells,MFC)的表現最佳化,使用250 ml糖蜜(Molasses)當作陽極燃料的基底,用海水將其混合,找出混合的最佳比例為1:1,在此比例下添加0.5 M碳酸氫鈉(NaHCO3),陰極使用海水250 ml,電極使用備長碳棒(charcoal),而隔離膜(separator membrane)使用蛋殼膜(eggshell membrane)的情況下各單顆MFC有最好的產電表現。
    將最佳比例兩組的MFC串聯,串聯之後的輸出電壓約為單顆的3倍、跨電容的電壓提高30%、直流電流提高40%、位移電流提高40%,經過串聯可以使本來不穩定的MFC輸出電力數值接近穩定,而起到增加電池可靠性的作用,並將從儲存電能之360 F電容之跨電壓微分所得到的位移電流(displacement current)做快速傅立葉轉換(Fast Fourier Transform, FFT),以偵測出電容得到和失去電子過程的反應頻率,實驗結果證明MFC中細菌的氧化還原反應(redox reaction)頻率主要發生在0.2~0.3 Hz,同時數據顯示算出來的位移電流比直接用電錶量測的輸出電流對MFC的即時偵測有更高的可靠性與相關性。
    關於電化學的反應參數對MFC性能的影響研究,實驗數值顯示陽極氧化反應受到反應物(燃料)的pH值的影響最大,而量測燃料添加NaHCO3之後的鹽度值,顯示出陽極液pH值增加的幅度和鹽度有關聯性, MFC的產電效率可由陽極液的氧化後電導度值增加與陰極液的初始電導度值做依據,陰極液的溶氧值變化可看出在陰極溶液中細菌還原反應消耗氧的程度,而從陰極液中碳酸鹽硬度的變化顯示出陽極液反應後產生CO2氣體並經由陽極槽電極上之孔洞提供給陰極液以減緩陰極液之pH值增加並降低MFC兩極間經氧化還原反應後各自的pH值差異以增進MFC效能。


    In this research, the performance optimization of Microbial Fuel Cells in series was discussed. Molasses was used as the anodic fuel substrate, mixing it with seawater. The optimal mixing ratio was found to be 1:1. At this ratio, 0.5 M sodium bicarbonate (NaHCO3) was added to anolyte, 250 ml seawater was used for the catholyte, a charcoal rod was used for the electrode, and an eggshell membrane was used for the separators. A single MFC had the best power performance on this condition.
    Connecting two MFC with the best condition in series. The output voltage is about three times larger than the single, the voltage across the capacitor is increased by 30%, the DC current is increased by 40%, and the displacement current is increased by 40%. Connecting in series can make the originally unstable MFC electrical properties are close to stable, and play a role in increasing the reliability of the MFC. The displacement current can be obtained from the differential voltage across the 360 F capacitor with Fast Fourier Transform (FFT) to detect the response frequency of the capacitor gaining and losing electrons. The experimental results show that 0.2~0.3 Hz is the majority frequency of bacterial redox reaction in the MFC, and the data show that the calculated displacement current has higher reliability and relevance for the real-time detection of MFC than the output current measured by the ammeter.
    Regarding the effects of electrochemical reaction parameters on the performance of MFC, the experimental results show that the anodic oxidation reaction is most affected by the pH value of the reactant (fuel), and measurement of the salinity value of the anolyte after adding NaHCO3 shows that the increase of the pH value of the anolyte is related to the salinity. The power generation efficiency of MFC can be estimated by the increase in the conductivity value of the oxidation anolyte and the initial conductivity value of the catholyte. The change of the dissolved oxygen value of the catholyte can show the degree of oxygen consumption by the bacterial reaction in the catholyte. The change of carbonate hardness in the catholyte shows that CO2 biogas is generated by the anolyte reaction, and the biogas is supplied to the catholyte through the channel on the anodic electrode to slow down the increase of the pH value of the catholyte and reduce the pH value difference between the two electrolyte to improve the efficiency of the MFC.

    目錄 摘要 I ABSTRACT III 目錄 V 圖目錄 VIII 表目錄 X 第一章 導論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1微生物燃料電池歷史沿革 2 1.2.2微生物燃料電池原理 2 1.2.3陽極槽反應機制 4 1.2.4陰極槽反應機制 5 1.2.5微生物燃料電池電位損失 6 1.3 論文架構 8 第二章 研究目的與方法 9 2.1 研究目的 9 2.2 微生物燃料電池架構設計 10 2.2.1 實驗架構 10 2.2.2 實驗方法 11 2.3 影響微生物燃料電池產電因素 14 2.3.1 陽極燃料 14 2.3.2 陰極液材料和容量 16 2.3.3 電極材料 20 2.3.4 隔離膜種類 26 第三章 微生物燃料電池實驗結果 30 3.1海水與糖蜜比例 30 3.1.1 輸出電壓 30 3.1.2 電容電壓 32 3.1.3 直流電流 35 3.1.4 位移電流 36 3.2 燃料的調配 38 3.2.1 NaHCO3添加比例 38 3.2.2 輸出電壓 39 3.2.3 電容電壓 42 3.2.4 直流電流 45 3.2.5 位移電流 49 3.3 串聯燃料電池 53 3.3.1 串聯內阻壓降 54 3.3.2 串聯電容電壓 58 3.3.3 串聯直流電流 61 3.3.4 串聯位移電流 64 3.4快速傅立葉轉換 66 3.5 小結 71 第四章 電化學反應分析 73 4.1 酸鹼值 (pH) 73 4.2 氧化還原電位 (Oxidation-reduction potential, ORP) 76 4.3 鹽度 (Salinity) 78 4.4 電導度值 (Electrical conductivity, EC) 79 4.5 溶氧值 (Dissolved Oxygen, DO) 80 4.6 碳酸鹽硬度 (Carbonate hardness, CH) 82 4.7 小結 84 第五章 結論與未來展望 85 5.1 結論 85 5.2未來展望 86 參考文獻 87 附錄 94 附錄A 94 附錄B 97

    參考文獻
    [1] M. C. Potter, "Electrical effects accompanying the decomposition of organic compounds," Proceedings of the royal society of London. Series b, containing papers of a biological character, vol. 84, no. 571, pp. 260-276, 1911.
    [2] A. Shukla, P. Suresh, B. Sheela, and A. Rajendran, "Biological fuel cells and their applications," Current science, vol. 87, no. 4, pp. 455-468, 2004.
    [3] H. Bennetto, "Electricity generation by microorganisms," Biotechnology education, vol. 1, no. 4, pp. 163-168, 1990.
    [4] B.-H. Kim, H.-J. Kim, M.-S. Hyun, and D.-H. Park, "Direct electrode reaction of Fe (III)-reducing bacterium, Shewanella putrefaciens," Journal of microbiology and biotechnology, vol. 9, no. 2, pp. 127-131, 1999.
    [5] K. Rabaey and W. Verstraete, "Microbial fuel cells: novel biotechnology for energy generation," TRENDS in Biotechnology, vol. 23, no. 6, pp. 291-298, 2005.
    [6] C. Munoz-Cupa, Y. Hu, C. Xu, and A. Bassi, "An overview of microbial fuel cell usage in wastewater treatment, resource recovery and energy production," Science of the Total Environment, vol. 754, p. 142429, 2021.
    [7] H. Yuan and Z. He, "Graphene-modified electrodes for enhancing the performance of microbial fuel cells," Nanoscale, vol. 7, no. 16, pp. 7022-7029, 2015.
    [8] B. Min, S. Cheng, and B. E. Logan, "Electricity generation using membrane and salt bridge microbial fuel cells," Water research, vol. 39, no. 9, pp. 1675-1686, 2005.
    [9] W. T. Tsai, J. M. Yang, C. W. Lai, Y. H. Cheng, C. C. Lin, and C. W. Yeh, "Characterization and adsorption properties of eggshells and eggshell membrane," Bioresource Technology, vol. 97, no. 3, pp. 488-493, 2006/02/01/ 2006, doi: https://doi.org/10.1016/j.biortech.2005.02.050.
    [10] 柯佳杏, "利用連續式微生物燃料電池降解甲苯及其產電能力研究," 碩士, 環境與安全衛生工程系碩士班, 國立雲林科技大學, 雲林縣, 2012.
    [11] I.-S. Kim, K.-J. Chae, M.-J. Choi, and W. Verstraete, "Microbial fuel cells: recent advances, bacterial communities and application beyond electricity generation," Environmental Engineering Research, vol. 13, no. 2, pp. 51-65, 2008.
    [12] F. Zhao, R. C. Slade, and J. R. Varcoe, "Techniques for the study and development of microbial fuel cells: an electrochemical perspective," Chemical Society Reviews, vol. 38, no. 7, pp. 1926-1939, 2009.
    [13] B. E. Logan, Microbial fuel cells. John Wiley & Sons, 2008.
    [14] Y. Fan, E. Sharbrough, and H. Liu, "Quantification of the internal resistance distribution of microbial fuel cells," Environmental science & technology, vol. 42, no. 21, pp. 8101-8107, 2008.
    [15] T. Liu, Y.-y. Yu, D. Li, H. Song, X. Yan, and W. N. Chen, "The effect of external resistance on biofilm formation and internal resistance in Shewanella inoculated microbial fuel cells," Rsc Advances, vol. 6, no. 24, pp. 20317-20323, 2016.
    [16] C. I. Torres et al., "Selecting anode-respiring bacteria based on anode potential: phylogenetic, electrochemical, and microscopic characterization," (in eng), Environ Sci Technol, vol. 43, no. 24, pp. 9519-24, Dec 15 2009, doi: 10.1021/es902165y.
    [17] Z. A. Bhatti et al., "Potential of molasses substrate for bioelectricity production in microbial fuel cell with the help of active microbial community," International Journal of Energy Research, 2022.
    [18] U. N. A. Library, "Nutrient data for 19304, Molasses," ed, 2012.
    [19] K. Fricke, F. Harnisch, and U. Schröder, "On the use of cyclic voltammetry for the study of anodic electron transfer in microbial fuel cells," Energy & Environmental Science, vol. 1, no. 1, pp. 144-147, 2008.
    [20] L. Caizán-Juanarena et al., "Combination of bioelectrochemical systems and electrochemical capacitors: Principles, analysis and opportunities," Biotechnology Advances, vol. 39, p. 107456, 2020/03/01/ 2020, doi: https://doi.org/10.1016/j.biotechadv.2019.107456.
    [21] S. Ouitrakul, M. Sriyudthsak, S. Charojrochkul, and T. Kakizono, "Impedance analysis of bio-fuel cell electrodes," Biosensors and Bioelectronics, vol. 23, no. 5, pp. 721-727, 2007.
    [22] J. Chouler, I. Bentley, F. Vaz, A. O’Fee, P. J. Cameron, and M. Di Lorenzo, "Exploring the use of cost-effective membrane materials for Microbial Fuel Cell based sensors," Electrochimica Acta, vol. 231, pp. 319-326, 2017/03/20/ 2017, doi: https://doi.org/10.1016/j.electacta.2017.01.195.
    [23] M. Ma, S. You, J. Qu, and N. Ren, "Natural eggshell membrane as separator for improved coulombic efficiency in air-cathode microbial fuel cells," RSC advances, vol. 6, no. 70, pp. 66147-66151, 2016.
    [24] M. Halim, M. Rahman, M. Ibrahim, R. Kundu, and B. K. Biswas, "Effect of Anolyte pH on the Performance of a Dual-Chambered Microbial Fuel Cell Operated with Different Biomass Feed," Journal of Chemistry, vol. 2021, 2021.
    [25] J.-C. Su, S.-C. Tang, P.-J. Su, and J.-J. Su, "Real-time monitoring of micro-electricity generation through the voltage across a storage capacitor charged by a simple microbial fuel cell reactor with fast Fourier transform," Energies, vol. 12, no. 13, p. 2610, 2019.
    [26] O. Adelaja, T. Keshavarz, and G. Kyazze, "The effect of salinity, redox mediators and temperature on anaerobic biodegradation of petroleum hydrocarbons in microbial fuel cells," Journal of Hazardous Materials, vol. 283, pp. 211-217, 2015/02/11/ 2015, doi: https://doi.org/10.1016/j.jhazmat.2014.08.066.
    [27] Y. Zhang, Q. Xu, G. Huang, L. Zhang, and Y. Liu, "Effect of dissolved oxygen concentration on nitrogen removal and electricity generation in self pH-buffer microbial fuel cell," International Journal of Hydrogen Energy, vol. 45, no. 58, pp. 34099-34109, 2020/11/27/ 2020, doi: https://doi.org/10.1016/j.ijhydene.2020.09.110.
    [28] J. J. Fornero, M. Rosenbaum, M. A. Cotta, and L. T. Angenent, "Carbon dioxide addition to microbial fuel cell cathodes maintains sustainable catholyte pH and improves anolyte pH, alkalinity, and conductivity," Environmental science & technology, vol. 44, no. 7, pp. 2728-2734, 2010.

    無法下載圖示 全文公開日期 2023/10/14 (校內網路)
    全文公開日期 2025/10/14 (校外網路)
    全文公開日期 2027/10/14 (國家圖書館:臺灣博碩士論文系統)
    QR CODE