簡易檢索 / 詳目顯示

研究生: 彭啟睿
Ci-Ruei Peng
論文名稱: 具優化加熱效率之感應加熱系統
Induction Heating System with Improved Heating Efficiency Control
指導教授: 林長華
Chang-Hua Lin
口試委員: 楊宗銘
Chung-Ming Young
王見銘
Chien-Ming Wang
陳慕平
Mu-Ping Chen
王永宜
Yung-Yi Wang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電機工程系
Department of Electrical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 96
中文關鍵詞: 感應加熱全橋串聯諧振轉換器零電壓切換加熱效率
外文關鍵詞: induction heating, full bridge series resonant converter, zero voltage switching, heating efficiency
相關次數: 點閱:302下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出一種具優化加熱效率控制之感應加熱系統,系統架構採用全橋串聯諧振電路,搭配降壓變壓器,並藉由數位控制器調整操作頻率以提升加熱效能,完成1.5 kW感應加熱系統。其次,本文利用變壓器內部的寄生元件及外加諧振元件形成諧振電路,能使功率開關達到零電壓切換,且運用感應加熱的原理將高頻交流提供至加熱線圈以加熱工件。所提之控制法能因應加熱過程中,負載特性的變化,進而改變系統操作頻率,使系統維持較大的輸出功率,並提高加熱效率。再者,本系統所使用之降壓變壓器,除了提供隔離作用,並將諧振元件置於變壓器一次側,此舉能減少功率開關及諧振元件的電流應力,並降低系統製作成本。最後,本文進行實測,系統能將長度15公分、直徑2.5公分的圓柱狀低碳鐵加熱至750 ℃,加熱速率為5.53(℃/s),加熱效率為95 %,相較於傳統式開迴路加熱,加熱效率提升22 %,驗證所提系統之可行性。


    This thesis presents an induction heating system with optimized heating efficiency control. The architecture of this system is a full-bridge series resonant circuit with a step-down transformer. The digital controller adjusts the operating frequency to enhance the heating efficiency, completing a 1.5 kW induction heating system. Also, this thesis uses parasitic components in the transformer and resonant components to form a resonant tank. It makes the power switch achieving ZVS, and provides high-frequency power to the heating coil to heat the work-piece. The proposed control scheme can adjust the operating frequency due to the change of load characteristics during heating process, so the system maintains a higher output power to improve heating efficiency. In addition, the system uses a step-down transformer to provide isolation, and placing the resonant components on the primary side to lower the cost, and reduce the current stress of power switches and resonant components. Experimental results shows that the system can heat the cylindrical low-carbon iron with a length of 15 cm and a diameter of 2.5 cm up to 750℃ . The heating rate is 5.53(℃/s) , and the heating efficiency is over 95%. Compared with traditional schemes, the heating efficiency is increased by 22%, so as to verify the feasibility of the proposed system.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 IX 第一章 緒論 1 1.1 研究背景 1 1.2 論文架構 2 第二章 感應加熱系統之設計與分析 3 2.1 感應加熱技術簡介 3 2.1.1 感應加熱原理 4 2.1.2 感應加熱之負載特性與等效電路 6 2.1.3 感應加熱的優點與應用 8 2.2 感應加熱系統介紹 10 2.2.1 全橋LC串聯諧振轉換器架構介紹 11 2.2.2 全橋LC串聯諧振轉換器工作模式與數學分析 13 2.2.3 全橋LC串聯諧振轉換器之轉移函數分析 19 2.3 柔性切換技術 24 2.4 具優化加熱效率之回授控制 26 第三章 數位化控制器之設計 29 3.1 數位控制器之介紹 29 3.2 數位控制晶片TMS320F28035 30 3.3 數位控制晶片與系統之整合 33 3.4 控制流程說明 34 3.5 輔助電源之相關說明 36 第四章 系統規格及設計準則 37 4.1 全橋LC串聯諧振轉換器之規格 37 4.2 加熱線圈之設計 38 4.3 變壓器之設計 41 4.4 LC串聯諧振電路之設計 42 4.5 具優化加熱效率之回授控制的設計與實現 44 4.6 PWM之驅動電路設計 56 4.7 類比數位信號轉換器(ADC) 59 4.8 過電流保護之設計與實現 60 第五章 電路模擬與實測結果 61 5.1 系統規格 61 5.2 模擬與實測波形之比較 63 5.3 系統具優化加熱效率之回授控制實測結果 76 第六章 結論與未來展望 80 6.1 結論 80 6.2 未來展望 81 參考文獻 82

    [1]B. Meziane and H. Zeroug, “Comprehensive Power Control Performance Investigations of Resonant Inverter for Induction Metal Surface Hardening,” IEEE Transactions on Industrial Electronics, vol. 63, no. 10, pp. 6086-6096, Oct. 2016.
    [2]V. Esteve et al., “Improving the Reliability of Series Resonant Inverters for Induction Heating Applications,” IEEE Transactions on Industrial Electronics, vol. 61, no. 5, pp. 2564-2572, May 2014.
    [3]I. Millán, J. M. Burdío, J. Acero, O. Lucía and S. Llorente, “Series resonant inverter with selective harmonic operation applied to all-metal domestic induction heating, ” IET Power Electronics, vol. 4, no. 5, pp. 587-592, May 2011.
    [4]張幼旻,“應用雙組昇降壓轉換器建構數位控制式變流器系統之研究”,國立成功大學電機工程學系碩士論文,民國一百零一年六月。
    [5]李定宣,丁增敏,“現代高頻感應加熱電源工程設計與應用”,中國電力出版社,2010年8月。
    [6]王榮爵,張宏榮,“全橋式零電壓切換技術之感應加熱器”,中國文化大學數位機電科技研究所、建國科技大學機電光系統研究所,華岡工程學報第二十一期,pp.145-154,民國九十六年六月。
    [7]吳宏遠,“感應加熱系統之研究”,國立高雄應用科技大學電機工程系碩士學位論文,民國一百零二年二月。
    [8]W. Han, K. T. Chau and Z. Zhang, “Flexible Induction Heating Using Magnetic Resonant Coupling,” IEEE Transactions on Industrial Electronics, vol. 64, no. 3, pp. 1982-1992, March 2017.
    [9]O. Lucía, P. Maussion, E. J. Dede and J. M. Burdío, “Induction Heating Technology and Its Applications: Past Developments, Current Technology, and Future Challenges,” IEEE Transactions on Industrial Electronics, vol. 61, no. 5, pp. 2509-2520, May 2014.
    [10]S, S, Aung, H, P, Wai, and N, N, Soe, “Design Calculation and Performance Testing of Heating Coil in Induction Surface Hardening Machine,” World Academy of Science, Engineering and Technology International Journal of Electrical, Computer, Energetic, Electronic and Communication Engineering, vol. 2, no. 6, pp 1134-1138, 2008.
    [11]許國展,“應用於感應加熱的負載串聯共振電壓型反流器設計與研製”,中原大學電機工程學系碩士學位論文,民國九十一年六月。
    [12]J. M. Espi-Huerta, E. J. Dede Garcia Santamaria, R. Garcia Gil and J. Castello-Moreno, “Design of the L-LC Resonant Inverter for Induction Heating Based on Its Equivalent SRI,” IEEE Transactions on Industrial Electronics, vol. 54, no. 6, pp. 3178-3187, Dec. 2007.
    [13]虞龍,“串並聯諧振逆變器式高頻感應加熱電源的研究”,華南理工大學碩士學位論文,2005年6月。
    [14]S. Chudjuarjeen, A. Sangswang and C. Koompai, “An Improved LLC Resonant Inverter for Induction-Heating Applications With Asymmetrical Control,” IEEE Transactions on Industrial Electronics, vol. 58, no. 7, pp. 2915-2925, July 2011.
    [15]焦俊生,“高頻感應加熱過程的負載電氣特性分析”,銅陵學院電氣工程系,工業加熱第37卷第2期,pp. 56-58,2008年。
    [16]M. Sabahi, S. H. Hosseini, M. B. Sharifian, A. Y. Goharrizi and G. B. Gharehpetian, “Bi-directional power electronic transformer with maximum power-point tracking capability for induction heating applications,” IET Power Electronics, vol. 3, no. 5, pp. 724-731, September 2010.
    [17]S. Zinn and S. L. Semiatin, “ELEMENTS OF INDUCTION HEATING Design, Control, and Applications,” ASM International Electric Power Research Institute, 1988.
    [18]C. Bi, H. Lu, K. Jia, J. Hu and H. Li, “A Novel Multiple-Frequency Resonant Inverter for Induction Heating Applications, ” IEEE Transactions on Power Electronics, vol. 31, no. 12, pp. 8162-8171, Dec. 2016.
    [19]陳威任,“應用於電漿負載具數位控制器之全橋諧振換流器”,大同大學電機工程研究所碩士論文,民國一百零五年七月。
    [20]盧紹賓,“具數位控制器之深海探勘船電源供應系統”,國立臺灣科技大學電機工程系碩士學位論文,民國一百零六年十二月。
    [21]W. J. Cha, J. M. Kwon and B. H. Kwon, “Highly Efficient Asymmetrical PWM Full-Bridge Converter for Renewable Energy Sources, ” IEEE Transactions on Industrial Electronics, vol. 63, no. 5, pp. 2945-2953, May 2016.
    [22]李菊,阮新波,“全橋LLC諧振轉換器的混合式控制策略”,南京航空航天大學航空電源重點實驗室,電工技術學報,第28卷第4期,2013年4月。
    [23]楊忠諺,“兩相交錯式串聯諧振轉換器之研製”,國立臺北科技大學電機工程系碩士班碩士學位論文,民國一百零一年七月。
    [24]李英竹,“具前端脈波幅度調變控制之串聯諧振轉換器的設計”,國立臺北科技大學電機工程系碩士班碩士學位論文,民國一百零一年七月。
    [25]M. Mohammadi and M. Ordonez, “Fast Transient Response of Series Resonant Converters Using Average Geometric Control,” IEEE Transactions on Power Electronics, vol. 31, no. 9, pp. 6738-6755, Sept. 2016.
    [26]柯育寬,“全橋相移式串聯諧振直流/直流轉換器之控制IC”,國立臺灣科技大學電子工程系碩士學位論文,民國九十九年七月。
    [27]Infineon, “CoolMOS™ benefits in both hard and soft switching SMPS topologies,” June 2016.
    [28]王昇龍,“智慧型控制數位化串聯諧振轉換器之研製”,國立中央大學電機工程學系碩士論文,民國一百零二年六月。
    [29]簡聰富,“數位控制系統 VS 類比控制系統”,南台科技大學電機工程系。
    [30]Texas Instruments, TMS320F28035 datasheet, “TMS320F28030/28031/28032/ 28033/28034/28035 Piccolo Microcontrollers datasheet (Rev. K),” June 2016.
    [31]陳建興,“全橋相移式高頻溫控感應加熱器之設計與研製”,中原大學電機工程學系碩士學位論文,民國九十四年六月。
    [32]COSMO FERRITES LIMITED, “Core-EE8020, “Soft Ferrites,” January 2002.
    [33]美台磁材有限公司,EE-8020,“ETD, EER, EC, EI, EEF (EFD) EFC CORES A&T”。
    [34]石力維,“基於微控制器之鋰離子電池即時診斷系統”,大同大學電機工程研究所碩士論文,民國一百零五年七月。
    [35]Texas Instruments, μA747, “DUAL GENERAL-PURPOSE OPERATIONAL AMPLIFIERS,” 1971-1990.
    [36]Coilcraft, CST7030, “Current Sense Transformers,” 2017.
    [37]Fairchild Semiconductor Corporation, KA319, “Dual Comparator,” 2001.
    [38]Fairchild Semiconductor Corporation, DM7408, “Quad 2-Input AND Gates,” July 2001.
    [39]SILICON LABS, Si8233, “0.5 AND 4.0 AMP ISO DRIVERS (2.5 AND 5 KVRMS),” 2015.
    [40]Texas Instruments, “TMS320x2802x, 2803x Piccolo Analog-to-Digital Converter (ADC) and Comparator,” 2008-2009.
    [41]Chroma, PROGRAMMABLE DC POWER SUPPLY MODEL 62100H-600S, “可編程直流電源供應器 62100H-600S 使用手冊”, August 2017.
    [42]Tektronix TDS3014B, “Tektronix TDS3000 Series Digital Phosphor Oscilloscopes”.
    [43]FLUKE, Ti 400, “Thermal Imagers,” September 2013.
    [44]王祥安,張志良,黃榮丞,陳志豪,“成形模面之高效率感應線圈設計”,臺灣能源期刊第一卷第四期,民國一百零三年九月。
    [45]L. Meng, K. W. E. Cheng and K. W. Chan, “Systematic Approach to High-Power and Energy-Efficient Industrial Induction Cooker System: Circuit Design, Control Strategy, and Prototype Evaluation,” IEEE Transactions on Power Electronics, vol. 26, no. 12, pp. 3754-3765, Dec. 2011.

    無法下載圖示 全文公開日期 2023/08/15 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE