簡易檢索 / 詳目顯示

研究生: 鐘俊智
Jun-zhi Zhong
論文名稱: 具同步整流疊接式半橋串聯諧振轉換器研製
Study and Implementation of a Cascoded Half-Bridge Series Resonant Converter with Synchronous Rectification
指導教授: 羅有綱
Yu-kang Lo
邱煌仁
Huang-jen Chiu
口試委員: 劉益華
Yi-hua Liu
林景源
Jing-yuan Lin
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 104
中文關鍵詞: 疊接式半橋串聯諧振轉換器零電壓切換同步整流
外文關鍵詞: Cascoded half-bridge series resonant converter, zero-voltage-switching, synchronous rectifier
相關次數: 點閱:329下載:9
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文提出一具同步整流功能之疊接式半橋串聯諧振轉換器,並使用數學軟體Mathcad模擬不同品質因數Q、K因子、特性阻抗Zo與變壓器圈數比(NP/NS)對電壓增益頻率響應之影響。此電路具有低元件應力的優點,一次側功率元件的電壓應力為輸入電壓的一半,且變壓器可均分輸出電流以減少銅損及輸出同步整流開關之導通損以提高轉換效率。本文對具同步整流疊接式半橋串聯諧振轉換器做詳細的電路分析與設計考量,最後實作一台輸入電壓380 V、輸出電壓12 V、輸出電流54.4 A且具同步整流功能之疊接式半橋串聯諧振轉換器,其效率在20 %負載至滿載均高於93 % 且穩壓率小於1 %。


    This thesis presents a cascoded half-bridge series resonant converter with synchronous rectification. The Mathcad software is used to simulate the influences of the quality factor (Q), K factor, characteristics impedance (Zo), and the transformer turns-ratio (NP/NS) on the frequency response of voltage gain. The proposed converter has the advantage of low device stress. It subjects the off transistor on primary side to only half of the input voltage. The transformers can share the output current to reduce the copper losses. The conduction losses on the output synchronous rectifier can also be reduced to improve the conversion efficiency. Circuit analysis and design consideration of the proposed cascoded half-bridge series resonant converter with synchronous rectification are discussed in details. The prototype converter with an input voltage 380V, output voltage 12 V and the rated output current 54.4 A was implemented and tested. The efficiency can be higher than 93 % at 20 % load to full load conditions and the voltage regulation is less than 1 %.

    摘 要 iii Abstract iv 誌 謝 v 目 錄 vi 圖索引 ix 表索引 xiii 第一章 緒論 1 1.1 研究動機與目的 1 1.2 內文架構簡述 2 第二章 串聯諧振式轉換器原理 4 2.1 理想R-L-C串聯電路 5 2.2 半橋串聯諧振轉換器 7 2.2.1 SRC諧振模式 9 2.2.2 LLC諧振模式 11 2.2.3 零電流切換區間 13 2.2.4 SRC操作模式與LLC操作模式之比較 14 2.3 同步整流技術 17 第三章 疊接式半橋串聯諧振轉換器 20 3.1 疊接式半橋串聯諧振轉換器動作分析 20 3.2 半橋串聯諧振轉換器諧振槽分析 32 3.2.1 諧振槽頻率響應分析 32 3.2.2 品質因數Q對頻率響應的影響 35 3.2.3 K值對頻率響應的影響 36 3.2.4 特性阻抗Zo對頻率響應的影響 38 3.2.5 匝數比n對頻率響應的影響 40 第四章 電路參數設計 43 4.1 控制IC CM6901簡介 43 4.2 功率元件設計 45 4.2.1 電路規格 46 4.2.2 功率開關選擇 46 4.2.3 變壓器設計 47 4.2.4 諧振槽設計 49 4.2.5 同步整流開關選擇 53 4.2.6 輸出濾波電容設計 56 第五章 實驗數據與結果 57 5.1 實驗數據 58 5.2 實驗波形 59 5.3 損耗分析 76 5.3.1 功率開關損耗 76 5.3.2 同步整流開關損耗 77 5.3.3 變壓器損耗 78 5.3.4 諧振電感損耗 80 5.3.5 諧振電容損耗 81 5.3.6 濾波電容損耗 82 5.3.7 整機功率損耗 82 第六章 結論與未來展望 84 6.1 結論 84 6.2 未來展望 85 參考文獻 86

    [1] N. J. Ku, H. J. Jung, R. Y. Kim, and D. S. Hyun, “A novel switching loss minimized PWM method for a high switching frequency three-level inverter with a SiC clamp diode,” in Proc. Energy Conversion Congress and Exposition, Sept. 2011, pp. 3702-3707.
    [2] Z. L. Zhang, J. H. Fu, Y. F. Liu, and P. C. Sen, “Switching loss analysis considering parasitic loop inductance with current source drivers for buck converters,” IEEE Transactions on Power Electronics, vol. 26, no. 7, pp. 1815-1819, July 2011.
    [3] J. E. Baggio, H. L. Hey, H. A. Grundling, H. Pinheiro, and J. R. Pinheiro, “Isolated interleaved-phase-shift-PWM DC-DC ZVS converter,” IEEE Transactions on Industry Applications, vol. 39, no. 6, pp. 1795-1802, Dec. 2003.
    [4] J. M. Burdio, F. Canales, P. M. Barbosa, and F. C. Lee, “Comparison study of fixed-frequency control strategies for ZVS DC/DC series resonant converters,” in Proc. Power Electronics Specialists Conference, 2001, pp. 427-432.
    [5] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications, and Design, Third Edition, John Wiley & Sons Inc., 2003.
    [6] A. I. Pressman, Switching Power Supply Design, Third Edition, McGraw-Hill, 2009.
    [7] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, Second Edition, Kluwer Academic Publishers Group, 2001.
    [8] M. Delshad and H. Farzanehfard, “A new ZCS-PWM converter for high voltage high power application,” in Proc. Electrical Machines and Systems on International Conference, 2005, pp. 1161-1165.
    [9] H. S. Choi and B. H. Cho, “Novel zero-current-switching (ZCS) PWM switch cell minimizing additional conduction loss,” IEEE Transactions on Industrial Electronics, vol. 49, no. 6, pp. 165-172, Feb. 2002.
    [10] G. A. Karveis and S. N. Manias, “Analysis and design of a flyback zero-current switched (ZCS) quasi-resonant (QR) AC/DC converter,” in Proc. Power Electronics Specialists Conference, 1996, pp. 475-480.
    [11] X. Zhang, H. S. H. Chung, X. B. Ruan, and A. Ioinovici, “A ZCS full-bridge converter without voltage overstress on the switches,” IEEE Transactions on Power Electronics, vol. 25, no. 3, pp. 686-698, March 2010.
    [12] J. W. Kim and G. W. Moon, “A new LLC series resonant converter with a narrow switching frequency variation and reduced conduction losses,” IEEE Transactions on Power Electronics, vol. 29, no. 8, pp. 4278-4287, Aug. 2014.
    [13] M. M. A. Rahman, “Single-phase single-stage 3-level AC-to-DC series resonant converter,” in Proc. International Conference on Electro/Information Technology, 2007, pp. 569-573.
    [14] B. R. Lin, C. H. Chao, C. H. Chien, and Y. H. Wang, “Analysis of a new soft switching converter with three resonant tanks,” in Proc. Power Electronics and Drive Systems, 2013, pp. 411-416.
    [15] B. R. Lin and B. R. Hou, “Implementation of a series resonant converter with series-parallel connection,” in Proc. IEEE Conference on Industrial Electronics and Applications, 2011, pp. 1179-1184.
    [16] B. R. Lin, H. K. Chiang, and C. C. Chen, “Analysis of a Zero-Voltage Switching Converter With Two Transformers,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, no. 10, pp. 1088-1092, Oct. 2006.
    [17] C. H. Zhu, “A novel two switch forward converter with two transformers and LLC circuit,” in Proc. International Telecommunications Energy Conference, 2007, pp. 415-419.
    [18] D. Y. Kim, J. K. Kim, and G. W. Moon, “A three-level converter with reduced filter size using two transformers and flying capacitors,” IEEE Transactions on Power Electronics, vol. 28, no. 1, pp. 46-53, Jan. 2013.
    [19] E. S. Kim, J. H. Kim, K. H. Lee, Y. S. Jeon, J. S. Lee, and D. Y. Huh, “LLC resonant converter with two resonant tanks,” in Proc. Applied Power Electronics Conference and Exposition, 2010, pp. 1949-1956.
    [20] E. S. Kim, K. H. Lee, B. G. Chung, J. H. Kim, and M. H. Kye, “A novel topology of LLC resonant inverter with two resonant tanks for Power Conditioning System,” in Proc. Applied Power Electronics Conference and Exposition, 2010, pp. 1698-1703.
    [21] Y. L. Gu, Z. Y. Lu, L. J. Hang, Z. M. Qian, and G. S. Huang, “Three-level LLC series resonant DC/DC converter,” IEEE Transactions on Power Electronics, vol. 20, no. 4, pp. 781-789, July 2005.
    [22] 謝士弘,LLC半橋串聯諧振式轉換器之設計考量與研製,國立台灣科技大學電子工程系碩士論文,2005年。
    [23] 原田耕介著、陳連春譯,交換式電源技術手冊,建興出版社,2006年。
    [24] 梁適安,交換式電源供應器之理論與實務設計,全華科技圖書出版,2011年。
    [25] 吳義利,切換式電源轉換器原理與實用設計(實力設計導向),文笙書局股份有限公司,2012年。
    [26] Champion Microelectronic, “CM6901 Resonant Controller,” Datasheet, 2012.
    [27] TDK Ferrite Cores for Power Supply and EMI/RFI Filter, 2007.

    無法下載圖示 全文公開日期 2019/07/21 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE