簡易檢索 / 詳目顯示

研究生: 趙奕寧
Yi-Ning Chao
論文名稱: 製備參數及操作條件對鑭鈰鋯混合氧化物擔載鎳觸媒催化甲烷產氫反應的影響
Mixed oxide supported nickel catalysts for the hydrogen production from methane reaction
指導教授: 林昇佃
Shawn D. Lin
口試委員: 鍾博文
Po-Wen Chung
曾堯宣
Yao-Hsuan Tseng
陳敬勳
Ching-Shiun Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 145
中文關鍵詞: Ni觸媒混合氧化物載體缺陷螢石結構甲烷產氫反應化學迴圈操作
外文關鍵詞: mixed oxide support, defect flourtie structure, methane steam reforming, methane dry reforming, methane pyrolysis, chemical looping operation
相關次數: 點閱:322下載:18
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著頁岩油的開採和甲烷水合物的發現,以及氫能為未來能源的方案之一,具有高碳氫比的甲烷產氫反應值得深入探討,鎳觸媒對於甲烷產氫反應被大量研究,但還有許多未知數,本研究透過改變製備觸媒參數及操作條件,探討La,Ce,Zr混合氧化物擔載Ni觸媒對於甲烷產氫反應的影響,結果顯示使用金屬載體氧化物La:Zr:Ce =1:1:1 的Ni觸媒對中溫甲烷蒸氣重組具有良好的催化能力,不因觸媒製備方法而有顯著差異,甲烷乾式重組反應穩定性測試結果顯示Ni/LZC觸媒能在500℃持續催化反應100小時不致完全失活,產物分佈隨反應時間改變顯示觸媒狀態的改變影響反應特性,動力學分析顯示甲烷乾式重組中甲烷的反應速率高於二氧化碳,不過甲烷乾式重組中的甲烷反應速率顯著低於甲烷蒸氣重組的甲烷反應速率,我們再將甲烷乾式重組改以迴圈方式操作,結果顯示觸媒可催化甲烷裂解,失活後能經二氧化碳或水汽再生,驗證化學迴圈操作方式可行,不同再生條件後觸媒的特性也有所不同,以700℃ CO2再生條件能夠完全清除積碳,且在之後甲烷裂解反應中的活性、穩定性、即可承受積碳量都較新鮮還原觸媒高,推論與觸媒結構變化和積碳生長的機制改變有關。


    As the extration of shale gas and discovery of methane ice and hydrogen is promosing energy carrier in near future, producing hygrogen from methane deserves to be gained increasing attention. Nickel-based catalysts have been extensively investigated for methane reaction but the catalytic mechanism is still a debate. In this study, nickel supported on LaZrCeOx was used to do methane reaction by changing the catalyst synthesis parameter and reaction condition. The result shows that even using different systhesis method (coprecipitation, combustion) but control metal oxide ratio to La:Zr:Ce = 1:1:1 (mole), Ni/LZC have good activity in SRM, then we change the co reactant form water to carbon dioxide do dry reforming, which retains a good stability operating continuously up to 100 hours and the catalyst characteristic with different onstream time would. Kinetic analyst result show that CH4 with the different co-reactant would influence the rate determining step. We further examine the DRM using a looping operation. The result show that CH4 pyrolysis and reverse boudouard reaction occur, respectively, in the two-step operation and the CO2 regeneration at 973K can effectively restore the initial methane pyrolysis activity and also prolong the catalyst life, speculating the extension of catalyst life due to the change of carbon formation mechanism.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XI 第一章、緒論 1 1.1 前言 1 1.2 文獻回顧 5 1.2.1 甲烷蒸汽重組反應(Steam Reforming of Methane ) 5 1.2.2 甲烷乾式重組反應(Dry reforming of Methane) 5 1.2.3 甲烷直接裂解(Methane Pyrolysis Reaction) 6 1.2.4 鎳觸媒於不同金屬氧化物載體的影響 6 1.2.5 鎳觸媒於甲烷裂解反應研究 9 1.2.6 鎳觸媒再活化研究 13 1.2.7 煤汽化研究 14 1.2.8 以燃燒法製備Ni/Y2Zr2O7於甲烷蒸氣重組反應 14 1.2.9 混合氧化物擔載鎳觸媒應用於中溫甲烷蒸氣重組反應 14 1.3 研究目的與方法 18 第二章、研究設備與方法 19 2.1 研究架構與方法 19 2.2 藥品與儀器設備 20 2.2.1 藥品部分 20 2.2.2 氣體部分 20 2.2.3 儀器部分 21 2.3 觸媒製備 22 2.3.1 共沉澱法 22 2.3.2 燃燒法 22 2.3.3 燃燒含浸法 22 2.3.4 觸媒命名 23 2.4 觸媒特性分析 23 2.4.1 X光粉末繞射儀 23 2.4.2 程溫還原反應 24 2.4.3 比表面積與孔隙測定儀 25 2.4.4 熱重分析儀 25 2.4.5 感應式耦合電漿原子放射光譜儀 25 2.4.6 紫外可見漫反射光譜儀UV-Vis-DRS 26 2.4.7 甲烷重組反應 26 2.4.8 甲烷裂解反應積碳計算方式 27 2.4.9 薄膜反應器 27 2.4.10 動力學反應速率定義: 28 第三章、結果與討論 29 3.1 Ni/LZC於甲烷蒸氣重組反應分析 29 3.1.1 燃燒法合成Ni/LZC與共沉澱法比較 30 3.1.2 以M3+/M4+=1 pyrochlore比例合成LZC載體與特性分析 46 3.1.3 鎳擔載M3+/M4+=1比例金屬氧化物於甲烷蒸氣重組反應測試 57 3.1.4 薄膜反應器對於Ni/LZC在甲烷蒸氣重組反應分析 69 3.2 Ni/LZC在低溫甲烷乾式重組分析 72 3.2.1 低溫甲烷乾式重組反應測試 72 3.2.2 低溫甲烷乾式重組反應途徑與分析 76 3.2.3 低溫甲烷乾式重組動力學分析 83 3.3 甲烷乾式重組反應的化學迴路操作模式測試 89 3.3.1 甲烷裂解反應及化學迴圈操作反應結果 89 3.3.2 化學迴圈操作不同階段觸媒特性分析 96 3.3.3 化學迴圈操作延長活性探討 111 第四章、結論 116 參考文獻 119 附錄 124

    1. <International Energy Agency (IEA). World energy outlook 2014. Tech rep..pdf>.
    2. Lu, S.-M., Retraction notice to: “A global survey of gas hydrate development and reserves: Specifically in the marine field”. Vol. 64. 2016. 851.
    3. Karim, N. and S. Jonathan, How fuel cells work: Polymer exchange membrane fuel cells. How Stuff Works, accessed August, 2011. 4.
    4. Jechura, J., <07_Hydrogen_from_SMR.pdf>. 2015.
    5. Zhang, Y., W. Wang, Z. Wang, X. Zhou, Z. Wang, and C.-J. Liu, Steam reforming of methane over Ni/SiO2 catalyst with enhanced coke resistance at low steam to methane ratio. Catalysis Today, 2015. 256: p. 130-136.
    6. Zhou, L., Y. Guo, and K. Hideo, Unsupported nickel catalysts for methane catalytic decomposition into pure hydrogen. AIChE Journal, 2014. 60(8): p. 2907-2917.
    7. Zhou, L., L.R. Enakonda, S. Li, D. Gary, P. Del-Gallo, C. Mennemann, and J.M. Basset, Iron ore catalysts for methane decomposition to make COx free hydrogen and carbon nano material. Journal of the Taiwan Institute of Chemical Engineers, 2018. 87: p. 54-63.
    8. Tada, M., S. Zhang, S. Malwadkar, N. Ishiguro, J.-i. Soga, Y. Nagai, K. Tezuka, H. Imoto, S. Otsuka-Yao-Matsuo, S.-i. Ohkoshi, and Y. Iwasawa, The Active Phase of Nickel/Ordered Ce2Zr2Ox Catalysts with a Discontinuity (x=7–8) in Methane Steam Reforming. Angewandte Chemie International Edition, 2012. 51(37): p. 9361-9365.
    9. Kumar, P., Y. Sun, and R.O. Idem, Nickel-based ceria, zirconia, and ceria–zirconia catalytic systems for low-temperature carbon dioxide reforming of methane. Energy & Fuels, 2007. 21(6): p. 3113-3123.
    10. Tada, M., S. Zhang, S. Malwadkar, N. Ishiguro, J.i. Soga, Y. Nagai, K. Tezuka, H. Imoto, S. Otsuka‐Yao‐Matsuo, and S.i. Ohkoshi, The active phase of nickel/ordered Ce2Zr2Ox catalysts with a discontinuity (x= 7–8) in methane steam reforming. Angewandte Chemie, 2012. 124(37): p. 9495-9499.
    11. Ma, Y., X. Wang, X. You, J. Liu, J. Tian, X. Xu, H. Peng, W. Liu, C. Li, and W. Zhou, Nickel‐Supported on La2Sn2O7 and La2Zr2O7 Pyrochlores for Methane Steam Reforming: Insight into the Difference between Tin and Zirconium in the B Site of the Compound. ChemCatChem, 2014. 6(12): p. 3366-3376.
    12. Pino, L., C. Italiano, A. Vita, M. Laganà, and V. Recupero, Ce0. 70La0. 20Ni0.10O2-δ catalyst for methane dry reforming: influence of reduction temperature on the catalytic activity and stability. Applied Catalysis B: Environmental, 2017. 218: p. 779-792.
    13. Urdiana, G., R. Valdez, G. Lastra, M. Valenzuela, and A. Olivas, Production of hydrogen and carbon nanomaterials using transition metal catalysts through methane decomposition. Materials Letters, 2018. 217: p. 9-12.
    14. Muradov, N., Z. Chen, and F. Smith, Fossil hydrogen with reduced CO2 emission: modeling thermocatalytic decomposition of methane in a fluidized bed of carbon particles. International journal of hydrogen energy, 2005. 30(10): p. 1149-1158.
    15. Lee, K.K., G.Y. Han, K.J. Yoon, and B.K. Lee, Thermocatalytic hydrogen production from the methane in a fluidized bed with activated carbon catalyst. Catalysis Today, 2004. 93: p. 81-86.
    16. Otsuka, K., H. Ogihara, and S. Takenaka, Decomposition of methane over Ni catalysts supported on carbon fibers formed from different hydrocarbons. Carbon, 2003. 41(2): p. 223-233.
    17. Amin, A., W. Epling, and E. Croiset, Reaction and deactivation rates of methane catalytic cracking over Nickel. Industrial & Engineering Chemistry Research, 2011. 50(22): p. 12460-12470.
    18. Rego de Vasconcelos, B., D. Pham Minh, P. Sharrock, and A. Nzihou, Regeneration study of Ni/hydroxyapatite spent catalyst from dry reforming. Catalysis Today, 2018. 310: p. 107-115.
    19. Molina, A. and F. Mondragón, Reactivity of coal gasification with steam and CO2. Fuel, 1998. 77(15): p. 1831-1839.
    20. Ohtsuka, Y. and K. Asami, Highly active catalysts from inexpensive raw materials for coal gasification. Catalysis Today, 1997. 39(1): p. 111-125.
    21. Fang, X., X. Zhang, Y. Guo, M. Chen, W. Liu, X. Xu, H. Peng, Z. Gao, X. Wang, and C. Li, Highly active and stable Ni/Y2Zr2O7 catalysts for methane steam reforming: On the nature and effective preparation method of the pyrochlore support. international journal of hydrogen energy, 2016. 41(26): p. 11141-11153.
    22. 林力雋, 混合氧化物擔載鎳觸媒應用於中溫甲烷蒸汽重組反應, in 化學工程系. 2016, 國立臺灣科技大學: 台北市. p. 139.
    23. Xiao, Y., Z. Feng, X. Huang, L. Huang, Z. Long, Q. Wang, and Y. Hou, Synthesis of lanthanum oxide nanosheets by a green carbonation process. Chinese science bulletin, 2014. 59(16): p. 1864-1867.
    24. Khademinia, S. and M. Behzad, Lanthanum cerate (La2Ce2O7): hydrothermal synthesis, characterization and optical properties. International Nano Letters, 2015. 5(2): p. 101-107.
    25. Yao, H. and Y.Y. Yao, Ceria in automotive exhaust catalysts: I. Oxygen storage. Journal of Catalysis, 1984. 86(2): p. 254-265.
    26. Cai, W., L. Ye, L. Zhang, Y. Ren, B. Yue, X. Chen, and H. He, Highly dispersed nickel-containing mesoporous silica with superior stability in carbon dioxide reforming of methane: the effect of anchoring. Materials, 2014. 7(3): p. 2340-2355.
    27. Vita, A., G. Cristiano, C. Italiano, L. Pino, and S. Specchia, Syngas production by methane oxy-steam reforming on Me/CeO2 (Me= Rh, Pt, Ni) catalyst lined on cordierite monoliths. Applied Catalysis B: Environmental, 2015. 162: p. 551-563.
    28. Huang, T.-J., H.-J. Lin, and T.-C. Yu, A comparison of oxygen-vacancy effect on activity behaviors of carbon dioxide and steam reforming of methane over supported nickel catalysts. Catalysis Letters, 2005. 105(3-4): p. 239-247.
    29. Kyriakou, V., I. Garagounis, A. Vourros, E. Vasileiou, A. Manerbino, W. Coors, and M. Stoukides, Methane steam reforming at low temperatures in a BaZr0.7Ce0. 2Y0. 1O2. 9 proton conducting membrane reactor. Applied Catalysis B: Environmental, 2016. 186: p. 1-9.
    30. Nikoo, M.K. and N. Amin, Thermodynamic analysis of carbon dioxide reforming of methane in view of solid carbon formation. Fuel Processing Technology, 2011. 92(3): p. 678-691.
    31. Figueiredo, J., J. Rivera-Utrilla, and M. Ferro-Garcia, Gasification of active carbons of different texture impregnated with nickel, cobalt and iron. Carbon, 1987. 25(5): p. 703-708.
    32. Wolf, A., A. Jess, and C. Kern, Syngas Production via Reverse Water‐Gas Shift Reaction over a Ni‐Al2O3 Catalyst: Catalyst Stability, Reaction Kinetics, and Modeling. Chemical Engineering & Technology, 2016. 39(6): p. 1040-1048.
    33. Wu, J.C.S. and H.-C. Chou, Bimetallic Rh–Ni/BN catalyst for methane reforming with CO2. Chemical Engineering Journal, 2009. 148(2): p. 539-545.
    34. Kechagiopoulos, P., S. Angeli, and A. Lemonidou, Low temperature steam reforming of methane: A combined isotopic and microkinetic study. Applied Catalysis B: Environmental, 2017. 205: p. 238-253.
    35. Xie, Z., Q. Liao, M. Liu, Z. Yang, and L. Zhang, Micro-kinetic modeling study of dry reforming of methane over the Ni-based catalyst. Energy Conversion and Management, 2017. 153: p. 526-537.
    36. Anic, K., A. Wolfbeisser, H. Li, C. Rameshan, K. Föttinger, J. Bernardi, and G. Rupprechter, Surface spectroscopy on UHV-grown and technological Ni–ZrO2 reforming catalysts: from UHV to Operando conditions. Topics in catalysis, 2016. 59(17-18): p. 1614-1627.
    37. Souza, M.M., D.A. Aranda, and M. Schmal, Reforming of methane with carbon dioxide over Pt/ZrO2/Al2O3 catalysts. Journal of Catalysis, 2001. 204(2): p. 498-511.
    38. Yu, M., Y.-A. Zhu, Y. Lu, G. Tong, K. Zhu, and X. Zhou, The promoting role of Ag in Ni-CeO2 catalyzed CH4-CO2 dry reforming reaction. Applied Catalysis B: Environmental, 2015. 165: p. 43-56.
    39. Gálvez, M.E., A. Albarazi, and P. Da Costa, Enhanced catalytic stability through non-conventional synthesis of Ni/SBA-15 for methane dry reforming at low temperatures. Applied Catalysis A: General, 2015. 504: p. 143-150.
    40. Aghamohammadi, S., M. Haghighi, M. Maleki, and N. Rahemi, Sequential impregnation vs. sol-gel synthesized Ni/Al2O3-CeO2 nanocatalyst for dry reforming of methane: Effect of synthesis method and support promotion. Molecular Catalysis, 2017. 431: p. 39-48.
    41. Baudouin, D., U. Rodemerck, F. Krumeich, A.d. Mallmann, K.C. Szeto, H. Ménard, L. Veyre, J.-P. Candy, P.B. Webb, C. Thieuleux, and C. Copéret, Particle size effect in the low temperature reforming of methane by carbon dioxide on silica-supported Ni nanoparticles. Journal of Catalysis, 2013. 297: p. 27-34.
    42. Wang, S., A Comprehensive Study on Carbon Dioxide Reforming of Methane over Ni/γ-Al2O3 Catalysts. Industrial & Engineering Chemistry Research, 1999. 38(7): p. 2615-2625.
    43. Bachiller-Baeza, B., C. Mateos-Pedrero, M.A. Soria, A. Guerrero-Ruiz, U. Rodemerck, and I. Rodríguez-Ramos, Transient studies of low-temperature dry reforming of methane over Ni-CaO/ZrO2-La2O3. Applied Catalysis B: Environmental, 2013. 129: p. 450-459.
    44. Yao, L., J. Shi, H. Xu, W. Shen, and C. Hu, Low-temperature CO2 reforming of methane on Zr-promoted Ni/SiO2 catalyst. Fuel Processing Technology, 2016. 144: p. 1-7.
    45. Bradford, M.C.J. and M.A. Vannice, Catalytic reforming of methane with carbon dioxide over nickel catalysts I. Catalyst characterization and activity. Applied Catalysis A: General, 1996. 142(1): p. 73-96.
    46. Yao, L., Y. Wang, J. Shi, H. Xu, W. Shen, and C. Hu, The influence of reduction temperature on the performance of ZrOx/Ni-MnOx/SiO2 catalyst for low-temperature CO2 reforming of methane. Catalysis Today, 2017. 281: p. 259-267.
    47. Li, X., Q. Hu, Y. Yang, Y. Wang, and F. He, Studies on stability and coking resistance of Ni/BaTiO3–Al2O3 catalysts for lower temperature dry reforming of methane (LTDRM). Applied Catalysis A: General, 2012. 413-414: p. 163-169.
    48. Liu, H., D. Wierzbicki, R. Debek, M. Motak, T. Grzybek, P. Da Costa, and M.E. Gálvez, La-promoted Ni-hydrotalcite-derived catalysts for dry reforming of methane at low temperatures. Fuel, 2016. 182: p. 8-16.
    49. Yabe, T., K. Mitarai, K. Oshima, S. Ogo, and Y. Sekine, Low-temperature dry reforming of methane to produce syngas in an electric field over La-doped Ni/ZrO2 catalysts. Fuel Processing Technology, 2017. 158: p. 96-103.
    50. Xu, J., Q. Xiao, J. Zhang, Y. Sun, and Y. Zhu, NiO-MgO nanoparticles confined inside SiO2 frameworks to achieve highly catalytic performance for CO2 reforming of methane. Molecular Catalysis, 2017. 432: p. 31-36.
    51. Frusteri, F., G. Italiano, C. Espro, C. Cannilla, and G. Bonura, H2 production by methane decomposition: Catalytic and technological aspects. International Journal of Hydrogen Energy, 2012. 37(21): p. 16367-16374.
    52. Yoon, Y., H. Kim, and J. Lee, Enhanced catalytic behavior of Ni alloys in steam methane reforming. Journal of Power Sources, 2017. 359: p. 450-457.
    53. Amin, A.M., E. Croiset, and W. Epling, Review of methane catalytic cracking for hydrogen production. International Journal of Hydrogen Energy, 2011. 36(4): p. 2904-2935.

    QR CODE