簡易檢索 / 詳目顯示

研究生: 劉宇涵
Yu-Han Liu
論文名稱: ZSM-5擔載銅、鐵、鎳觸媒催化甲烷選擇氧化反應的參數探討
Methane Partial Oxidation over Cu、Fe、Ni Supported on ZSM-5
指導教授: 林昇佃
Shawn D. Lin
口試委員: 楊家銘
Chia-Min Yang
曾堯宣
Yao-Hsuan Tseng
俞聖法
Steve Sheng-Fa Yu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 107
中文關鍵詞: 甲烷部分氧化反應氧化性甲烷蒸汽重組反應ZSM-5Cu觸媒Fe觸媒Ni觸媒
外文關鍵詞: partial oxidation of methane,, oxidative steam reforming of methane, ZSM-5, copper catalyst, nickel catalyst, iron catalyst
相關次數: 點閱:228下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 甲烷轉化為甲醇或甲醛是天然氣經濟利用的重要的議題,甲醇(甲醛)是一種有價值的燃料和合成烴產品的原料。目前工業上是利用甲烷蒸氣重組將甲烷轉化成合成氣再合成甲醇(甲醛),但甲烷蒸氣重組是一個高吸熱的反應,所以甲烷直接合成甲醇或甲醛是一個具有經濟效益的反應。本研究先以文獻常用於之觸媒Cu/ZSM-5,使用三種不同型態ZSM-5 (NaZSM-5、NH4ZSM-5、HZSM-5)以離子交換法製備觸媒,並探討其對甲烷部分氧化轉化活性和產率之影響,實驗結果顯示Cu/ HZSM-5反應性最高,可歸因於其中Cu含量最高。由低溫升至375-475℃範圍先發生完全氧化反應,更高溫才開始產生部分氧化產物,包含H2、CO與HCHO,推測是由於完全氧化產物參與導致部分氧化產物生成,測試結果顯示部分氧化產物主要是透過氧化性甲烷蒸汽重組反應所生成。接著討論不同反應條件下對氧化性甲烷蒸汽重組反應的影響,我們改變S/M、M/O比例以及WHSV,實驗結果顯示當M/O = 7和S/M = 1時部分氧化產物的產率最高,另外當WHSV較大(低轉化率)時只會產生二氧化碳和水,而WHSV較小(高轉化率)時部分氧化產物產率會增加。最後比較不同金屬(銅、鐵、鎳)擔載於HZSM-5對甲烷部分氧化反應之差異,結果顯示Cu/HZSM-5有最高的甲烷轉化率與最高的部分氧化產物產率,Fe/HZSM-5次之,而Ni/HZSM-5僅產生二氧化碳和水。


    Methane direct conversion to methanol or formaldehyde is important for the application of natural gas. Methanol (formaldehyde) is a valuable fuel and is also a raw material for synthesizing various hydrocarbon products. The present production of methanol (formaldehyde) in the industry is a two-step method, involving methane reforming into and methanol synthesis from syngas of which methane reforming. Therefore, methane direct conversion to methanol or formaldehyde is a cost-effective reaction. In this study, Cu/ZSM-5, a commonly used catalyst for the partial oxidation of methane. NaZSM-5, NH4ZSM-5 and HZSM-5, are prepared by ion-exchanged method and tested. Cu/HZSM-5 appears to be the best catalyst, attributable to its highest Cu loading. The total oxidation of methane occurs at low temperature, while the partial oxidation products like CO, H2 and HCHO are observed at high temperature. This is confirmed that from total oxidation participate in the methane conversion via oxidative steam reforming. The ratios of S/M, M/O and WHSV are varied for optimizing the yield of partial oxidation products. The results showed that the yield of partial oxidation products is the highest when M/O = 7 and S/M = 1. In addition, at high WHSV when the conversion is low, only CO2 and H2O are observed, but when the conversion is high the yield of CO, H2, HCHO increase. The last part compares the partial oxidation of methane with different metals (Cu, Fe and Ni) supported on HZSM-5. The results show that Cu/HZSM-5 has the highest yield of CO, H2 and HCHO. The next is Fe/HZSM-5, but only CO2, H2O are observed on Ni/HZSM-5.

    摘要 I Abstract II 致謝 III 圖目錄 VI 表目錄 X 第1章 緒論 1 1.1 前言 1 1.2 文獻回顧 2 1.2.1 甲烷部分氧化反應 2 1.2.2 銅、鐵觸媒應用於甲烷部分氧化生成甲醇或甲醛反應 3 1.2.3 氧化性甲烷蒸汽重組反應 7 1.3 研究目的 8 第2章 研究設備與方法 9 2.1 研究架構與方法 9 2.2 藥品與儀器設備 10 2.2.1 藥品 10 2.2.2 氣體 10 2.2.3 儀器 11 2.3 觸媒製備 12 2.3.1 載體製備 12 2.3.2 觸媒製備 13 2.4 觸媒特性分析 14 2.4.1 X光粉末繞射儀(XRD) 14 2.4.2 比表面積與孔隙測定儀(BET) 14 2.4.3 感應式耦合電漿原子放射光譜儀(ICP-OES) 15 2.4.4 氨氣程溫脫附 (NH3 -TPD) 16 2.4.5 程溫還原反應(TPR) 17 2.4.6 NSRRC EXAFS 17 2.4.7 甲烷部分氧化反應(POM) 18 2.4.8 氧化性甲烷蒸汽重組反應(OSRM) 18 2.4.9 活化能分析 19 第3章 結果與討論 20 3.1 Cu擔載於不同類型ZSM-5之反應現象比較 20 3.1.1 XRD分析 21 3.1.2 程溫還原反應(TPR)分析 22 3.1.3 表面積及孔隙測定儀(BET)分析 24 3.1.4 甲烷部分氧化反應測試 26 3.1.5 部分氧化產物生成路徑之測試 33 3.1.6 反應後XRD分析 40 3.1.7 氨氣程溫脫附 (NH3 -TPD) 41 3.1.8 X光吸收光譜(XANES、EXAFS) 44 3.2 不同進料比以及WHSV對氧化性甲烷蒸汽重組(OSRM)的影響 50 3.2.1 水與甲烷進料比例(S/M)對OSRM的影響 50 3.2.2 甲烷與氧氣進料比例(M/O)對OSRM的影響 59 3.2.3 不同WHSV對OSRM的影響 65 3.2.4 觸媒穩定性測試 69 3.3 不同金屬(Cu、Fe、Ni)擔載於HZSM-5之反應現象比較 71 3.3.1 XRD分析 71 3.3.2 程溫還原反應(TPR)分析 72 3.3.3 表面積及孔隙測定儀(BET)分析 73 3.3.4 不同前處理條件進行甲烷部分氧化反應測試 75 3.3.5 甲烷部分氧化反應測試 77 3.3.6 反應(甲烷部分氧化)後XRD分析 80 3.3.7 氨氣程溫脫附 (NH3 -TPD) 81 第4章 結論 84 參考資料 85 第5章 附錄 87 附錄一 Cu/CeO2與Cu/CeO2-S 觸媒之甲烷部分氧化反應測試 87

    [1] B. Michalkiewicz, "Partial oxidation of methane to formaldehyde and methanol using molecular oxygen over Fe-ZSM-5," Applied Catalysis A: General, vol. 277, no. 1-2, pp. 147-153, 2004.
    [2] N. R. HUNTER*, H. D. GESSER, L. A. MORTON, and P. S. YARLAGADDA, "Methanol Formation at High Pressure by the Catalyzed Oxidation of Natural Gas and by the Sensitized Oxidation of Methane.," Applied Catalysis, vol. 57, pp. 45-54, 1990.
    [3] S. H. Taylora, J. S. J. Hargreavesb, G. J. Hutchingsa, R. W. Joynerb, and C. W. Lembacher, "The partial oxidation of methane to methanol:An approach to catalyst design," CatalysisToday, vol. 42, pp. 217-224, 1998.
    [4] J. He, Y. Li, D. An, Q. Zhang, and Y. Wang, "Selective oxidation of methane to formaldehyde by oxygen over silica-supported iron catalysts," Journal of Natural Gas Chemistry, vol. 18, no. 3, pp. 288-294, 2009.
    [5] C. Hammond et al., "Direct catalytic conversion of methane to methanol in an aqueous medium by using copper-promoted Fe-ZSM-5," Angew Chem Int Ed Engl, vol. 51, no. 21, pp. 5129-33, May 21 2012.
    [6] D. Park and J. Lee, "Biological conversion of methane to methanol," Korean Journal of Chemical Engineering, vol. 30, no. 5, pp. 977-987, 2013.
    [7] S. I. Chan et al., "Efficient oxidation of methane to methanol by dioxygen mediated by tricopper clusters," Angew Chem Int Ed Engl, vol. 52, no. 13, pp. 3731-5, Mar 25 2013.
    [8] C.-C. Liu, C.-Y. Mou, S. S. F. Yu, and S. I. Chan, "Heterogeneous formulation of the tricopper complex for efficient catalytic conversion of methane into methanol at ambient temperature and pressure," Energy & Environmental Science, vol. 9, no. 4, pp. 1361-1374, 2016.
    [9] P. J. Smeets et al., "Oxygen precursor to the reactive intermediate in methanol synthesis by Cu-ZSM-5," J Am Chem Soc, vol. 132, no. 42, pp. 14736-8, Oct 27 2010.
    [10] G. Berlier, A. Zecchina, G. Spoto, G. Ricchiardi, S. Bordig, and C. Lambertia, "The role of Al in the structure and reactivity of iron centers in Fe-ZSM-5-based catalysts: a statistically based infrared study," Journal of Catalysis, vol. 215, no. 2, pp. 264-270, 2003.
    [11] A. Zecchina, M. Rivallan, G. Berlier, C. Lamberti, and G. Ricchiardi, "Structure and nuclearity of active sites in Fe-zeolites: comparison with iron sites in enzymes and homogeneous catalysts," Phys Chem Chem Phys, vol. 9, no. 27, pp. 3483-99, Jul 21 2007.
    [12] M. M. V. M. Souza, N. F. P. Ribeiro, O. R. M. Neto, I. O. Cruz, and M. Schmal, "Autothermal reforming of methane over nickel catalysts prepared from hydrotalcite-like compounds," Natural Gas Conversion vol. VIII, pp. 451-456, 2007.
    [13] M. M. V. M. Souza, O. R. Macedo Neto, and M. Schmal, "Synthesis Gas Production from Natural Gas on Supported Pt Catalysts," Journal of Natural Gas Chemistry, vol. 15, no. 1, pp. 21-27, 2006.
    [14] B. A. Matheson et al., "Robotic External Leak Locator (RELL) leak plume field detection on the International Space Station (ISS)," presented at the Systems Contamination: Prediction, Control, and Performance 2018, 2018.
    [15] C. Kalamaras, D. Palomas, R. Bos, A. Horton, M. Crimmin, and K. Hellgardt, "Selective Oxidation of Methane to Methanol Over Cu- and Fe-Exchanged Zeolites: The Effect of Si/Al Molar Ratio," Catalysis Letters, vol. 146, no. 2, pp. 483-492, 2016.
    [16] P. Vanelderen, R. G. Hadt, P. J. Smeets, E. I. Solomon, R. A. Schoonheydt, and B. F. Sels, "Cu-ZSM-5: A biomimetic inorganic model for methane oxidation," J Catal, vol. 284, no. 2, pp. 157-164, Dec 1 2011.
    [17] P. Voogd, J. J. F. Scholten, and H. v. Bekkum, "Use of the t-plot—De Boer method in pore volume determinations of ZSM-5 type zeolites," Colloids and Surfaces, vol. 55, pp. 163-171, 1991.
    [18] M. E. S. Hegarty*, A. M. O'Connor, and J. R. H. Ross, "Syngas production from natural gas using ZrO2-supported metals.," Catalysis Today, vol. 42, pp. 225-232, 1998.
    [19] Z.-W. Liu, K.-W. Jun, H.-S. Roh, and S.-E. Park, "Hydrogen production for fuel cells through methane reforming at low temperature," J. Power Sources, vol. 111, pp. 283-287, 2002.
    [20] O. Mihai et al., "The effect of Cu-loading on different reactions involved in NH3-SCR over Cu-BEA catalysts," Journal of Catalysis, vol. 311, pp. 170-181, 2014.
    [21] J. Halász et al., "Selective reduction of no over copper-containing modified zeolites," Stud. Surf. Sci. Catal., vol. 96, pp. 675–685, 1995.
    [22] K. Kubo, H. Iida, S. Namba, and A. Igarashi, "Ultra-high steaming stability of Cu-ZSM-5 zeolite as naphtha cracking catalyst to produce light olefin," Catalysis Communications, vol. 29, pp. 162-165, 2012.
    [23] K. Suzuki, Y. Aoyagi, N. Katada, M. Choi, R. Ryoo, and M. Niwa, "Acidity and catalytic activity of mesoporous ZSM-5 in comparison with zeolite ZSM-5, Al-MCM-41 and silica–alumina," Catalysis Today, vol. 132, no. 1-4, pp. 38-45, 2008.
    [24] M. Niwa and N. Katada, "Measurements of acidic property of zeolites by temperature programmed desorption of ammonia.," Catalysis Surveys from Japan vol. 1, pp. 215-226, 1997.
    [25] I. J. Drake, K. L. Fujdala, S. Baxamusa, A. T. Bell, and T. D. J. T. J. o. P. C. B. Tilley, "Effects of precursor composition on the local structure of Cu dispersed on mesoporous silica: A detailed X-ray absorption spectroscopy study," vol. 108, no. 48, pp. 18421-18434, 2004.
    [26] F.-Q. FAN, M. MENG, Y. TIAN, L.-R. ZHENG, J. ZHANG, and T.-D. J. A. P.-C. S. HU, "Effect of Cu Loading on the Structure and Catalytic Performance of the LNT Catalyst CuO-K2CO3/TiO2," vol. 31, no. 9, pp. 1761-1770, 2015.
    [27] D. Palagin, A. J. Knorpp, A. B. Pinar, M. Ranocchiari, and J. A. van Bokhoven, "Assessing the relative stability of copper oxide clusters as active sites of a CuMOR zeolite for methane to methanol conversion: size matters?," Nanoscale, vol. 9, no. 3, pp. 1144-1153, 2017.
    [28] K. Keyvanloo, B. Huang, T. Okeson, H. Hamdeh, and W. Hecker, "Effect of Support Pretreatment Temperature on the Performance of an Iron Fischer–Tropsch Catalyst Supported on Silica-Stabilized Alumina," Catalysts, vol. 8, no. 2, 2018.
    [29] J. Jones et al., "Thermally stable single-atom platinum-on-ceria catalysts via atom trapping," Science, vol. 353, no. 6295, pp. 150-4, Jul 8 2016.

    QR CODE