簡易檢索 / 詳目顯示

研究生: 林力雋
Li-Chun Lin
論文名稱: 混合氧化物擔載鎳觸媒應用於中溫甲烷蒸汽重組反應
Mixed oxide supported Ni catalysts for mid-temperature methane steam reforming
指導教授: 林昇佃
Shawn D. Lin
口試委員: 陳敬勳
none
曾堯宣
none
楊家銘
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 139
中文關鍵詞: 中溫甲烷蒸汽重組Ni觸媒混合氧化物載體缺陷螢石結構
外文關鍵詞: fluorite structure.
相關次數: 點閱:319下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氫能為未來替代能源的方案之一,目前工業上大部分氫氣的來源仍來自於甲烷蒸汽重組反應(SRM),這是由於甲烷具有高氫碳比例(H/C=4),一般工業上SRM操作溫度約700~900℃,但高溫環境下操作會增加能源的耗損與危險性。因此,中溫(400~600℃)甲烷蒸汽重具有發展潛力。本研究探討一系列不同比例混合氧化物(La2O3-ZrO2-CeO2) 擔載Ni觸媒,結果顯示Ce的含量明顯提升Ni觸媒低溫(≦500℃)催化活性及穩定性,其中最佳比例La:Zr:Ce =1:1:1 (mole)的Ni觸媒在400~600℃可有效催化SRM,在WHSV=2h-1條件下達到平衡轉化率,並在500℃能穩定催化反應24小時無失活現象發生,有接近理論H2產率(約4)的高H2產率及低CO選擇率(約5%)。此外,TGA與XRD分析結果顯示Ni/LZC觸媒在500℃ 24小時反應後並無積碳生成或Ni顆粒金屬團聚現象發生,值得注意的是高Ni含量(40wt%)情況下XRD分析Ni金屬顆粒大小約為10 nm,EXAFS分析Ni金屬配位數約為6,顯示Ni金屬具有良好的分散性,此結果可能來自於Ni金屬與LZC載體具有良好作用力。


    Hydrogen is a possible choice for future energy supplies. Hydrogen mainly comes from the steam reforming of methane (SRM), which contains a high ratio of H/C = 4. Industrial SRM operating temperature is around 700~900℃, but high temperature increase energy consumption and process stability. Therefore, the SRM at mid-temperatures (400–600°C) is examined in this study. A series of La2O3-ZrO2-CeO2-mixed oxide is studied as the support for Ni catalysts. Increase in CeO2 content results in increased activity and stability at ≦500℃. The prepared Ni/LZC, with La:Zr:Ce = 1:1:1 (mole), catalysts readily catalyzed SRM and can reach equilibrium conversion starting from 400°C at WHSV = 2 h-1. The best-performed Ni/LZC provides high H2 yield of around 4 and low CO selectivity of less than 5% and the catalyst shows no activity loss during SRM at 500°C for 24 hours. TGA demonstrate that carbon deposition is significantly suppressed on this catalyst. Moreover, XRD results show Ni particle size of around 10 nm when Ni content is as high as 40% and no particle agglomeration is observed after 24-h reaction test at 500°C. EXAFS analyses show a coordination number of Ni metal of around 6, which shows high Ni metal dispersion probably by enhance the interactions between Ni and the support.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XI 第一章 緒論 1 1.1 前言 1 1.2文獻回顧 3 1.2.1甲烷蒸汽重組反應(Steam Reforming of Methane ) 3 1.2.2鎳觸媒於重組反應應用 5 1.3 研究目的與方法 9 第二章 研究設備與方法 10 2.1 研究架構與方法 10 2.2藥品與儀器設備 11 2.2.1藥品部分 11 2.2.2氣體部分 11 2.3.3儀器部分 12 2.4觸媒製備 12 2.5觸媒特性分析 13 2.5.1X光粉末繞射儀(XRD) 13 2.5.2程溫還原反應(TPR) 13 2.5.3比表面積與孔隙測定儀(BET) 14 2.5.4熱重分析儀(TGA) 14 2.5.5感應式耦合電漿原子放射光譜儀(ICP) 14 2.5.6甲烷蒸汽重組反應 15 第三章 結果與討論 16 3.1以La、Zr、Ce組成二元載體擔載鎳觸媒 16 3.1.1XRD分析 16 3.1.2TPR 分析 20 3.1.3表面積及孔隙測定儀(BET)分析 23 3.1.4甲烷蒸汽重組反應測試 25 3.1.5觸媒穩定性測試 33 3.2觸媒CeO2量對Ni/LaZrOx的影響 39 3.2.1XRD分析 40 3.2.2TPR 分析 44 3.2.3表面積及孔隙測定儀(BET)分析 48 3.2.4甲烷蒸汽重組反應測試 50 3.2.5Ni/LZCX觸媒穩定性測試 58 3.2.6Ni/LZC觸媒XANES分析 70 3.2.7Ni/LZC觸媒的動力學活性分析 73 3.2.8Ni/LZC觸媒可能反應作用 77 3.2.9Ni/LZC觸媒甲烷乾式重組反應測試 84 3.3LZC載體擔載不同比例Ni金屬探討 92 3.3.1XRD 分析 93 3.3.2TPR 分析 94 3.3.3表面積及孔隙測定儀(BET)分析 96 3.3.4甲烷蒸汽重組反應測試 98 3.3.5 20%Ni/LZC觸媒穩定性測試 101 第四章 結論 104 參考文獻 107 第五章 附錄 112 附錄一LaNiO3觸媒於中溫甲烷汽重組反應測試 112 LaNiO3 觸媒XRD 分析 112 LaNiO3 觸媒TPR 分析 113 甲烷蒸汽重組測試 117 TGA測試 119 觸媒失活探討 122 LaNiO3觸媒修飾 123 附錄二甲烷蒸汽重組相關反應式 125 附錄三Ni/LZC TEM圖譜 126

    [1] J. Ren, N. M. Musyoka, H. W. Langmi, B. C. North, M. Mathe, X. Kang, et al., "Hydrogen storage in Zr-fumarate MOF," International Journal of Hydrogen Energy, vol. 40, pp. 10542-10546, 9/7/ 2015.
    [2] Y. Zhang, W. Wang, Z. Wang, X. Zhou, Z. Wang, and C.-J. Liu, "Steam reforming of methane over Ni/SiO2 catalyst with enhanced coke resistance at low steam to methane ratio," Catalysis Today, vol. 256, Part 1, pp. 130-136, 11/1/ 2015.
    [3] P. Wu, X. Li, S. Ji, B. Lang, F. Habimana, and C. Li, "Steam reforming of methane to hydrogen over Ni-based metal monolith catalysts," Catalysis Today, vol. 146, pp. 82-86, 8/15/ 2009.
    [4] A. Gouveia Gil, Z. Wu, D. Chadwick, and K. Li, "Ni/SBA-15 Catalysts for combined steam methane reforming and water gas shift—Prepared for use in catalytic membrane reactors," Applied Catalysis A: General, vol. 506, pp. 188-196, 10/5/ 2015.
    [5] Y. Matsumura and T. Nakamori, "Steam reforming of methane over nickel catalysts at low reaction temperature," Applied Catalysis A: General, vol. 258, pp. 107-114, 2/10/ 2004.
    [6] A. Vita, G. Cristiano, C. Italiano, L. Pino, and S. Specchia, "Syngas production by methane oxy-steam reforming on Me/CeO2 (Me = Rh, Pt, Ni) catalyst lined on cordierite monoliths," Applied Catalysis B: Environmental, vol. 162, pp. 551-563, 1// 2015.
    [7] S. D. Angeli, L. Turchetti, G. Monteleone, and A. A. Lemonidou, "Catalyst development for steam reforming of methane and model biogas at low temperature," Applied Catalysis B: Environmental, vol. 181, pp. 34-46, 2// 2016.
    [8] G. R. Moradi, F. Khosravian, and M. Rahmanzadeh, "Effects of Partial Substitution of Ni by Cu in LaNiO3 Perovskite Catalyst for Dry Methane Reforming," Chinese Journal of Catalysis, vol. 33, pp. 797-801, 4// 2012.
    [9] K. Sutthiumporn and S. Kawi, "Promotional effect of alkaline earth over Ni–La2O3 catalyst for CO2 reforming of CH4: Role of surface oxygen species on H2 production and carbon suppression," International Journal of Hydrogen Energy, vol. 36, pp. 14435-14446, 11// 2011.
    [10] A. S. Al-Fatesh, M. A. Naeem, A. H. Fakeeha, and A. E. Abasaeed, "Role of La2O3 as Promoter and Support in Ni/γ-Al2O3 Catalysts for Dry Reforming of Methane," Chinese Journal of Chemical Engineering, vol. 22, pp. 28-37, 1// 2014.
    [11] N. Kumar, A. Roy, Z. Wang, E. M. L’Abbate, D. Haynes, D. Shekhawat, et al., "Bi-reforming of methane on Ni-based pyrochlore catalyst," Applied Catalysis A: General, vol. 517, pp. 211-216, 5/5/ 2016.
    [12] J. Yang, M. Shahid, M. Zhao, J. Feng, C. Wan, and W. Pan, "Physical properties of La2B2O7(BZr, Sn, Hf and Ge) pyrochlore: First-principles calculations," Journal of Alloys and Compounds, vol. 663, pp. 834-841, 4/5/ 2016.
    [13] S. Gaur, D. J. Haynes, and J. J. Spivey, "Rh, Ni, and Ca substituted pyrochlore catalysts for dry reforming of methane," Applied Catalysis A: General, vol. 403, pp. 142-151, 8/22/ 2011.
    [14] M. Tada, S. Zhang, S. Malwadkar, N. Ishiguro, J.-i. Soga, Y. Nagai, et al., "The Active Phase of Nickel/Ordered Ce2Zr2Ox Catalysts with a Discontinuity (x=7–8) in Methane Steam Reforming," Angewandte Chemie International Edition, vol. 51, pp. 9361-9365, 2012.
    [15] X. Fang, X. Zhang, Y. Guo, M. Chen, W. Liu, X. Xu, et al., "Highly active and stable Ni/Y2Zr2O7 catalysts for methane steam reforming: On the nature and effective preparation method of the pyrochlore support," International Journal of Hydrogen Energy.
    [16] K. E. Sickafus, R. W. Grimes, J. A. Valdez, A. Cleave, M. Tang, M. Ishimaru, et al., "Radiation-induced amorphization resistance and radiation tolerance in structurally related oxides," Nat Mater, vol. 6, pp. 217-223, 03//print 2007.
    [17] F. X. Zhang, C. L. Tracy, M. Lang, and R. C. Ewing, "Stability of fluorite-type La2Ce2O7 under extreme conditions," Journal of Alloys and Compounds, vol. 674, pp. 168-173, 7/25/ 2016.
    [18] H. Yamamura, H. Nishino, K. Kakinuma, and K. Nomura, "Electrical conductivity anomaly around fluorite–pyrochlore phase boundary," Solid State Ionics, vol. 158, pp. 359-365, 3// 2003.
    [19] Y. Zhang, M. Xie, F. Zhou, X. Cui, X. Lei, X. Song, et al., "Low thermal conductivity in La2Zr2O7 pyrochlore with A-site partially substituted with equimolar Yb2O3 and Er2O3," Ceramics International, vol. 40, pp. 9151-9157, 8// 2014.
    [20] B. Paul, K. Singh, T. Jaroń, A. Roy, and A. Chowdhury, "Structural properties and the fluorite–pyrochlore phase transition in La2Zr2O7: The role of oxygen to induce local disordered states," Journal of Alloys and Compounds, vol. 686, pp. 130-136, 11/25/ 2016.
    [21] T. Mondal, K. K. Pant, and A. K. Dalai, "Catalytic oxidative steam reforming of bio-ethanol for hydrogen production over Rh promoted Ni/CeO2–ZrO2 catalyst," International Journal of Hydrogen Energy, vol. 40, pp. 2529-2544, 2/19/ 2015.
    [22] G. Pantaleo, V. L. Parola, F. Deganello, R. K. Singha, R. Bal, and A. M. Venezia, "Ni/CeO2 catalysts for methane partial oxidation: Synthesis driven structural and catalytic effects," Applied Catalysis B: Environmental, vol. 189, pp. 233-241, 7/15/ 2016.
    [23] L. Bednarczuk, P. Ramírez de la Piscina, and N. Homs, "Efficient CO2-regeneration of Ni/Y2O3La2O3ZrO2 systems used in the ethanol steam reforming for hydrogen production," International Journal of Hydrogen Energy.
    [24] S.-F. Weng, Y.-H. Wang, and C.-S. Lee, "Autothermal steam reforming of ethanol over La2Ce2−xRuxO7 (x = 0–0.35) catalyst for hydrogen production," Applied Catalysis B: Environmental, vol. 134–135, pp. 359-366, 5/2/ 2013.
    [25] S. Shao, A.-W. Shi, C.-L. Liu, R.-Z. Yang, and W.-S. Dong, "Hydrogen production from steam reforming of glycerol over Ni/CeZrO catalysts," Fuel Processing Technology, vol. 125, pp. 1-7, 9// 2014.
    [26] M. A. Ebiad, D. R. Abd El-Hafiz, R. A. Elsalamony, and L. S. Mohamed, "Ni supported high surface area CeO2-ZrO2 catalysts for hydrogen production from ethanol steam reforming," RSC Advances, vol. 2, pp. 8145-8156, 2012.
    [27] Y. Ma, X. Wang, X. You, J. Liu, J. Tian, X. Xu, et al., "Nickel-Supported on La2Sn2O7 and La2Zr2O7 Pyrochlores for Methane Steam Reforming: Insight into the Difference between Tin and Zirconium in the B Site of the Compound," ChemCatChem, vol. 6, pp. 3366-3376, 2014.
    [28] Z. L. Zhang and X. E. Verykios, "Carbon dioxide reforming of methane to synthesis gas over supported Ni catalysts," Catalysis Today, vol. 21, pp. 589-595, 1994/12/02 1994.
    [29] C. H. Bartholomew, "Carbon Deposition in Steam Reforming and Methanation," Catalysis Reviews, vol. 24, pp. 67-112, 1982/01/01 1982.
    [30] N. Wang, W. Chu, T. Zhang, and X. S. Zhao, "Synthesis, characterization and catalytic performances of Ce-SBA-15 supported nickel catalysts for methane dry reforming to hydrogen and syngas," International Journal of Hydrogen Energy, vol. 37, pp. 19-30, 1// 2012.
    [31] H. Teterycz, R. Klimkiewicz, and M. Łaniecki, "The role of Lewis acidic centers in stabilized zirconium dioxide," Applied Catalysis A: General, vol. 249, pp. 313-326, 8/28/ 2003.
    [32] J. D. A. Bellido and E. M. Assaf, "Nickel catalysts supported on ZrO2, Y2O3-stabilized ZrO2 and CaO-stabilized ZrO2 for the steam reforming of ethanol: Effect of the support and nickel load," Journal of Power Sources, vol. 177, pp. 24-32, 2/15/ 2008.
    [33] B. Zhao, C. Huang, R. Ran, X. Wu, and D. Weng, "Two-step thermochemical looping using modified ceria-based materials for splitting CO2," Journal of Materials Science, vol. 51, pp. 2299-2306, 2016// 2016.
    [34] J. M. Heras and L. Viscido, "The Behavior of Water on Metal Surfaces," Catalysis Reviews, vol. 30, pp. 281-338, 1988/06/01 1988.
    [35] K. Otsuka, M. Hatano, and A. Morikawa, "Hydrogen from water by reduced cerium oxide," Journal of Catalysis, vol. 79, pp. 493-496, 1983/02/01 1983.
    [36] V. M. Gonzalez-Delacruz, R. Pereñiguez, F. Ternero, J. P. Holgado, and A. Caballero, "Modifying the Size of Nickel Metallic Particles by H2/CO Treatment in Ni/ZrO2 Methane Dry Reforming Catalysts," ACS Catalysis, vol. 1, pp. 82-88, 2011/02/04 2011.
    [37] T. Nozaki, H. Tsukijihara, W. Fukui, and K. Okazaki, "Kinetic Analysis of the Catalyst and Nonthermal Plasma Hybrid Reaction for Methane Steam Reforming," Energy & Fuels, vol. 21, pp. 2525-2530, 2007/09/01 2007.
    [38] M. Zeppieri, P. L. Villa, N. Verdone, M. Scarsella, and P. De Filippis, "Kinetic of methane steam reforming reaction over nickel- and rhodium-based catalysts," Applied Catalysis A: General, vol. 387, pp. 147-154, 10/20/ 2010.
    [39] A. Sciazko, Y. Komatsu, G. Brus, S. Kimijima, and J. S. Szmyd, "A novel approach to the experimental study on methane/steam reforming kinetics using the Orthogonal Least Squares method," Journal of Power Sources, vol. 262, pp. 245-254, 9/15/ 2014.
    [40] V. Arcotumapathy, D.-V. N. Vo, D. Chesterfield, C. T. Tin, A. Siahvashi, F. P. Lucien, et al., "Catalyst design for methane steam reforming," Applied Catalysis A: General, vol. 479, pp. 87-102, 6/5/ 2014.
    [41] T.-J. Huang and S.-Y. Jhao, "Ni-Cu/samaria-doped ceria catalysts for steam reforming of methane in the presence of carbon dioxide," Applied Catalysis A: General, vol. 302, pp. 325-332, 4/11/ 2006.
    [42] B. Bej, N. C. Pradhan, and S. Neogi, "Production of hydrogen by steam reforming of methane over alumina supported nano-NiO/SiO2 catalyst," Catalysis Today, vol. 207, pp. 28-35, 5/30/ 2013.
    [43] Y. Qi, Z. Cheng, and Z. Zhou, "Steam reforming of methane over Ni catalysts prepared from hydrotalcite-type precursors: Catalytic activity and reaction kinetics," Chinese Journal of Chemical Engineering, vol. 23, pp. 76-85, 1// 2015.
    [44] T.-J. Huang, M.-C. Huang, and M.-S. Huang, "Novel methane steam-reforming catalyst of Ni-Bi2O3/GDC to reduce CO for hydrogen production," Applied Catalysis A: General, vol. 354, pp. 127-131, 2/15/ 2009.
    [45] T.-J. Huang and M.-C. Huang, "Effect of Ni content on hydrogen production via steam reforming of methane over Ni/GDC catalysts," Chemical Engineering Journal, vol. 145, pp. 149-153, 12/1/ 2008.
    [46] K.-H. Lin, C.-B. Wang, and S.-H. Chien, "Catalytic performance of steam reforming of ethanol at low temperature over LaNiO3 perovskite," International Journal of Hydrogen Energy, vol. 38, pp. 3226-3232, 3/19/ 2013.
    [47] K. Hou and R. Hughes, "The kinetics of methane steam reforming over a Ni/α-Al2O catalyst," Chemical Engineering Journal, vol. 82, pp. 311-328, 3/15/ 2001.
    [48] Y. Wang, F. Yoshiba, M. Kawase, and T. Watanabe, "Performance and effective kinetic models of methane steam reforming over Ni/YSZ anode of planar SOFC," International Journal of Hydrogen Energy, vol. 34, pp. 3885-3893, 5// 2009.
    [49] 江致威,''銅鎳觸媒應用於中低溫甲烷蒸汽重組反應之研究'',國立台灣科技大學,碩士論文(2013).

    QR CODE