簡易檢索 / 詳目顯示

研究生: 江致威
Chih-Wei Chiang
論文名稱: 銅鎳觸媒應用於中溫甲烷蒸汽重組反應之研究
The study of mid-temperature steam reforming of methane over Cu-Ni catalyst
指導教授: 林昇佃
Shawn D. Lin.
口試委員: 劉端祺
Tuan-Chi Liu
陳敬勳
C.S. Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 98
中文關鍵詞: 中溫甲烷蒸汽重組反應Cu-Ni 雙金屬觸媒觸媒修飾
外文關鍵詞: mid-temperature steam reforming of methane, Cu-Ni bimetallic catalyst, catalyst modified
相關次數: 點閱:298下載:14
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 甲烷的運用與氫氣新能源載體的產製是可行的替代能源方案,本研究探討甲烷的重組轉化製氫,並以500 oC以下的反應溫度為目標,以降低操作中的能源消耗。本實驗室先前探討使用CuNi 雙金屬觸媒於乙醇重組反應,利用NiO來提供活性氧的成分,可以顯著降低乙醇重組反應中甲烷生成選擇率,故以此觸媒來測試甲烷重組反應效率。測試發現CuNi 雙金屬觸媒在甲烷蒸汽重組反應中具有500 oC以下的反應活性,但經反應測試到500 oC即有顯著失活,歸因於NiO被產物中的H2所還原,導致具活性位置的Cu-NiO界面消失。因此本研究探討以La、Li、Gd等成分添加於NiO來進行CuNi 觸媒的修飾,藉由提升NiO的還原溫度以維持Cu-NiO界面的穩定性,結果顯示Gd修飾的CuNi 雙金屬觸媒可於375-500 oC間有效的催化甲烷蒸汽重組反應,且能獲得高甲烷轉化率與氫氣產率為4的高效能,同時具有降低觸媒失活的效用,經特性分析實驗可得知Gd修飾的CuNi 雙金屬觸媒具有較高的金屬分散性與較高的轉化頻率(TOF, turnover frequency),因而有效提升反應效能。


    Methane utilization and hydrogen as a new energy carrier are among the more pursued energy research subjects, wherein methane reforming (SRM) is an important reaction. Industrial SRM operates at high temperature, e.g., 700oC and above. However, mid-temperature (300-500oC) SRM can have an advantage in reducing the energy consumption. This study develops highly efficient Cu-Ni catalysts for mid-temperature SRM based on our previous experience in ethanol steam reforming. NiO is used as an active support to provide active oxygen species that can significantly reduce the selectivity of methane in SRE, and therefore, it may activate methane for SRM. However, the Cu-Ni catalyst deactivated when tested for SRM up to 500 oC when NiO became completely reduced. Therefore, we modified Cu-Ni catalyst by doping with La, Li, or Gd. Experimental results show that Gd doping in Cu-Ni catalyst can effectively catalyze SRM with high CH4 conversion, and increase H2 yield in the temperature range of 375-500oC. Gd doping also decreased the degree of deactivation of the catalyst. From the characterization, Cu-Ni catalyst with Gd doping had higher metal dispersion and higher TOF (turnover frequency) than the undoped catalyst.

    目錄 摘要 Abstract 誌謝 第一章 緒論 1.1 前言 1.2 文獻回顧 1.2.1 甲烷蒸汽重組反應(Steam Reforming of Methane) 1.2.2 鎳觸媒應用於中低溫甲烷蒸汽重組反應 1.2.3 氧化鎳結構摻雜金屬修飾對其還原性質的影響 1.3 研究目的 第二章 研究設備與方法 2.1 觸媒命名 2.2 研究架構與方法 2.3 藥品與儀器設備 2.3.1 藥品部分 2.3.2 氣體部份 2.3.3 儀器部分 2.4 觸媒製備 2.4.1 SBA-15中孔洞氧化矽基材之製備 2.4.2 以SBA-15為模板製備Cu-NiO-S觸媒 2.4.3 以共沉澱法製備La-NiO-Px觸媒 2.4.4 以共沉澱法製備Li-NiO-Px觸媒 2.4.5 以共沉澱法製備Gd-NiO-Px觸媒 2.4.6 以初濕含浸法製備Cu/La-NiO-Px觸媒 2.4.7 以初濕含浸法製備Cu/Li-NiO-Px觸媒 2.4.8 以初濕含浸法製備Cu/Gd-NiO-Px觸媒 2.5 觸媒特性分析 2.5.1 感應式耦合電漿原子放射光譜儀(ICP) 2.5.2 表面積與孔隙測定儀(BET) 2.5.3 程溫還原反應(TPR) 2.5.4 熱重分析儀(TGA) 2.5.5 X光粉末繞射儀(XRD) 2.5.6 NSRRC EXAFS 2.6 甲烷蒸汽重組反應 2.6.1 甲烷蒸汽重組反應測試 2.6.2 Power law’s 反應速率式分析 2.6.2.1 計算甲烷反應級數 2.6.2.2 計算水之反應級數 第三章 結果與討論 3.1 Cu-NiO-S觸媒的特性分析與甲烷蒸汽重組反應 3.1.1 Cu-NiO-S特性分析 3.1.2 使用Cu-NiO-S觸媒於甲烷蒸汽重組反應 3.1.2.1 不同金屬界面對甲烷蒸汽重組反應的影響 3.1.2.2 不同進料條件對甲烷蒸汽重組反應的影響 3.1.2.3 Cu-NiO-S於甲烷蒸汽重組反應的失活現象探討 3.1.2.4 Cu-NiO-S的Power law model動力學分析 3.1.2.5 自製10%Ni/Al2O3觸媒應用於甲烷蒸汽重組反應 3.2 使用模板法與沉澱法二種不同方式製備銅鎳觸媒的比較 3.2.1 不同方法所製備的銅鎳觸媒特性分析 3.2.2 不同的銅鎳觸媒製備方式對甲烷蒸汽重組反應的影響 3.3 探討不同金屬對氧化鎳載體的修飾效果 3.3.1 以鑭修飾氧化鎳載體 3.3.2 以鋰修飾氧化鎳載體 3.3.3 以釓修飾氧化鎳載體 3.4 金屬修飾氧化鎳載體後銅鎳觸媒的特性分析與SRM反應 3.4.1 銅鎳觸媒經不同金屬修飾後的特性分析 3.4.2 Cu/La-NiO-Px的甲烷蒸汽重組反應測試 3.4.2.1 不同La參雜量對甲烷蒸汽重組反應的影響 3.4.2.2 Cu/La-NiO-Px於甲烷蒸汽重組的反應現象分析 3.4.3 Cu/M-NiO-P7.5的甲烷蒸汽重組反應測試 3.4.3.1 不同金屬修飾觸媒對甲烷蒸汽重組反應的影響 3.4.3.2 Cu/M-NiO-P7.5於甲烷蒸汽重組的反應現象分析 3.4.3.4 Cu/Gd-NiO-P7.5的Power law model動力學分析 第四章 結論 參考文獻 附錄

    [1] M. Finley, BP Ststistical Review of World Energy, June 2009.
    [2] Y. Chao, Hydrogen Production via Methane/Ethanol Reforming, 2009
    [3] C. Diagne, H. Idriss, K. Pearson, M.A. Gomez-Garcia, and A. Kiennemann, C.R. Chim. 7 (2004)617-622.
    [4] C. Diagne, H. Idriss, and A. Kiennemann, Catal. Commun. 3 (2002) 565-571.
    [5] J. Llorca, N. Homs, J. Sales, and P.R.r. de la Piscina, J. Catal. 209 (2002) 306-317.
    [6] JYZ Chiou, Pathways of ethanol steam reforming over ceria-supported catalysts, Int. J. Hydrogen Energy (2012), doi:10.1016/j.ijhydene.2012.02.081
    [7] J. Sun, X.-P. Qiu, F. Wu, and W.-T. Zhu, Int. J. Hydrogen Energy 30 (2005) 437-445.
    [8] Y. Yang, J. Ma, and F. Wu, Int. J. Hydrogen Energy 31 (2006) 877-882.
    [9] M.S. Huang, A study of steam reforming of methane over Nickel-Bismuth mixed oxide, 2010.
    [10] T.J Yu, Study of Steam Reforming of Methane over Oxygen-Ion Con ducting Material Supported Nickel Catalyst.
    [11] H.-W. Chen, C.-Y. Wang, C.-H. Yu, L.-T. Tseng, P.-H. Liao, Catal. Today 97 (2004) 173–180.
    [12] J.-H. Lee; E.-G. Lee; O.-S. Joo, K.-D. Jung, Appl. Catal. A: General 269 (1) .
    [13] N. Laosiripojana, S. Assabumrungrat, S. Charojrochkul, Appl. Catal. A: Gen. 327 (2007) 180-188.
    [14] D. Srinivas, C.V.V. Satyanarayana, H.S. Potdar, P. Ratnasamy, Appl. Catal. A: Gen. 246 (2003)323-334.
    [15] N. Srisiriwat, S. Therdthianwong, A. Therdthianwong, Int. J. Hydrogen Energy 34 (2009) 2224-2234.
    [16] J.R. Rostrup-Nielsen, J.-H. Bak Hansen, J. Catal. 144 (1993) 38-49.
    [17] T. Nozaki, H. Tsukijihara, W. Fukui, K. Okazaki, Energy & Fuels 2007, 21, 2525-2530.
    [18] Y. Matsumura, T. Nakamori, Applied Catalysis A: General 258 (2004) 107–114
    [19] L.C. Chen, Effect of the structure and the composition of CuNi bimetallic catalysts on ethanol steam reforming reaction, 2012
    [20] S. Imamaura, T. Yamashita, R. hamada, Y. Saito, Y. Nakao, N. Tsuda, C. Kaito, J.Mol. Catal. A 129 (1998) 249–256.
    [21] J. Wei, E. Iglesia, J. Catal. 225 (2004) 116–127.
    [22] K. Hou, R. Hughes, J. Eng. Chem. 82 (2001) 311–328.
    [23] A. Berman, R.K. Karn, M. Epstein, Appl. Catal. A 282 (2005) 73–83.
    [24] J. Xu, G.F. Froment, AIChE J. 35 (1989) 88–96.
    [25] M.H. Halabi, M.H.J.M. de Croon, J. van der Schaaf, P.D. Cobden1, J.C. Schouten, Applied Catalysis A: General 389 (2010) 68–79
    [26] K.-D. Ko, J.K. Lee, D. Park, S.H. Shin, Korean J.Chem. Eng. 12 (1995) 478-480.
    [27] David R.Lide, CRC Handbook of Chemistry and Physics, USA, Taylor & Francis
    [28] N. Laosiripojana, S. Assabumrungrat, Applied Catalysis A: General 290 (2005) 200–211
    [29] D. Han, X. Jing, J. Wang, P. Yang, D. Song, J. Liu, Journal of Electroanalytical Chemistry 682 (2012) 37-44.
    [30] David R,Lide, Handbook of chemistry and physics, 74th Edition (1993-1994), CRC PRESS.
    [31] Q. Zhou, D. Zhou, Y. Wu, T. Wu, JOURNAL OF RARE EARTHS, Vol. 31, No. 7, July 2013, P. 669.
    [32] Jadson Santos Moura, Marluce Oliveira da Guarda Souza, Maria do Carmo Rangel, Fuel 87 (2008) 3627–3630
    [33] A. Boreave, H. Tan, V. Roche, P. Vernoux, Jean-Pierre Deloume, Solid State Ionics 179 (2008) 1071–1075.
    [34] Maria Luiza Andrade1, Lindaura Almeida, Maria do Carmo Rangel1, Francisco Pompeo, Nora Nichio, Chem. Eng. Technol. 2014, 37, No. 2, 343–348
    [35] W. Jang, Y. Lub, W. Hwang, W. Chena, Journal of the European Ceramic Society 30 (2010) 503–508.
    [36] S. Liu, J. Wang, J. Jia, X. Hu, S. Liu, Ceramics International 38 (2012) 5023–5026.
    [37] S. Huang, Trends of Water Gas Shift Reaction on Transition Metal Surfaces from First Principles calculation, Taiwan, thesis of master degree, NTNU, 2009
    [38] Roh, H.-S., K.-W. Jun, W.-S. Dong, J.-S. Chang, S.-E. Park and Y.-I. Joe, J. Mol. Catal. A Chem. 181, 137-142 (2002).
    [39] Xu, J. and G. F.Froment, AIChE J. 35, 88–96 (1989a).
    [40] A. DJAIDJA, A. KIENNEMANN, A. BARAMA, Scientific Bases for the Preparation of Heterogeneous Catalysts, (2006) 945-952.
    [41] Takahashi, R., S. Sato, T. Sodesawa, M. Yoshida and S.Tomiyama, Appl. Catal. A 273, 211–215 (2004).
    [42] T.Huang, S. Jhao, Applied Catalysis A: General 302 (2006) 325–332.
    [43] Y. Matsumura, T. Nakamori, Appl. Catal. A 258, 107–114 (2004).

    QR CODE